Combinatorial Hikita Conjecture

Martin Leshko, Alexander Borodin, Marina Spektrova Mentor: Andrei Ionov
Yulia's Dream Conference

May 14-15, 2023

We call a permutation an ordered set of numbers $\{1,2, \ldots, n\}$ without repetitions. Number n in this case is called the permutation size. We will mostly refer to permutations as a set of bijections from a set S to itself. All permutations of the set $S=[N]=\{1, \ldots, N\}$ form the (symmetric) group $\operatorname{Sym}(n)$ eqipped with the operation of function composition.

One way to record a permutation is in the form of a table:

$$
\pi=\left(\begin{array}{rrrrr}
1 & 2 & 3 & \ldots & n \\
a_{1} & a_{2} & a_{3} & \ldots & a_{n}
\end{array}\right)
$$

which means that π places number a_{i} on i-th position.
For example, $\pi=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1\end{array}\right)$ corresponds to an ordered set $\{3,4,2,1\}$.

Permutations

Every permutation can be expressed as a product of a simple transpositions, that is transpositions $t=(i, i+1)$ that swaps i-th and ($i+1$)-th numbers. The minimal number of them needed to express a permutation σ is the length of σ.

For example, $\pi=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1\end{array}\right)=(2,3) \circ(1,2) \circ(3,4) \circ(2,3) \circ(1,2)$

Young tableaux

A partition of a number N is any set of integers $\lambda_{1} \geq \cdots \geq \lambda_{k}$ such that $\lambda_{1}+\cdots+\lambda_{k}=N$. For example, $9=4+2+2+1$.

Young diagram of a partition $N=\lambda_{1}+\cdots+\lambda_{k}$ is a set of rows justified to the left side, such that the top one has exactly λ_{1} cells, the second λ_{2}, \ldots, the last one has λ_{k}.

We put numbers into the cells of the Young diagram. If numbers in all rows and columns are increasing, it is Young tableau. We denote the set of all Young tableaux that have n cells as YTableaux (n) and those that have shape λ as Y Tableaux (λ).

1	2		6	
3	7	7		

Motivation for RS-algorithm

It is well-known, that for any group $G,|G|=\sum_{f \text { is irrep }}(\operatorname{dim} f)^{2}$. In particular, it is true for $G=\operatorname{Sym}(n)$. The irreps of a symmetric group are Young diagrams, and their dimensions are enumerated with Young tableaux. In this case, Robinson-Schensted algorithm gives simple combinatorial interpretation of the identity

$$
n!=\sum_{\lambda \in \mathbb{Y}_{n}} \mid Y \text { Tableaux }\left.(\lambda)\right|^{2}
$$

Robinson-Schensted algorithm gives us a bijection:

$$
\operatorname{Sym}(n) \longleftrightarrow \bigcup_{\lambda} Y \operatorname{Tableaux}(\lambda) \times Y \operatorname{Tableaux}(\lambda)
$$

i.e. there is a bijection between the permutations of length n and pairs of Young tableaux that have n cells.

RS-algorithm: Insertion procedure

Insertion is usually denoted as $T \leftarrow x$, where T is a tableau and x is a value we insert. The row bumping algorithm looks the following way:
(1) Keep a coordinate pair (i, j), initially set to $(1, k+1)$ where k is the first row's of T length.
(2) Find the first square in i-th row with an entry larger than x (or no such an entry), for example, by running a cycle 'while $j>1$ and $x<T_{i, j-1}$.
(3) If (i, j) is empty, add it with x. Otherwise, swap x and $T_{i, j}$, go to the next row (increase i by one) and return to second step.

	1	2	7	9		1		2	5	9
	3	8			$\leftarrow 5=$	3		7		
	4				$\leftarrow 5$	4		8		
	6					6				

RS-algorithm: Scheme

For $\pi \in S_{n}$ the algorithm is
(1) P_{0}, Q_{0} are empty tableaux.
(2) $P_{i}=P_{i-1} \leftarrow \pi_{i}$ (by row bumping); add a new cell of P_{i} with entry i to Q_{i}.
(3) Return $\left(P_{n}, Q_{n}\right)$.

嗇 W. Fulton, Young Tableaux: With Applications to Representation Theory and Geometry

For example if $w=45132$ we have:

$$
\begin{aligned}
& P^{(1)}=\begin{array}{ll}
4 & \left.P^{(2)}=\begin{array}{lll}
4 & 5
\end{array} \quad P^{(3)}=\begin{array}{|lll}
1 & 5 \\
4 & P^{(4)} & =\begin{array}{|l|l}
1 & 3 \\
\hline 4 & 5 \\
\hline
\end{array} \quad P^{(5)}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 5 \\
\hline
\end{array} \\
\hline
\end{array}\right) . \begin{array}{ll}
\\
\hline
\end{array} \\
\hline
\end{array} \\
& Q^{(1)}=\begin{array}{lll}
1 & Q^{(2)}=\begin{array}{lll}
1 & 2
\end{array} Q^{(3)}=\begin{array}{|lll}
1 & 2
\end{array} \quad Q^{(4)}=\begin{array}{|l|l}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array} \quad Q^{(5)}=\begin{array}{|ll|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array} &
\end{array}
\end{aligned}
$$

Hence $w=45132 \sim\binom{\frac{112}{\frac{125}{4}}, ~, ~}{\frac{112}{5}}$.

RS-algorithm: Inversion

Inversion theorem. If a permutation π corresponds to a pair (P, Q) than its inverse π^{-1} corresponds to the reversed-order pair (Q, P), that is

$$
\pi \sim(P, Q) \Longleftrightarrow \pi^{-1} \sim(Q, P)
$$

We accent on two fruitful proofs of this theorem: Viennot's geometric construction and growth diagrams.

埥 G. Viennot, Une forme geometrique de la correspondance de Robinson-Schensted
R. R. P. Stanley, Enumerative Combinatorics, Vol. 2

Vector v_{λ}

The block (for odd a) is

$$
B I(a)=\left[-\frac{a-1}{2} ; \frac{a-1}{2}\right] \cap \mathbb{Z}
$$

For example, $B I(5)=\{-2,-1,0,1,2\}$.
Let $N=\lambda_{1}+\cdots+\lambda_{n}$ be a partition $\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right)$ such that all the summands have the same parity (here we assume odd). We construct an auxiliary vector

$$
\tilde{v}_{\lambda}=\left(B I\left(\lambda_{1}\right), B I\left(\lambda_{2}\right), \ldots, B I\left(\lambda_{k}\right)\right)
$$

Let v_{λ} be a sorted version of \tilde{v}_{λ}.

The longest element

As $\operatorname{Sym}(n)$ acts on v_{λ}, we consider $\operatorname{Stab}\left(v_{\lambda}\right) \subset \operatorname{Sym}(n)$, which fixes the vector. Of course,

$$
\operatorname{Stab}\left(v_{\lambda}\right)=\prod_{x=-\left(\lambda_{1}-1\right) / 2}^{\left(\lambda_{1}-1\right) / 2} \operatorname{Sym}\left(c n t_{x}\right),
$$

where $\mathrm{cnt} t_{x}$ equals the number of occurences of x in v.

From each conjugancy class $\sigma \operatorname{Stab}\left(v_{\lambda}\right)$ we take the longest element $w_{0}(\sigma)$ (one can prove the uniqueness). All the longest elements form the orbit:

$$
\operatorname{Sym}(n) / \operatorname{Stab}\left(v_{\lambda}\right) \xrightarrow{w_{0}} \operatorname{Orb}\left(v_{\lambda}\right) .
$$

If $\sigma=i d$ we will omit it, so $w_{0}=w_{0}(i d)$.

The longest element: example

$$
\begin{aligned}
& \lambda=(5,3,1,1), \\
& \tilde{v}_{\lambda}=(-2,-1,0,1,2,-1,0,1,0,0), \\
& v_{\lambda}=(-2,-1,-1,0,0,0,0,1,1,2), \\
& w_{0}=\left(\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1 & 3 & 2 & 7 & 6 & 5 & 4 & 9 & 8 & 10
\end{array}\right)
\end{aligned}
$$

QOrb-enumeration

Orbital elements that lie in the same left cell:

$$
\operatorname{Orb}\left(v_{\lambda}\right) \supset \operatorname{QOrb}\left(v_{\lambda}\right)=\left\{w \in \operatorname{Orb}\left(v_{\lambda}\right) \mid w \sim_{L} w_{0}\right\}
$$

As we work in $\operatorname{Sym}(n)$ case, $w \sim_{L} w_{0}$ is equivalent to $Q w=Q w_{0}$.

Theorem (QOrb-enumeration)

There is a bijection between $\operatorname{QOrb}\left(v_{\lambda}\right)$ and Y Tableaux (λ).

Further reading: general

The overviews of the topic (the first one is elementary, concerns the symmetric case, the second one is more in-depth):
G. Williamson, Mind your P and Q-symbols: Why the Kazhdan-Lusztig basis of the Hecke algebra of type A is cellular

囯 G. Lusztig, Hecke algebras with unequal parameters
Some conjectures can be found in the paper
击 G. Lusztig, Some examples of square integrable representations of semisim-ple p-adic groups

Further reading: Robinson-Schensted

It turns out that there is a generalization of the Robinson-Schensted algorithm to some other groups.

嗇 J. Y. Shi, The generalized Robinson-Schensted algorithm on the affine Weyl group of type A_{n-1}
In the following article, Viennot's geometric construction was generalized in order to explain the previous paper combinatorially.
\square M. Chmutov, P. Pylyavskyy, E. Yudovina, Matrix-Ball Construction of affine Robinson-Schensted correspondence

Further reading: flags and algebra

This story goes much further into algebra. Still remaining in the 'combinatorial' world, we can notice the remarkable connections to flag varieties, refer to

E D. Rosso, Classic and Mirabolic Robinson-Schensted-Knuth Correspondence for Partial Flags

囯 Marc A. A. van Leeuwen, Flag Varieties and Interpretations of Young Tableau Algorithms

The general motivation for our problems is Springer correspondence
R Z. Yun, Lectures on Springer theories and orbital integrals
: J. P. Anker and B. Orsted, Lie Theory: Lie Algebras and Representations

Acknowledgements

We are deeply grateful to

- Our current mentor, Andrei Ionov
- Yulia's Dream program for making this project possible
- Our dear parents and friends

