Partial orderings of minors in the positive Grassmannian

Semen Andriets and Borys Holikov

Mentor: Yelena Mandelshtam
May 14, 2023

The Positive Grassmanian

Definition

- Let k be an integer such that $0 \leq k \leq n$. The $\operatorname{Grassmannian~} \operatorname{Gr}(k, n)$ is the space of all k-dimensional subspaces of \mathbb{R}^{n}.
- For $A \in \operatorname{Gr}(k, n)$ let A_{I}, for $I \in\binom{[n]}{k}$, denote its $k \times k$ submatrix with column set I and $\Delta_{I}=\operatorname{det}\left(A_{I}\right)$.
- The Δ_{I} are called Plücker coordinates and give an embedding of $\operatorname{Gr}(k, n)$ into $\mathbb{P}^{\binom{n}{k}-1}$, the $\binom{n}{k}$-dimensional projective space.
- We will be mostly interested in positive Grassmannian, $\operatorname{Gr}^{+}(k, n)$. It is the subset of $G(k, n)$ such that $\operatorname{det}\left(A_{I}\right) \geq 0$ holds for all $A \in G r^{+}(k, n)$ and $I \in\binom{[n]}{k}$.

The Positive Grassmanian(Example)

$A=\left(\begin{array}{cccc}1 & 3 & 2 & \frac{1}{4} \\ 1 & 4 & 3 & \frac{1}{2}\end{array}\right) \in G r^{+}(2,4)$ has six Plücker coordinates: $A_{\{1,2\}}, A_{\{1,3\}}$, $A_{\{1,4\}}, A_{\{2,3\}}, A_{\{2,4\}}, A_{\{3,4\}}$. Which satisfies $\Delta_{\{1,2\}}=\Delta_{\{1,3\}}=\Delta_{\{2,3\}}=1$, $\Delta_{\{1,4\}}=\Delta_{\{3,4\}}=\frac{1}{4}, \Delta_{\{2,4\}}=\frac{1}{2}$

Partition of the Positive Grassmanian

Definition

Let $\mathbb{U}=\left(\mathbb{U}_{0}, \mathbb{U}_{1}, \cdots \mathbb{U}_{l}\right)$ be an ordered set-partition of $\binom{[n]}{k}$ according to Plucker coordinates in $A \in \operatorname{Gr}^{+}(k, n)$ such that:
(1) $\Delta_{I}=0$ for $I \in \mathbb{U}_{0}$
(2) $\Delta_{I}=\Delta_{J}$ if $I, J \in \mathbb{U}_{i}$
(3) $\Delta_{I}<\Delta_{J}$ if $I \in \mathbb{U}_{i} J \in \mathbb{U}_{j}$ with $i<j$

An arrangement of minors is an ordered set-partition \mathbb{U}.

Definition

We say that $A_{I}, I \in\binom{[n]}{k}$ is a t-largest minor in $A \in G^{+}(k, n)$ if for ordered set-partition of $G(k, n)$ there exist such i that $\mathbb{U}_{i}=\mathbb{U}_{l-t}$ and $I \in \mathbb{U}_{i}$.

Sort1 and Sort2 function

Definition

For a multiset S of elements from [n], let $\operatorname{Sort}(S)$ be the non-decreasing sequence obtained by ordering the elements of S . Let $I, J \subset\binom{[n]}{k}$ and let $\operatorname{Sort}(I \cup J)=\left(a_{1} ; a_{2} ; \cdots ; a_{2 k}\right)$. Define:

$$
\operatorname{Sort}_{1}(I, J):=\left\{a_{1} ; a_{3} ; \cdots ; a_{2 k-1}\right\}, \quad \operatorname{Sort}_{2}(I, J):=\left\{a_{2} ; a_{4} ; \cdots ; a_{2 k}\right\}
$$

A pair $I ; J$ is called sorted if $\operatorname{Sort}_{1}(I, J)=I$ and $\operatorname{Sort}_{2}(I, J)=J$, or vice versa. Consequently $\mathbb{U} \subset\binom{[n]}{k}$ is called sorted if every two sets $I, J \in \mathbb{U}$ are sorted.

Example

Let $A=\left(\begin{array}{cccc}1 & 3 & 2 & \frac{1}{4} \\ 1 & 4 & 3 & \frac{1}{2}\end{array}\right) \in G r^{+}(2,4)$ then sets $\{1,2\}$ and $\{3,4\}$ are not sorted where $\operatorname{Sort}_{1}(\{1,2\},\{3,4\})=\{1,3\}, \operatorname{Sort}_{2}(\{1,2\},\{3,4\})=\{2,4\}$

Scanderra inequality

Theorem
Let $I, J \in\binom{[n]}{k}$ be a pair which is not sorted. Then for all $A \in G r^{+}(k, n)$, it holds that $\Delta_{\text {sort }_{1}(I, J)} \Delta_{\text {sort }_{2}(I, J)}>\Delta_{I} \Delta_{J}$.

Example

Hence from Scanderra inequality $\Delta_{\{1,3\}} \Delta_{\{2,4\}}>\Delta_{\{1,2\}} \Delta_{\{3,4\}}$.
substitution: $\Delta_{\{1,3\}}=1, \Delta_{\{2,4\}}=\frac{1}{2}, \Delta_{\{1,2\}}=1, \Delta_{\{3,4\}}=\frac{1}{4}$ and $\frac{1}{2}>\frac{1}{4}$.

Maximal sorted sets

Theorem
The number of elements in the maximal sorted sets of $\binom{[n]}{k}$ is always n.

Theorem (Farber-Postnikov)
The U_{l} is always a sorted set.

Circuit graph

Definition

Let G be the directed graph where vertices are vectors of $\{0,1\}^{n}$, where exactly k ones, and vertex is connected to other if the second vertex can be obtained by shifting one 1 in right. Let's call the circuit the cycle of length n in the graph G.

Theorem
Maximal sorted sets are in bijection with circuits.
Some examples:

- In $\binom{[6]}{3},\{1,2,4\}$ corresponds to $(1,1,0,1,0,0)$
- ($1,1,0,1,0,0$) is connected to ($1,1,0,0,1,0$) and ($1,0,1,1,0,0$)
- In $\binom{[4]}{2}$ the circuit is $\{(1,1,0,0),(1,0,1,0),(1,0,0,1),(0,1,0,1)\}$

Detour of circuit

Definition

Let's look at three consecutive elements I, J, K in the circuit, if J can be replaced with some J_{1}, then let's call this process a detour of the circuit.

Dual Graph

Definition

Let's build the dual Graph Γ as follows, the vertices are circuits, and two circuits are connected if they can be obtained one from the other by detour.

Theorem
Dual graphs have $A(k, n)$ vertices, where A is a number of alternating permutations.

Cubical distance

Definition

For two vertices of the dual Graph that are lying on the same cube (of any dimension), the cubical distance is one. And cubical distance between \mathscr{J}_{1} and \mathscr{J}_{2} is a number of cubes throw which go path minimally with regard to this property. Cubical distance from $I \in\binom{[n]}{k}$ to \mathscr{J} is the minimal cubical distance from all circuits containing I to \mathscr{J}. It is denoted cube (I, \mathscr{J}).

Conjecture (Farber-Mandelshtam, 2015)
Let $\mathscr{J} \subset\binom{[n]}{k}$ be an arrangement of largest minors, then the two following statements if cube $(W, \mathscr{J})=t$ then W is $(\geq t+1, J)$-largest minor.

Examples with the $\Gamma_{(6,3)}$

Circuit stratification of graph

Definition

Let's divide the circuit graph into vertical and horizontal levels in the following way. Vertically, we shall arrange them by the remainder of the sum of all numbers modulo n.

Definition

Horizontal levels are defined inductively. First are the maximal minors, and second are those that are connected with two from the first level. And as follows, the t-th level is those that have at least two connections to the union of the previous levels.

Conjecture

The stratification to horizontal levels is equivalent to the partition according to cubical distance.

Example

Conjecture

For every vertex of the stratification exist a "good quadrilateral"

The end

Thanks to everyone for making this program possible.

