Riemann integral in higher dimensions

V. Chub M. Petrenko S. Surmylo
under guidance of M. Chaudkhari

Yulia's Dream Conference, May 2023

Integration in dimension 1

Let f be a "good enough" function. Informally, the integral of f is defined as an area under its graph.

Important properties and calculation techniques.

- The integral is linear.
- Fundamental Theorem of Calculus

$$
\int_{a}^{b} f(x) d x=\left[F^{\prime}(x)=f(x)\right]=\left.F(x)\right|_{a} ^{b}
$$

- Change of variable.

$$
\int_{a}^{b} f(g(x)) \cdot g^{\prime}(x) d x=[u=g(x)]=\int_{g(a)}^{g(b)} f(u) d u
$$

- Integration by parts.

$$
\int_{a}^{b} u \cdot v^{\prime} d x=\left.u v\right|_{a} ^{b}-\int_{a}^{b} u^{\prime} \cdot v d x
$$

InTEGRATION IN DIMENSIONS GREATER THAN 1

Let A be a closed rectangle $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$, and $f: A \subset \mathbb{R}^{N} \rightarrow \mathbb{R}^{1}$ a bounded function. Let P be a partition of A into rectangles with sides belonging to the collection $\left(P_{1}, \cdots, P_{n}\right)$, where $P_{i}=\left(a_{i}=t_{0}<t_{1}<\cdots<t_{k}=b_{i}\right)$ is a partition of the corresponding side of A . For each subrectangle $S=\left[a_{1}^{\prime}, b_{1}^{\prime}\right] \times \cdots \times\left[a_{n}^{\prime}, b_{n}^{\prime}\right]$ of P define its volume and bounds as

$$
\begin{gathered}
v(S)=\prod_{i=1}^{n}\left(b_{i}^{\prime}-a_{i}^{\prime}\right) \\
m_{S}(f)=\inf \{f(x): x \in S\} \\
M_{S}(f)=\sup \{f(x): x \in S\} .
\end{gathered}
$$

Define Lower and Upper Riemann sums to be

$$
\begin{aligned}
& L(f, P)=\sum_{S \in P} m_{S}(f) \cdot v(S) \\
& U(f, P)=\sum_{S \in P} M_{S}(f) \cdot v(S)
\end{aligned}
$$

Riemann integral of f on A :

$$
\begin{aligned}
\int_{A} f(x) d x & =\sup _{P} L(f, P)= \\
& =\inf _{P} U(f, P)
\end{aligned}
$$

in case supremum and infimum are equal [3]; then $f \in R$, where R is a set of integrable functions.

Measure zero and Content zero

DEFINITION 1

A set $A \subset \mathbb{R}^{n}$ has measure $\mathbf{0}$ if

$$
\forall \epsilon>0: \exists\left\{U_{1}, U_{2}, U_{3}, \cdots\right\} \text { - closed rectangles : } \quad A \subseteq \bigcup_{1}^{\infty} U_{i} \text { and } \sum_{1}^{\infty} v\left(U_{i}\right)<\epsilon
$$

If these collections could be made finite, we say that A has content 0 .

DEFINITION 2

A bounded set C whose boundary has measure 0 is called Jordan-measurable.

Integration over more complicated domains

DEFINITION 3

Let $C \subset \mathbb{R}^{n}$. The characteristic function $\mathcal{X}_{\mathcal{C}}$ of the set C is defined by

$$
\mathcal{X}_{\mathcal{C}}(x)= \begin{cases}0 & x \notin C \\ 1 & x \in C\end{cases}
$$

DEFINITION 4

Let $C \subseteq A \subset \mathbb{R}^{n}$ for some closed rectangle A. If $f \cdot \mathcal{X}_{\mathcal{C}} \in R$, we define

$$
\int_{C} f d x=\int_{A} f \cdot \mathcal{X}_{\mathcal{C}} d x
$$

Remark: The characteristic function $\mathcal{X}_{\mathcal{C}} \in R$ if and only if C is Jordan-measurable.
Now the (n-dimensional) volume of a Jordan-measurable set $C \subset \mathbb{R}^{n}$ can be defined as

$$
v(C)=\int_{C} 1 d x
$$

Good functions

Theorem 5

Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a bounded function. Let $B=\{x: f$ is not continuous at $x\}$.
Then f is integrable if and only if B is a set of measure 0 . In particular, continuity of f implies its integrability.

In particular, the indicator function of the set of rational numbers between 0 and 1 is not integrable!

Proposition

R is an algebra, i.e. $\forall f, g \in R:$ (i) $f+g \in R$, (ii) $f g \in R$, (iii) const $\cdot f \in R$.
This follows from the properties of Riemann sums [2].

Fubini's Theorem

Fubini's theorem allows us to reduce the compuation of the integral in higher dimensions to repeated computation of integrals in dimension 1 . Below we state a simplified version of this theorem for continuous functions.

Theorem 1 (Fubini's Theorem for continuous functions [3])

Let $A \subset \mathbb{R}^{n}$ and $B \subset \mathbb{R}^{m}$ be closed rectangles and let f be continuous on $A \times B$, then $f: A \times B \rightarrow \mathbb{R}$ is integrable and

$$
\int_{A \times B} f=\int_{A}\left(\int_{B} f(x, y) d y\right) d x=\int_{B}\left(\int_{A} f(x, y) d x\right) d y
$$

The full version of the theorem allows to work with some non-continuous functions. Note: the last equation from the theorem is also extremely useful by itself:

$$
\int_{A}\left(\int_{B} f(x, y) d y\right) d x=\int_{B}\left(\int_{A} f(x, y) d x\right) d y
$$

EXAMPLE

Problem 6 ([1])

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} e^{x^{3}} d x d y=?
$$

Let's understand how domain of integration looks like. From the task we know that

$$
\left\{\begin{array} { l }
{ 0 \leq y \leq 1 } \\
{ \sqrt { y } \leq x \leq 1 }
\end{array} \quad \text { and } \left\{\begin{array} { l }
{ x = \sqrt { y } } \\
{ y \geq 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
y=x^{2} \\
x \geq 0
\end{array}\right.\right.\right.
$$

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} e^{x^{3}} d x d y=\int_{0}^{1} \int_{0}^{x^{2}} e^{x^{3}} d y d x=\int_{0}^{1} x^{2} e^{x^{3}} d x=\frac{1}{3}(e-1)
$$

Differentiation

Recall, that a map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at a point x, if it admits good linear approximations in a neighborhood of x.
More precisely, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable (see [2]) at x if there exists a matrix A of size $m \times n$ such that

$$
\lim _{|h| \rightarrow 0} \frac{|f(x+h)-f(x)-A \cdot h|}{|h|}=0
$$

Note: $h \in \mathbb{R}^{n}$, and the map $h \mapsto A h$ is a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}. Moreover, the entries of A are the partial derivatives

$$
A=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

where $f(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)$ with $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Then A is denoted by $\operatorname{Df}(x)$.

Determinant, Jacobian

Let's consider a simple matrix A of size $n \times n$. Let $v_{i}=\left(a_{1, i}, a_{2, i}, \ldots, a_{n, i}\right), i=1, . ., n$, be the collection of columns of A. Then determinant of this matrix will be equal to a directed volume of the n -dimensional parallelepiped defined by these vectors.
There are several formal definitions of the determinant Δ (see [4]):
(9) The determinant is an n-linear antisymmetric function which takes value 1 for the standard basis on \mathbb{R}^{n}.
(2) The determinant of matrix A is defined as the following sum

$$
\operatorname{det} A=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} a_{i, \sigma_{i}},
$$

where S_{n} is the set of all permutations of $[n]$.
For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ we can set $A=D f$ as in the previous slide and then calculate the Jacobian

$$
J=\operatorname{det} A=\operatorname{det}\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]
$$

The absolute value of the Jacobian at x_{0} gives us the factor by which the function f expands or shrinks volumes near x_{0}.

Change of variable

Recall the change of variables in dimension 1 :

$$
\int_{g(a)}^{g(b)} f(x) d x=\int_{a}^{b} f(g(x)) g^{\prime}(x) d x
$$

With previously mentioned constructions it can be generalized to the higher dimensions as follows.

Theorem 2 (Change of variable[3])

Let $A \subset \mathbb{R}^{n}$ be an open set and let $g: A \rightarrow \mathbb{R}^{n}$ be a one-to-one continuously differentiable mapping such that $\forall x \in A \operatorname{det} g^{\prime}(x) \neq 0$. If $f: g(A) \rightarrow \mathbb{R}$ is integrable, then

$$
\int_{g(A)} f d V=\int_{A} f(g)\left|\operatorname{det} g^{\prime}\right| d V
$$

Where $\operatorname{det} g^{\prime}(x)$ is exactly the Jacobian of g at the point x.

Polar Coordinates

In polar coordinates,

$$
x=r \cdot \cos \phi, y=r \cdot \sin \phi,
$$

where radius r varies from 0 to ∞, and angle ϕ from 0 to 2π. Then Jacobi matrix and its determinant will look like:

$$
J=\operatorname{det}\left[\begin{array}{cc}
\cos \phi & -r \cdot \sin \phi \\
\sin \phi & r \cdot \cos \phi
\end{array}\right]=r
$$

So, in general, by considering a transformation from Cartesian to polar coordinates,

$$
d x d y=r d r d \phi
$$

Spherical Coordinates

Consider a spherical system of coordinates.
We can express x, y, z through our new coordinates in the next way:

$$
x=r \cdot \sin \theta \cdot \cos \phi, y=r \cdot \sin \theta \cdot \sin \phi, z=r \cdot \cos \theta
$$

where $r \in[0, \infty]$, angle $\theta \in[0, \pi]$, and $\phi \in[0,2 \pi]$. Jacobian matrix of partial derivatives will look like:

$$
J=\operatorname{det}\left[\begin{array}{ccc}
\sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\
\sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\
\cos \theta & -r \sin \theta & 0
\end{array}\right]=r^{2} \cdot \sin \theta
$$

So, in general, by considering a transformation from Cartesian 3-dimensional coordinates to spherical,

$$
d x d y d z=\left(r^{2} \sin \theta\right) d r d \phi d \theta
$$

Normal Distribution

Now, let's move to some examples, where we may use the transformation of coordinates.

DEFINITION 7

In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

(The parameter μ is the mean or expectation of the distribution, while the parameter σ is its standard deviation.)

As you know, for any distribution, the sum of all probabilities should be 1 . So, what really stands for it is the Gaussian integral,

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

Computing Gaussian Integral

Let's calculate it. Let

$$
I=\int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

So,

$$
\begin{gathered}
I^{2}=\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right) \cdot\left(\int_{-\infty}^{\infty} e^{-y^{2}} d y\right)= \\
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y= \\
=\iint_{R^{2}} e^{-x^{2}-y^{2}} d x d y
\end{gathered}
$$

Computing Gaussian Integral

Passing to polar coordinates,

$$
\begin{gathered}
I^{2}=\iint_{R^{2}} e^{-x^{2}-y^{2}} d x d y=\iint_{R^{2}} r \cdot e^{-r^{2}} d r d \phi= \\
=\int_{0}^{2 \pi} \int_{0}^{\infty} r \cdot e^{-r^{2}} d r d \phi=\int_{0}^{2 \pi}-\left.\frac{1}{2} e^{-r^{2}}\right|_{0} ^{\infty} d \phi= \\
=\int_{0}^{2 \pi} \frac{1}{2}\left(e^{0}-\lim _{x \rightarrow \infty} e^{-x}\right) d \phi=\int_{0}^{2 \pi} \frac{1}{2} d \phi=\frac{2 \pi-0}{2}=\pi
\end{gathered}
$$

which, after further transformation, gives us the desired result.

Calculating the Volume of the ball in \mathbb{R}^{3}.

As we may know, the volume of a ball is just an integral of 1 over a ball:

$$
\begin{gathered}
\iiint_{x^{2}+y^{2}+z^{2} \leq R^{2}} 1 d x d y d z=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{R} r^{2} \sin \theta d r d \theta d \phi= \\
=\frac{1}{3} R^{3} \int_{0}^{2 \pi} \int_{0}^{\pi} \sin \theta d \theta d \phi=-\left.\frac{1}{3} R^{3} \int_{0}^{2 \pi} \cos \theta\right|_{0} ^{\pi} d \phi= \\
=\frac{2}{3} R^{3} \int_{0}^{2 \pi} d \phi=\left.\frac{2}{3} R^{3} \cdot \phi\right|_{0} ^{2 \pi}=\frac{4}{3} \pi R^{3}
\end{gathered}
$$

Thank you for your attention!

Now just look at this chilling capybara

[1] Anthony Tromba Jerrold E. Marsden. Vector Calculus. First printing. W. H. Freeman and Company Publishers, 2012. ISBN: 978-1-4292-1508-4.
[2] W. Rudin. Principles of Mathematical Analysis. International series in pure and applied mathematics. McGraw-Hill, Inc., 1976. ISBN: 0-07-054235-X.
[3] Michael Spivak. Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus. The Advanced Book Program. Addison-Welsey Publishing Company, 1965. ISBN: 0-8053-9021-9.
[4] Vinberg. A Course in Algebra. Graduate Studies in Mathematics. American Mathematical Society, 2003. ISBN: 978-0821834138.

