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Abel's Theorem

Theorem (Abel’s Theorem). For 𝑛 ≥ 5 the general algebraic equation of degree 𝑛

𝑎0𝑤𝑛 + 𝑎1 𝑤𝑛−1 + ⋯ + 𝑎𝑛 − 1𝑤 + 𝑎𝑛 = 0

is not solvable by radicals.



Basics
Let's get acquainted with some basic concepts and theorems



Groups and Isomorphisms

Definition. 𝐺 with a binary operation on it is a group if:

1) ∀𝑎, 𝑏, 𝑐 ∈ 𝐺 we have 𝑎 ⋅ 𝑏 ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐);

2) ∃𝑒 ∈ 𝐺 such that ∀𝑎 ∈ 𝐺 we have 𝑎 ⋅ 𝑒 = 𝑒 ⋅ 𝑎 = 𝑎;

3) ∀𝑎 ∈ 𝐺 ∃𝑎−1 ∈ 𝐺 such that 𝑎 ⋅ 𝑎−1 = 𝑎−1 ⋅ 𝑎 = 𝑒.

Definition. A map 𝑓:  𝐺 →  𝐺′ is a homomorphism if  ∀𝑎, 𝑏 ∈ 𝐺 we have 𝑓 𝑎 ⋅ 𝑏 =
𝑓 𝑎 ⋅ 𝑓(𝑏).

Definition. Let 𝜙:  𝐺 →  𝐺′ be a homomorphism. The set of the elements 𝑔: 𝜙(𝑔) = 𝑒𝐺′  is 
called the kernel of the homomorphism 𝝓.

Definition. A homomorphism 𝑓:  𝐺 →  𝐺′ is an isomorphism if there is another 
homomorphism g:  𝐺 →  𝐺′ such that 𝑓 ∘ 𝑔 = 𝐼𝑑𝐺′ and 𝑓 ∘ 𝑔 = 𝐼𝑑𝐺 .



Subgroups. Normal Subgroups

Definition. A subset 𝐻 of a group 𝐺 is called a subgroup if it forms a group itself under 
the same binary operation.

Theorem. If 𝐻 is a subgroup of a group 𝐺, the unit elements in 𝐺 and 𝐻 coincide.

Theorem. The order of a subgroup 𝐻 of a group 𝐺 divides the order of 𝐺 .

Definition. A subgroup 𝑁 of a group 𝐺 is called a normal subgroup of 𝑮 if  ∀𝑎 ∈ 𝑁 and 
∀𝑔 ∈ 𝐺 the element 𝑔𝑎𝑔−1 ∈ 𝑁.



Commutative Groups and Commutants

Definition. Two elements 𝑎 and 𝑏 of a group are said to commute if 𝑎𝑏 = 𝑏𝑎.

Definition. If in a group any two elements commute, the group is called commutative.

Definition. The element 𝑎𝑏𝑎−1𝑏−1 is called the commutator of the elements 𝑎 and 𝑏.

Definition. The set of all possible products of a finite number of commutators of a group 
𝐺 is called the commutant of the group 𝐺 and is denoted by 𝐾(𝐺).

Theorem. The commutant is a normal subgroup.

Theorem. The commutant coincides with the unit element if and only if the group is 
commutative.



Soluble Groups

Definition. A group 𝐺 is said to be soluble if the sequence 𝐺, 𝐾 𝐺 , 𝐾2 𝐺 , 𝐾3(𝐺) ends 
with a unit group, i.e. 𝐺 = {𝑒} or ∃𝑛 ∈ 𝐺: 𝐾𝑛 𝐺 = {𝑒}.

Theorem. If a group 𝐺 is not commutative and has no normal subgroups other than {𝑒} 
and 𝐺, it is not soluble.

Theorem. Every subgroup of a soluble group is soluble.



Abel's Theorem Proof
Let's now prove Abel's Theorem!



Abel's Theorem Proof: Part 1



Permutations and Symmetric Groups

Definition. The group of all permutations of degree 𝑛 with the usual operation of 
multiplication of permutations is called the symmetric group of degree 𝒏 and is 
denoted by 𝑆𝑛 .

Definition. The cyclic permutation (or a cycle) is a permutation which maps some 
elements to each other in a cyclic fashion, while fixing all others.

Theorem. Every permutation can be uniquely represented (up to different ordering of 
factors) by a product of independent cycles.

Definition. The permutation 
1 2 … 𝑛
𝑖1 𝑖2 … 𝑖𝑛

 is called even or odd according to the 

parity of the number of inversions in the lower row.



Alternating Groups of Degree 

Definition. The group of all even permutations of degree 𝑛 is called the alternating 
group of degree 𝒏 and is denoted by 𝐴𝑛 .

Theorem. For 𝑛 ≥ 4 𝐴𝑛  is not commutative.



 Solubility

Theorem. For 𝑛 ≥ 5 the symmetric group 𝑆𝑛  is not soluble. 

 Proof plan:

1) The symmetric group 𝑆𝑛  for 𝑛 ≥ 5 contains a subgroup isomorphic to 𝐴5;

2) 𝐴5 is not soluble;

3) Every subgroup of a soluble group is soluble (see before), then 𝑆𝑛  can’t be soluble 
for 𝑛 ≥ 5.



 Solubility: Part 1

Lemma. The symmetric group 𝑆𝑛  for 𝑛 ≥ 5 contains a subgroup isomorphic to 𝐴5 .

 Proof:

It’s easy to see that  the subgroup of 𝑆𝑛  containing all permutations of type

with an even number of inversions in 𝑖1 , 𝑖2 , 𝑖3 , 𝑖4 , 𝑖5 is isomorphic to 𝐴5 .



 Solubility: Part 2

Lemma. 𝐴5 is not soluble.

 Proof plan:

1) Every even permutation of degree 5, different from the identity, can be 
decomposed into independent cycles in just one of the following ways: 
(𝑖1 𝑖2 𝑖3 𝑖4 𝑖5), 𝑖1 𝑖2 𝑖3 , 𝑖1 𝑖2 𝑖3 𝑖4 ;

2) Let 𝑁 be a normal subgroup of 𝐴5 . Then if 𝑁 contains a permutation which splits 
into independent cycles in one of the ways above, 𝑁 contains all the permutations 
splitting into independent cycles in this way;

3) The group 𝐴5 doesn’t contain normal subgroups except the identity and the whole 
group;

4) As 𝐴5 is not commutative and has no normal subgroups except the identity and the 
whole group, it is not soluble.



 Solubility: Part 2.1
1 2 3 4 5
𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

(𝑖1 𝑖2 𝑖3 𝑖4 𝑖5)

𝑖1 𝑖2 𝑖3

𝑖1 𝑖2 𝑖3 𝑖4

𝑖1 𝑖2 𝑖3 𝑖4

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

𝑖1 𝑖2



 Solubility: Part 2.2

Let 𝑁 contain a permutation 𝑎 of type 𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 .

Suppose that 𝑎 = (1 2 3 4 5).  Let’s prove that 𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 ∈ 𝑁.

• The row 𝑖1 , 𝑖2 , 𝑖3 , 𝑖4 , 𝑖5 has an even number of inversions:

𝑔 =
1 2 3 4 5
𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

 is even, then 𝑁 contains 𝑔𝑎𝑔−1 = (𝑖1 𝑖2 𝑖3 𝑖4 𝑖5);

• The row 𝑖1 , 𝑖2 , 𝑖3 , 𝑖4 , 𝑖5 has an odd number of inversions:

𝑔 =
1 2 3 4 5
𝑖1 𝑖4 𝑖2 𝑖5 𝑖3

 is even, then 𝑁 contains 𝑔𝑎𝑔−1 = 𝑖1 𝑖4 𝑖2 𝑖5 𝑖3  and 

𝑔𝑎𝑔−1 2 = (𝑖1 𝑖2 𝑖3 𝑖4 𝑖5).



 Solubility: Part 2.2

Let 𝑁 contain a permutation 𝑎 of type 𝑖1 𝑖2 𝑖3 .

Suppose that 𝑎 = 1 2 3 .  Let’s prove that 𝑖1 𝑖2 𝑖3 ∈ 𝑁.

• The row 𝑖1 , 𝑖2 , 𝑖3 , 𝑖4 , 𝑖5 has an even number of inversions:

𝑔 =
1 2 3 4 5
𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

 is even, then 𝑁 contains 𝑔𝑎𝑔−1 = 𝑖1 𝑖2 𝑖3 ;

• The row 𝑖1 , 𝑖2 , 𝑖3 , 𝑖4 , 𝑖5 has an odd number of inversions:

𝑔 =
1 2 3 4 5
𝑖1 𝑖2 𝑖3 𝑖5 𝑖4

 is even, then 𝑁 contains 𝑔𝑎𝑔−1 = 𝑖1 𝑖2 𝑖3 .



 Solubility: Part 2.2

Let 𝑁 contain a permutation 𝑎 of type 𝑖1 𝑖2 𝑖3 𝑖4 .

Suppose that 𝑎 = 1 2 3 .  Let’s prove that 𝑖1 𝑖2 𝑖3 𝑖4 ∈ 𝑁.

• The row 𝑖1 , 𝑖2 , 𝑖3 , 𝑖4 , 𝑖5 has an even number of inversions:

𝑔 =
1 2 3 4 5
𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

 is even, then 𝑁 contains 𝑔𝑎𝑔−1 = 𝑖1 𝑖2 𝑖3 𝑖4 ;

• The row 𝑖1 , 𝑖2 , 𝑖3 , 𝑖4 , 𝑖5 has an odd number of inversions:

𝑔 =
1 2 3 4 5
𝑖2 𝑖1 𝑖3 𝑖4 𝑖5

 is even, then 𝑁 contains 𝑔𝑎𝑔−1 = 𝑖1 𝑖2 𝑖3 𝑖4 .



 Solubility: Part 2.2
𝐴5

(60)

unit
(1)

(𝑖1 𝑖2 𝑖3 𝑖4 𝑖5)
(24)

𝑖1 𝑖2 𝑖3

(20)

𝑖1 𝑖2 𝑖3 𝑖4

(15)



Abel's Theorem Proof: Part 2



Introducing the Loops

We will be introducing the groups of monodromy through the loops. First, we should 
prove that the loops form a group. In order to do that, let us go over some definitions 
first.

Definition. A loop of a point 𝒙𝟎 in a space 𝑿 is a path 𝐶:  𝐼 → 𝑋, 𝑡 → 𝐶(𝑡) such that 
𝐶(0) = 𝐶(1) = 𝑥0 .

Definition. Two loops 𝐶 and 𝐶′ are called homotopic (noted as 𝜑 ∼ 𝜑′ ) if there's such a 
homotopy 𝐶𝑠:  𝐼 → 𝑋 such that 𝐶0 = 𝐶, 𝐶1 = 𝐶′, 𝐶𝑠 (0) = 𝐶𝑠 (1) = 𝑥0 and 0 ⩽ 𝑠 ⩽ 1 (the 
last condition makes sure that the homotopy is continuous at the ends of the pathways).

Definition. The product 𝐶1 ∙ 𝐶2 of two loops 𝐶1 and 𝐶2 is a loop 𝐶 such that 𝐶(𝑡) =

𝐶1 (2𝑡) with 0 ⩽ 𝑡 ⩽
1

2
 and 𝐶(𝑡) = 𝐶2(2𝑡) when 

1

2
⩽ 𝑡 ⩽ 1. In other words, the product of 

two loops is a loop made of two connected loops that are being passed 
consequentially (with double speed).



Why the Loops Form a Group

Loops are a group only if the next three conditions are true:

1) Associativity: (𝐶1 ∙ 𝐶2 ) ∙ 𝐶3 = 𝐶1 ∙ (𝐶2 ∙ 𝐶3)

2) Existence of unit element: There's such a loop 𝑒, so that 𝐶 ∙ 𝑒 = 𝑒 ∙ 𝐶 = 𝐶

3) Existence of inverse element: For every loop 𝐶 there's such a loop 𝐶−1, so that 𝐶 ∙
𝐶−1 = 𝑒

We're not going to go into the details of the proof right now, since we don't have 
enough time to do that, but turns out that all of the above are true.

Loops (we think that two loops stick together if there is a homotopy between them) 
form a group. This group is usually noted as 𝜋(𝑋, 𝑥0), where 𝑋 is a space and 𝑥0 is a 
chosen point.



Coverings

Definition. A finite (of degree 𝑛) covering of a topological space 𝑋 is a continuous 
surjective map 𝑓:  𝑌 → 𝑋, such that ∀𝑥 ∈ 𝑋 there is an open neighborhood 𝑈𝑥  such that 

𝑓−1 𝑈𝑥 ≅ 𝑖=1ח
𝑛 𝑉(𝑖) where 𝑓 ቚ𝑉(𝑖) : 𝑉(𝑖) → 𝑈𝑥  is a homomorphism.

Turns out that we can lift any path (or loop) from the 
space 𝑋 onto 𝑌. That is because the paths are compact, 
we can easily cover them with the finite amount of 
liftable neighborhoods.



Relation of the Groups of the Loops and 
the Monodromy Groups

Loops are operating on the set of the preimages of the point 𝑥0 . We can associate them 
with branches (*branches – images of the biggest liftable neighborhoods). Loops 
permute the branches.

Therefore, we can map the group 𝜋(𝑋, 𝑥0) onto the group 𝑆𝑛  (the symmetric group or 
the group of permutations).

Monodromy group will be the image of this mapping. Monodromy groups act on 
branches.



Monodromy Property

The property of the coverings stated in the last paragraph of the previous slide helps 
us prove a fact that is called monodromy property.

Monodromy property. If there are two homotopic loops 𝐶1  and 𝐶2 that join the points 
𝑧0  and 𝑧1 on the plane 𝑧, then the value 𝑤(𝑧1) of the function 𝑤 is uniquely defined by 
continuity along the loops 𝐶1  and 𝐶2 (when a value 𝑤0 = 𝑤(𝑧0) is chosen).

Loop could be lifted in 𝑛 different paths with the initial point in every preimage of 𝑥0 . 
When the loop is lifted it could either stay the loop or be deformed into an interval.

Therefore, any loop of 𝑋 is operating on the preimages of 𝑥0 .

Monodromy property makes a conclusion, that homotopic loops are acting the same 
way.



Riemann Surfaces

Definition. If more than one value of 𝑤 corresponds to each value of 𝑧 we call 𝑤(𝑧) a 
multivalued function.

Define another multivalued function 𝐹:  𝑧 → (𝑧, 𝑤(𝑧))

                                          𝐶 → 𝐶 × 𝐶

Let’s take projection from 𝐼𝑚(𝐹) to the first coordinate. Obviously, it's surjective.

For certain good functions this is going to be a covering without some finite amount of 
points in 𝐶.

𝐼𝑚(𝐹) without the images of the points that were not included in covering is a 𝑅𝑆.

Scheme of 𝑅𝑆 is a way to show how monodromy group operates on the covering.

Fig. The scheme of RS of function 
3

𝑧 𝑧 − 1 2



Abel's Theorem Proof: Part 3



Monodromy Groups of Functions 
Representable by Radicals

Theorem. If the multi-valued function ℎ(𝑧) is representable by radicals its monodromy 
group is soluble.

Theorem 1. The first theorem helps to build the schemes of the Riemann surfaces of the 

functions ℎ(𝑧) = 𝑓(𝑧) + 𝑔(𝑧), ℎ(𝑧) = 𝑓(𝑧) − 𝑔(𝑧), ℎ(𝑧) = 𝑓(𝑧) ⋅ 𝑔(𝑧), ℎ(𝑧) =
𝑓 𝑧

𝑔 𝑧
 

starting from the schemes of the Riemann surfaces of the functions 𝑓(𝑧) and 𝑔(𝑧) with 
the same cuts.

Theorem 2. The second theorem helps to build the scheme of the Riemann surface of the 

function ℎ(𝑧) = 𝑓 𝑧
𝑛

 starting from the scheme of the Riemann surface of function 
𝑓(𝑧) defined by the same cuts.

Theorem 3. The third theorem helps to build the scheme of the Riemann surface of the 
function ℎ(𝑧) = 𝑛 𝑓(𝑧) starting from the scheme of the Riemann surface of the function 
𝑓(𝑧) defined by the same cuts.



What We Can Do by Using the Theorem 1

Definition. The direct product 𝐺 × 𝐹 of groups 𝐺 and 𝐻 is the set of all the ordered 
pairs (𝑔, ℎ), where 𝑔 ∈ 𝐺 and ℎ ∈ 𝐻, with the binary operation: 𝑔1 , ℎ1 ⋅ (𝑔2, ℎ2) =
(𝑔1𝑔2 , ℎ1 ℎ2), where 𝑔1𝑔2 is taken in 𝐺, and ℎ1ℎ2 in 𝐻.

Prove that if 𝐹 and 𝐺 are the permutation groups of the initial schemes (of functions 
𝑓(𝑧), 𝑔(𝑧)), then the permutation group of the scheme built by the formal method is 
isomorphic to a subgroup of the direct product 𝐺 × 𝐹.

Let 𝐻1 and 𝐻2 be the permutation groups of the scheme built by the formal method 
and of the real scheme of the Riemann surface of the function ℎ(𝑧) correspondingly. 
We can prove that there exists a surjective homomorphism of 𝐻1 onto 𝐻2 .

Then we obtain the final statement that will help us to prove the main theorem:

Statement 1. Suppose the monodromy groups of the functions 𝑓(𝑧) and 𝑔(𝑧) be soluble. 
Then the monodromy groups of the function ℎ(𝑧) are soluble as well.



What We Can Do by Using the Theorem 2

Statement 2. Suppose the monodromy group of the function 𝑓(𝑧) be soluble. Then the 

monodromy group of the function ℎ(𝑧) = 𝑓 𝑧
𝑛

 is also soluble.

To prove this theorem, we need to use the second of the auxiliary theorems and also 
the second problem from the last block.



What We Can Do by Using the Theorem 3

Let 𝐻 be the permutation group of a scheme of the function ℎ(𝑧) = 𝑛 𝑓(𝑧) and 𝐹 the 
permutation group of a scheme of the function 𝑓(𝑧) made with the same cuts. Define a 
surjective homomorphism of the group 𝐻 onto the group 𝐹.

Prove that the kernel of the homomorphism defined by the solution of the preceding 
problem is commutative.

Then we obtain the final statement that will help us to prove the main theorem:

Statement 3. Suppose the monodromy group 𝐹 of the function 𝑓(𝑧) be soluble. Then the 
monodromy group 𝐻 of the function ℎ(𝑧) = 𝑛 𝑓(𝑧) is also soluble.



Final Step

In order to prove the main theorem, the main statements of each of the three parts 
should be combined. Let’s prove, for example, that the monodromy group of the 

function
5

𝑧4 + 1 −
3

𝑧 − 2 is soluble:



Final Step

𝑧 soluble

𝑧4soluble (prt. 2)

1

𝑧4 + 1soluble (prt. 1)

𝑧4 + 1soluble (prt. 3)

𝑧 2

𝑧 − 2 soluble (prt. 1)

3
𝑧 − 2 soluble (prt. 3)

𝑧4 + 1 −
3

𝑧 − 2 soluble (prt. 1)

soluble (prt. 3)



Monodromy group of some polynomial function

Consider 𝑃𝑧 𝑤 = 𝑎5𝑤5 + 𝑎4𝑤4 + 𝑎3𝑤3 + 𝑎2𝑤2 + 𝑎1𝑤 + 𝑧.

Let 𝑧0: 𝑃𝑧0
(𝑤) has 5 roots 𝛼1 , 𝛼2 , 𝛼3 , 𝛼4 , 𝛼5 . Then ∀𝜖 > 0 ∃𝜌 > 0: ∀𝑧0

′ 𝑧0 − 𝑧0
′ < 𝜌. For 

any 𝑖 = 1, 2, 3, 4, 5 there exist 𝛽𝑖 : 𝛽𝑖 is a root of the 𝑃𝑧 𝑤  and |𝛼𝑖 − 𝛽𝑖| < 𝜀 .

Observation 1. For some polynomials

𝑃𝑧
′ 𝑤 = 5𝑎5 𝑤 − 𝑤1 𝑤 − 𝑤2 𝑤 − 𝑤3 𝑤 − 𝑤4 ,

where 𝑤1 , 𝑤2 , 𝑤3 , 𝑤4 are different.



Schemes of such groups

Observation 2. 𝑧𝑖  is a branch point.

Due to observations and how these polynomials work at branch points we can travel 
only between 2 branches and other remain the same, so schemes are look like this:



Final statement

Statement. In any possibility that 4 transpositions generate all 𝑆5 .

Observation. If the roots of polynomial 𝑓 𝑥 = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎0  are 
representable by radicals, then it is still true for any choice of 𝑎𝑛 , 𝑎𝑛−1 , …, 𝑎0 if 𝑎𝑛 ≠ 0.

Finally, combining the Observation, the existence of polynomials with insoluble 
monodromy groups and the Theorem, we get the Abel’s Theorem.



Thank You!

• The organizers of Yulia’s Dream program

• Our mentor Elizaveta

• Our parents and friends

• And you all for your attention!
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