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Permutations

We call a permutation an ordered set of numbers {1, 2, . . . , n}
without repetitions. Number n in this case is called the
permutation size. We will mostly refer to permutations as a set of
bijections from a set S to itself. All permutations of the set
S = [N] = {1, . . . ,N} form the (symmetric) group Sym(n)
eqipped with the operation of function composition.

One way to record a permutation is in the form of a table:

π =

(
1 2 3 . . . n
a1 a2 a3 . . . an

)
,

which means that π places number ai on i-th position.

For example, π =

(
1 2 3 4
3 4 2 1

)
corresponds to an ordered set {3, 4, 2, 1}.
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Permutations

Every permutation can be expressed as a product of a simple
transpositions, that is transpositions t = (i , i + 1) that swaps i-th
and (i + 1)-th numbers. The minimal number of them needed to
express a permutation σ is the length of σ.

For example, π =

(
1 2 3 4
3 4 2 1

)
= (2, 3) ◦ (1, 2) ◦ (3, 4) ◦ (2, 3) ◦ (1, 2)
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Young tableaux

A partition of a number N is any set of integers λ1 ≥ · · · ≥ λk
such that λ1 + · · ·+ λk = N. For example, 9 = 4 + 2 + 2 + 1.

Young diagram of a partition N = λ1 + · · ·+ λk is a set of rows
justified to the left side, such that the top one has exactly λ1 cells,
the second λ2, . . . , the last one has λk .

We put numbers into the cells of the Young diagram. If numbers
in all rows and columns are increasing, it is Young tableau. We
denote the set of all Young tableaux that have n cells as
YTableaux(n) and those that have shape λ as YTableaux(λ).
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Motivation for RS-algorithm

It is well-known, that for any group G , |G | =
∑

f is irrep(dim f )2. In
particular, it is true for G = Sym(n). The irreps of a symmetric
group are Young diagrams, and their dimensions are enumerated
with Young tableaux. In this case, Robinson-Schensted algorithm
gives simple combinatorial interpretation of the identity

n! =
∑
λ∈Yn

|YTableaux(λ)|2.

Robinson-Schensted algorithm gives us a bijection:

Sym(n)←→
⋃
λ

YTableaux(λ)× YTableaux(λ)

i.e. there is a bijection between the permutations of length n and
pairs of Young tableaux that have n cells.
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RS-algorithm: Insertion procedure

Insertion is usually denoted as T ← x , where T is a tableau and x
is a value we insert. The row bumping algorithm looks the
following way:

1 Keep a coordinate pair (i , j), initially set to (1, k + 1) where k
is the first row’s of T length.

2 Find the first square in i-th row with an entry larger than x
(or no such an entry), for example, by running a cycle ‘while
j > 1 and x < Ti ,j−1’.

3 If (i , j) is empty, add it with x . Otherwise, swap x and Ti ,j , go
to the next row (increase i by one) and return to second step.
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RS-algorithm: Scheme

For π ∈ Sn the algorithm is

1 P0,Q0 are empty tableaux.

2 Pi = Pi−1 ← πi (by row bumping); add a new cell of Pi with
entry i to Qi .

3 Return (Pn,Qn).

W. Fulton, Young Tableaux: With Applications to Representation
Theory and Geometry
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RS-algorithm: Inversion

Inversion theorem. If a permutation π corresponds to a pair
(P,Q) than its inverse π−1 corresponds to the reversed-order pair
(Q,P), that is

π ∼ (P,Q) ⇐⇒ π−1 ∼ (Q,P).

We accent on two fruitful proofs of this theorem: Viennot’s
geometric construction and growth diagrams.

G. Viennot, Une forme geometrique de la correspondance de
Robinson-Schensted

R. P. Stanley, Enumerative Combinatorics, Vol. 2
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Vector vλ

The block (for odd a) is

Bl(a) =

[
−a− 1

2
;
a− 1

2

]
∩ Z

For example, Bl(5) = {−2,−1, 0, 1, 2}.

Let N = λ1 + · · ·+ λn be a partition (λ1 ≥ · · · ≥ λn) such that all
the summands have the same parity (here we assume odd). We
construct an auxiliary vector

ṽλ = (Bl(λ1),Bl(λ2), . . . ,Bl(λk))

Let vλ be a sorted version of ṽλ.
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The longest element

As Sym(n) acts on vλ, we consider Stab(vλ) ⊂ Sym(n), which
fixes the vector. Of course,

Stab(vλ) =

(λ1−1)/2∏
x=−(λ1−1)/2

Sym(cntx),

where cntx equals the number of occurences of x in v .

From each conjugancy class σStab(vλ) we take the longest
element w0(σ) (one can prove the uniqueness). All the longest
elements form the orbit:

Sym(n)/Stab(vλ)
w0−−−−−→ Orb(vλ).

If σ = id we will omit it, so w0 = w0(id).
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The longest element: example

1 3 7 9 10

2 6 8

5

4

-2 -1 0 1 2

λ = (5, 3, 1, 1),

ṽλ = (−2,−1, 0, 1, 2,−1, 0, 1, 0, 0),

vλ = (−2,−1,−1, 0, 0, 0, 0, 1, 1, 2),

w0 =

(
1 2 3 4 5 6 7 8 9 10
1 3 2 7 6 5 4 9 8 10

)

M. Leshko, A. Borodin, M. Spektrova Combinatorial Hikita Conjecture



QOrb-enumeration

Orbital elements that lie in the same left cell:

Orb(vλ) ⊃ QOrb(vλ) = {w ∈ Orb(vλ) | w ∼L w0}.

As we work in Sym(n) case, w ∼L w0 is equivalent to Qw = Qw0.

Theorem (QOrb-enumeration)

There is a bijection between QOrb(vλ) and YTableaux(λ).
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Further reading: general

The overviews of the topic (the first one is elementary, concerns
the symmetric case, the second one is more in-depth):

G. Williamson, Mind your P and Q-symbols: Why the
Kazhdan-Lusztig basis of the Hecke algebra of type A is
cellular

G. Lusztig, Hecke algebras with unequal parameters

Some conjectures can be found in the paper

G. Lusztig, Some examples of square integrable representations
of semisim-ple p-adic groups
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Further reading: Robinson-Schensted

It turns out that there is a generalization of the
Robinson-Schensted algorithm to some other groups.

J. Y. Shi, The generalized Robinson-Schensted algorithm on
the affine Weyl group of type An−1

In the following article, Viennot’s geometric construction was
generalized in order to explain the previous paper combinatorially.

M. Chmutov, P. Pylyavskyy, E. Yudovina, Matrix-Ball
Construction of affine Robinson-Schensted correspondence
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Further reading: flags and algebra

This story goes much further into algebra. Still remaining in the
‘combinatorial’ world, we can notice the remarkable connections to
flag varieties, refer to

D. Rosso, Classic and Mirabolic Robinson–Schensted–Knuth
Correspondence for Partial Flags

Marc A. A. van Leeuwen, Flag Varieties and Interpretations of
Young Tableau Algorithms

The general motivation for our problems is Springer correspondence

Z. Yun, Lectures on Springer theories and orbital integrals

J. P. Anker and B. Orsted, Lie Theory: Lie Algebras and
Representations
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