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Group
A set G of elements of an arbitrary nature, on which can be defined a binary operation such 
that the following conditions are satisfied, is called a group: 

1. Associativity: (ab)c = a(bc) for any elements a, b and c of G; 
2. In G, there is a unit element e such that ae = ea = a for every element a of G;
3. For every element a of G there is an element a-1 ∈ G, an inverse of element a, such that 

aa-1 = a-1a = e.

✅ All real positive numbers form a group under multiplication 
❌ All natural numbers don’t form a group under addition (no 
unit and inverse elements) and multiplication (no inverse 
elements)
✅ Group D3 (dihedral) can be illustrated by triangle 
symmetries (6 symmetries: 3 rotations and 3 axial symmetries)

Examples:



Let G be a finite group, g ∈ G, n =|G|.

gn = e

Main Theorem

Fermat’s Little Theorem
Let p be a prime number and a be an integer number that a is not divisible by p. 
Then, ap-1 ≡ 1 (mod p).



Subgroups

If H is a subgroup, it satisfies a few rules:
1. If a,b ∈ H, then the element ab ∈ H.
2. When e is a unit element in group G, it is a unit element in a subgroup H.
3. When a ∈ H, then a-1 ∈ H.

A subgroup H is a part of group G (H ⊆ G);
H is a group under a defined operation in the G group.

Lemmas

Definition



Lagrange’s Theorem
Let's define (right/left) cosets as a set of elements {xh/hx} defined under a group G,
where x is an element of G and h runs over all elements of subgroup H.

The number of elements in the group (order) G is the product of a multiplication 
of the number of elements in the subgroup (order) H and the number of 
(left/right) compatible classes. 

Let us denote the order of group G as |G|,
the order of a subgroup H as |H|,
the number of (left/right) cosets as |G/H|.

Then we get the equation:
|G| = |H| · |G/H| or |G| = |H| · |H\G| 



We can prove Lagrange's theorem using cosets or using the link between cosets and 
equivalence classes. 

–– An equivalence relation is a binary operation that is reflexive, symmetric and transitive.

An example is the relation "is equal to". 

Equivalence Relation

–– A binary relation over sets X and Y is a new set of ordered pairs (x, y) consisting of 
elements x in X and y in Y.

1. Reflection: a ∼ a.
2. Symmetry: a ∼ b, if and only if b ∼ a. 
3. Transitivity: a ∼ b and b ∼ c, then a ∼ c.

Definition



Equivalence Relation

Reflection Symmetry Transitivity



Statements we need to prove 
Lagrange’s Theorem
1) Let us introduce a binary relation on the group G like this. g1 = h · g2, where hi ∈ H, and gi ∈ G.
1. g1∼ g1. g1 = h · g1: h = e
2. g1∼ g2 if and only if g2∼ g1: g1 = h · g2 and g2 = h-1 · g1.
3. g1∼ g2 and g2∼ g3, then g1∼ g3: g1 = h1 · g2, g2 = h2 · g3, then g1 = h1h2 · g3

This binary relation is equivalence relation! 

2) Show that any relation breaks the set into pieces - equivalence classes. Sx - the equivalence class 
of a number x, such a subset which consists of those y such that x∼ y. 
If equivalence classes Sx ∩ Sy, then they coincide:
z ∈ Sx ∩ Sy. Then, x∼ z, y∼ z, => x∼ y. 
Let us choose an element u from Sx. x∼ u, x∼ y => u∼ x (therefore, all elements from Sx are in Sy). 
We can similarly prove, on the other hand, that Sy ⊆ Sx. We set a partition of group G.
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Injection, Surjection, Bijection

The injection is a type of mapping between two 
sets where all elements of the second set have 
only one pair or no pair in the first set.  

The surjection is a type of mapping between 
two sets where all elements of the second set 
have at least one pair in the first set.  

The bijection is a type of mapping between two 
sets where all elements of the second set have 
only one pair in the first set and vice versa.

Definition



Statements we need to prove 
Lagrange’s Theorem
3) There is a bijection between the left coset gH and the subgroup H.
h ∈ H, gh ∈ gH

1. h➝ gh

2. gh ➝ h

|H| = |gH|

The whole group G is split into disjoint pieces, equivalence classes, each of which has 
|H| elements. 

Therefore, |G| = |H| · |G/H|
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The Main Theorem
Back to the main goal of our project, we need to prove that gn = e, where g ∈ G, |G| = n, 
using Lagrange’s Theorem. 

The order of an element is the smallest integer n such that the element gn = e. If such an 
integer does not exist, then g is an element of infinite order.

Definition

Since the group is finite, then the element g has an order - a finite natural number k, so gk = e. 
If g ∈ G, then the set of all elements of type gm (m ∈ ℤ) is a subgroup of G (this subgroup is 
cyclic). Let’s call it <g>. Using Lagrange’s theorem, n = k · |G/H|.
Then we can exponentiate an element g to the power n:

gn = gkr = er = e



Fermat’s Little Theorem
Let p be a prime number and a be an integer number, that a is not divisible by p. 
Then, ap-1 ≡ 1 (mod p).

Let’s prove it:

Let's take the multiplicative group of residues prime modulo p – Zp*. This group consists of 
elements from 1 to p - 1. The order of any element is p - 1, and the unit element is 1. 
Using the theorem from number theory, a ≡ b => an ≡ bn. 

ap-1 ≡ [a]p-1 ≡ 1 (mod p)

We use the main theorem to say that any element [a] ∈ Zp* in the power p - 1 is equivalent to 
the unit element (1).
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