Affine Standard Lyndon words

Yehor Avdieiev
Mentor: Alexander Tsymbaliuk

14/05/2023

Main Results

- Generalization of Leclerc's algorithm describing Lalonde-Ram's bijection

$$
\ell: \Delta^{+} \xrightarrow{\sim} S L=\{\text { standard Lyndon words }\}
$$

from finite to affine Lie algebras

- Finding all SL-words for the "standard order" of simple roots in type $A_{n}^{(1)}$
- Finding the structure and some order properties for all SL-words for general order in type $A_{n}^{(1)}$
- Writing a Python code that founds all SL-words up to degree $k \delta$ (for any type, any order, and any k)

Part 1

Introduction

Simple Lie algebras and root systems

- \mathfrak{g} - Lie algebra: vector space with a skew-symmetric $[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying

$$
[[a, b], c]+[[b, c], a]+[[c, a], b]=0 \quad \forall a, b, c \in \mathfrak{g}
$$

$-\mathfrak{h} \subset \mathfrak{g}$-Lie subalgebra: vector subspace s.t. $[\mathfrak{h}, \mathfrak{h}] \subseteq \mathfrak{h}$

- $\mathfrak{h} \subset \mathfrak{g}$ - ideal if $[\mathfrak{g}, \mathfrak{h}] \subseteq \mathfrak{h}$
- \mathfrak{g}-simple if it is not abelian and has no nonzero proper ideals
- Root system is a pair (V, Δ), where V is a finite dimensional vector space over \mathbb{R} with a positive definite bilinear form (\cdot, \cdot) and $\Delta \subset V$ is a finite subset, such that:

1. $0 \notin \Delta ; \mathbb{R} \Delta=V$
2. If $\alpha \in \Delta$, then $n \alpha \in \Delta$ if and only if $n= \pm 1$
3. (String property). For any $\alpha, \beta \in \Delta$ we have:

$$
\{\beta+j \alpha \mid j \in \mathbb{Z}\} \cap(\Delta \cup 0)=\{\beta+p \alpha, \ldots, \beta, \ldots, \beta-q \alpha\},
$$

where $p-q=2 \frac{(\alpha, \beta)}{(\alpha, \alpha)}$

Simple roots and Cartan subalgebra

- Let (V, Δ) - root system, $f: V \rightarrow \mathbb{R}$ - linear map s.t. $f(\alpha) \neq 0$ $\forall \alpha \in \Delta$. Then:
(i) $\alpha \in \Delta$ is positive if $f(\alpha)>0$ and negative if $f(\alpha)<0$
(ii) Such root is simple if it is not a sum of two positive roots
(iii) A highest root $\theta \in \Delta$ is such that $f(\theta) \geq f(\alpha)$ for all $\alpha \in \Delta$
- $\Delta^{+}=\{$all positive roots $\}$, and $\Delta^{-}=-\Delta^{+}=\{$all negative roots $\}$
- $\Pi \subset \Delta^{+}$is the set of simple roots
- A Lie subalgebra $\mathfrak{h} \subset \mathfrak{g}$ is Cartan if it satisfies the following two conditions:

1) \mathfrak{h} is nilpotent, i.e $[\mathfrak{h},[\mathfrak{h}, \cdots,[\mathfrak{h},[\mathfrak{h}, \mathfrak{h}]] \cdots]]=0$ for a finite number of brackets.
2) $n_{\mathfrak{g}}(\mathfrak{h})=\mathfrak{h}$, where $n_{\mathfrak{g}}(\mathfrak{h})=\{x \in \mathfrak{g} \mid[x, \mathfrak{h}] \subset \mathfrak{h}\}$.

Root space decomposition

- Let \mathfrak{g} - simple Lie algebra, $\mathfrak{h} \subseteq \mathfrak{g}$ - Cartan subalgebra. Then:

$$
\mathfrak{g}=\bigoplus_{\alpha \in \mathfrak{h}^{*}} \mathfrak{g}_{\alpha}
$$

where

$$
\mathfrak{g}_{\alpha}:=\{x \in \mathfrak{g} \mid[h, x]=\alpha(h) x \forall h \in \mathfrak{h}\}
$$

- Define a finite set of nonzero weights, called roots of \mathfrak{g} relative to \mathfrak{h} :

$$
\Delta=\left\{\alpha \in \mathfrak{h}^{*} \mid \mathfrak{g}_{\alpha} \neq 0\right\} \backslash\{0\}
$$

- Above provides the root space decomposition of \mathfrak{g} :

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}, \text { with } \operatorname{dim}\left(\mathfrak{g}_{\alpha}\right)=1 \forall \alpha \in \Delta
$$

SL-words

- I - ordered finite alphabet, I^{*} - all finite length words in I
- For $u=i_{1} i_{2} \ldots i_{k} \in I^{*}$, its length is $|u|=k$
- Get lexicographic order on $I^{*}: u=i_{1} i_{2} \ldots i_{k}<v=j_{1} j_{2} \ldots j_{n}$ iff $i_{1}=j_{1}, i_{2}=j_{2}, \ldots, i_{r}>j_{r}$, or $i_{1}=j_{1}, i_{2}=j_{2}, \ldots, i_{k}=j_{k}$ and $n>k$
- Definition 1: $\ell \in I^{*}$ is a Lyndon word if it is lexicographically smaller than all of its cyclic rearrangement
- \mathfrak{a} - Lie algebra generated by a finite set $\left\{e_{i}\right\}_{i \in I}$ labelled by the alphabet I
- The standard bracketing of a Lyndon word ℓ is given inductively: $b[i]:=e_{i}$ for $i \in I, b[\ell]:=[b[m], b[n]]$, where $\ell=m n$ and n is the longest Lyndon word appearing as a proper right suffix of ℓ
- Definition 2: Lyndon word ℓ is Lie-standard w.r.t. \mathfrak{a} if $b[\ell]$ cannot be written as a sum of bracketings of strictly larger Lyndon words

Leclerc's algorithm

- $\Pi=\left\{\alpha_{i}\right\}_{i \in I}$ - set of simple roots, I - our alphabet
- The weight of a word $w=i_{1} i_{2} \ldots i_{k} \in I^{*}$ is defined by:

$$
w t(w)=\alpha_{i_{1}}+\alpha_{i_{2}}+\cdots+\alpha_{i_{k}}
$$

- Proposition (Lyndon):
\mathfrak{g}_{α} is spanned by $\{b[\ell] \mid \ell$ - Lyndon, wt $(\ell)=\alpha\}$
- Theorem (Lalonde-Ram, 1995):

There is a bijection

$$
\ell: \Delta^{+}=\{\text {positive roots }\} \xrightarrow{\sim} S L=\{\text { standard Lyndon words }\}
$$

such that $\operatorname{deg} \ell(\alpha)=\alpha$

- Explicit algorithm (Leclerc, 2004):

$$
\ell(\alpha)=\max \left\{\ell\left(\gamma_{1}\right) \ell\left(\gamma_{2}\right)\left(\begin{array}{c}
\alpha=\gamma_{1}+\gamma_{2} \\
\gamma_{1}, \gamma_{2} \in \Delta^{+} \\
\ell\left(\gamma_{1}\right)<\ell\left(\gamma_{2}\right)
\end{array}\right\}\right.
$$

Affine Lie algebras

- \mathfrak{g} - simple finite dimensional Lie algebra
- $\left\{\alpha_{i}\right\}_{i \in I}$ - simple roots, $\theta \in \Delta^{+}$- the highest root
- $\hat{l}:=I \sqcup\{0\}$
- The affine root lattice $\widehat{Q}=Q \times \mathbb{Z}$ with the generators $\left\{\left(\alpha_{i}, 0\right)\right\}_{i \in I}$ and $\alpha_{0}:=(-\theta, 1)$
- The affine root system $\widehat{\Delta}=\widehat{\Delta}^{+} \sqcup \widehat{\Delta}^{-}$:

$$
\begin{aligned}
& \widehat{\Delta}^{+}=\left\{\Delta^{+} \times \mathbb{Z}_{\geq 0}\right\} \sqcup\left\{0 \times \mathbb{Z}_{>0}\right\} \sqcup\left\{\Delta^{-} \times \mathbb{Z}_{>0}\right\} \\
& \widehat{\Delta}^{-}=\left\{\Delta^{-} \times \mathbb{Z}_{\leq 0}\right\} \sqcup\left\{0 \times \mathbb{Z}_{<0}\right\} \sqcup\left\{\Delta^{+} \times \mathbb{Z}_{<0}\right\}
\end{aligned}
$$

- The corresponding Lie algebra $\widehat{\mathfrak{g}}$ is a central extension of loops into \mathfrak{g}, i.e.

$$
\widehat{\mathfrak{g}} \simeq \mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} \cdot c \text { as a vector space }
$$

Generalized Leclerc's algorithm

- $\widehat{\Delta}^{+, \text {re }}:=\left\{\Delta^{+} \times \mathbb{Z}_{\geq 0}\right\} \sqcup\left\{\Delta^{-} \times \mathbb{Z}_{>0}\right\}$ - set of real roots $\widehat{\Delta}^{+, \text {im }}:=\left\{0 \times \mathbb{Z}_{>0}\right\}$ - set of imaginary roots
- Proposition: For simple roots, $\ell\left(\alpha_{i}\right)=[i]$. For other real $\alpha \in \widehat{\Delta}^{+, \text {re }}$:

$$
\ell(\alpha)=\max \left\{\ell_{*}\left(\gamma_{1}\right) \ell_{*}\left(\gamma_{2}\right) \left\lvert\, \begin{array}{c}
\alpha=\gamma_{1}+\gamma_{2}, \gamma_{k} \in \widehat{\Lambda}^{+} \tag{1}\\
{\left[b\left(\ell_{*}\left(\gamma_{1}\right)\left(\gamma_{1}\right)\right], b \ell_{*}\left(\ell_{*}\left(\gamma_{2}\right)\right]\right] \neq 0}
\end{array}\right.\right\},
$$

where $\ell_{*}(\gamma)$ denotes $\ell(\gamma)$ for real γ, and any one of $\ell_{k}(\gamma)$ for imaginary γ

- Proposition: For imaginary $\alpha \in \widehat{\Delta}^{+, \text {im }}$, the corresponding $\left\{\ell_{k}(\alpha)\right\}_{k=1}^{|I|}$ are the $|I|=r k(\mathfrak{g})$ lexicographically largest words from the list as in the right-hand side of (1) whose standard bracketings are linearly independent

Part 2

- SL-words for the standard order $1<2<3<\cdots<n<0$ in type $A_{n}^{(1)}$

$S L$-words for the standard order on $A_{n}^{(1)}$ with $n \geq 3$

- Define $\alpha_{i \rightarrow j}:=\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j}$, where letters are viewed as $\bmod (n+1)$ residues placed on a circle.
- Theorem: The SL-words for $k \geq 1$:

$$
\begin{gathered}
k \delta \leftrightarrow\left\{\begin{array}{l}
10 n \ldots(r+2) 23 \ldots r \underbrace{10 n \ldots(r+1) 23 \ldots r}_{k \text { times }}(r+1), \text { for } 1 \leq r<n \\
123 \ldots n \underbrace{1023 \ldots n 0}_{k \text { times }}
\end{array}\right. \\
k \delta+\alpha_{i \rightarrow j} \leftrightarrow \underbrace{10 n \cdots 23 \ldots(i-1)}_{k \text { times }} i(i+1) \ldots j, \text { for } 2<i \leq j \\
k \delta+\alpha_{1 \rightarrow i} \leftrightarrow 123 \ldots n \underbrace{1023 \ldots n}_{(k-1) \text { times }} 1023 \ldots i, \text { for } i \neq 0 \\
k \delta+\alpha_{2} \leftrightarrow \underbrace{10 n \ldots 32}_{k \text { times }} 2
\end{gathered}
$$

$S L$-words for the standard order on $A_{n}^{(1)}$ with $n \geq 3$

$$
k \delta+\alpha_{2 \rightarrow j} \leftrightarrow\left\{\begin{array}{l}
\underbrace{10 n \ldots 32}_{\frac{k}{2} \text { times }} 2 \underbrace{10 n \ldots 32}_{\frac{k}{\frac{k}{2} \text { times }}} 34 \ldots j, k-\text { even } \\
\underbrace{10 n \ldots 32}_{\frac{k+1}{2} \text { times }} 34 \ldots j \underbrace{10 n \ldots 32}_{\frac{k-1}{2} \text { times }} 2, k-\text { odd } \quad, \text { for } j>2
\end{array}\right.
$$

$k \delta+\alpha_{j \rightarrow i} \leftrightarrow 10 n \ldots j 23 \ldots(j-2) \underbrace{10 n \ldots(j-1) 23 \ldots(j-2)}_{(k-1) \text { times }} 10 n \ldots(j-1) 23 \ldots i$

$$
\text { for } i+1<j
$$

The rest of the SL-words: $\alpha_{i \rightarrow j} \leftrightarrow i(i+1) \ldots j$ (for $i \leq j$), $\alpha_{j \rightarrow i} \leftrightarrow 10 n \ldots j 23 \ldots i($ for $i+1<j)$,
$\delta \leftrightarrow\left\{\begin{array}{l}10 n \ldots(r+2) 23 \ldots(r+1), \text { for } 1 \leq r<n \\ 123 \ldots n 0\end{array}\right.$

$S L$-words for the standard order on $A_{2}^{(1)}$

The structure for $A_{2}^{(1)}$ is slightly different from the $n \geq 3$ case.

- Theorem: For $k \geq 1$:

$$
\begin{gathered}
k \delta+\alpha_{1} \leftrightarrow 12 \underbrace{102}_{k-1 \text { times }} 10 \\
k \delta+\alpha_{2} \leftrightarrow \underbrace{102}_{k \text { times }} 2 \\
k \delta+\alpha_{0} \leftrightarrow \underbrace{102}_{k \text { times }} 0 \\
k \delta+\alpha_{1}+\alpha_{2} \leftrightarrow 12 \underbrace{102}_{k \text { times }} \\
k \delta+\alpha_{1}+\alpha_{0} \leftrightarrow 10 \underbrace{102}_{k \text { times }}
\end{gathered}
$$

$S L$-words for the standard order for $A_{2}^{(1)}$

$$
\begin{gathered}
k \delta+\alpha_{2}+\alpha_{0} \leftrightarrow\left\{\begin{array}{ll}
\underbrace{102}_{\frac{k}{2} \text { times }} 2 \underbrace{102}_{\frac{k}{2} \text { times }} 0 & , k \text {-even } \\
\underbrace{102}_{\frac{k+1}{2} \text { times }} 0 \underbrace{102}_{\frac{k-1}{2} \text { times }} 2 & , k \text {-odd } \\
(k+1) \delta \leftrightarrow\left\{\begin{array}{l}
10 \underbrace{102}_{k \text { times }} 2 \\
12 \underbrace{102}_{k \text { times }} 0
\end{array}\right.
\end{array}, .\right.
\end{gathered}
$$

For the remaining roots: $\alpha_{1} \leftrightarrow 1, \alpha_{1}+\alpha_{2} \leftrightarrow 12, \alpha_{2} \leftrightarrow 2, \alpha_{1}+\alpha_{0} \leftrightarrow 10$,
$\alpha_{0} \leftrightarrow 0, \alpha_{2}+\alpha_{0} \leftrightarrow 20, \alpha_{1}+\alpha_{2}+\alpha_{0} \leftrightarrow\left\{\begin{array}{l}102 \\ 120\end{array}\right.$
Both results are proved by induction on k using generalized Leclerc's algorithm

Part 3

- Structure and some order properties of SL-words for general order in type $A_{n}^{(1)}$

Key features of the general order in type $A_{n}^{(1)}$

- Alike the standard order, the core is to compute SL-words for the root δ
- The structure of the SL-words is defined by the words between δ and 2δ :

$$
\ell(\alpha+k \delta)=\ell_{1} \underbrace{\ell(\delta)}_{k-1 \text { times }} \ell_{2} \text {, where } \ell(\alpha+\delta)=\ell_{1} \ell_{2}
$$

- Using this fact we can prove some properties of the lex. order on SL-words
- Lemma: $\forall \alpha \in \widehat{\Delta}^{+, \text {re }}$, the sequence $\ell(\alpha), \ell(\alpha+\delta), \ell(\alpha+2 \delta), \ldots$ is monotonous
- Conjecture: For any $\alpha, \beta \in \widehat{\Delta}^{+, \text {re }}$ such that $\alpha+\beta \in \widehat{\Delta}^{+, \text {re }}$, have:

$$
\alpha<\alpha+\beta<\beta \quad \text { or } \quad \beta<\alpha+\beta<\alpha
$$

(analogue of Rosso's convexity property in finite types)

Part 4

- Python code that founds all $S L$-words up to degree $k \delta$

Python code

- Define function that computes standard bracketing of SL-words
- The code will work inductively. Suppose that we have a list of SL-words up to $k \delta$
- For each root between $k \delta$ and $(k+1) \delta$ find all possible variants of rewriting it into sum of two words from the list (knowing up to 2δ is enough)
- For real roots: count bracketing, find the largest word with the bracketing $\neq 0$
- For imaginary root: count bracketing, find the largest $|I|=r k(\mathfrak{g})$ words with linear independent bracketing

The End

Thank you!

SLAVA UKRAINE!

