Exploration of Grothendieck-Teichmüller (GT) shadows for the dihedral poset

Ivan Bortnovskyi and Vadym Pashkovskyi

Mentor: Vasily Dolgushev

Yulia's Dream Conference, May $14^{\text {th }}$

Background

Definition (Braid group B_{3})

The Artin braid group on 3 strands is

$$
B_{3}:=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle
$$

Background

Definition (Braid group B_{3})

The Artin braid group on 3 strands is

$$
B_{3}:=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle
$$

Let us denote by ρ a homomorphism that is defined as

$$
\rho: B_{3} \rightarrow S_{3}
$$

where S_{3} is a symmetric group on a set of 3 elements and

$$
\rho\left(\sigma_{1}\right):=(12), \quad \rho\left(\sigma_{2}\right):=(23)
$$

Background

Definition (Braid group B_{3})

The Artin braid group on 3 strands is

$$
B_{3}:=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle
$$

Let us denote by ρ a homomorphism that is defined as

$$
\rho: B_{3} \rightarrow S_{3}
$$

where S_{3} is a symmetric group on a set of 3 elements and

$$
\rho\left(\sigma_{1}\right):=(12), \quad \rho\left(\sigma_{2}\right):=(23)
$$

Definition (Pure braid group PB_{3})

Pure braid group $P B_{3}$ is the kernel of ρ :

$$
P B_{3}:=\operatorname{ker}(\rho) .
$$

Background

Definition (NFI)

For $N \unlhd_{f . i .} G$ the sets $N F I(G)$ and $N F I_{N}(G)$ are defined as

$$
N F I(G):=\left\{H \mid H \unlhd_{\text {f.i. }} G\right\}, \quad N F I_{N}(G):=\left\{H \mid H \subset N, H \unlhd_{f . i .} G\right\} .
$$

Background

Definition (NFI)

For $N \unlhd_{f . i .} G$ the sets $N F I(G)$ and $N F I_{N}(G)$ are defined as

$$
N F I(G):=\left\{H \mid H \unlhd_{f . i .} G\right\}, \quad N F I_{N}(G):=\left\{H \mid H \subset N, H \unlhd_{f . i .} G\right\} .
$$

Let us denote $x_{12}:=\sigma_{1}^{2}, x_{23}:=\sigma_{2}^{2}, c:=\left(\sigma_{1} \sigma_{2}\right)^{3}$.
It can be shown that $\left\langle x_{12}, x_{23}\right\rangle \cong F_{2}$, so we will identify F_{2} with $\left\langle x_{12}, x_{23}\right\rangle$. It is known that $P B_{3} \cong F_{2} \times\langle c\rangle$.

Background

Definition (NFI)

For $N \unlhd_{f . i .} G$ the sets $N F I(G)$ and $N F I_{N}(G)$ are defined as

$$
N F I(G):=\left\{H \mid H \unlhd_{f, i .} G\right\}, \quad N F I_{N}(G):=\left\{H \mid H \subset N, H \unlhd_{f, i .} G\right\} .
$$

Let us denote $x_{12}:=\sigma_{1}^{2}, x_{23}:=\sigma_{2}^{2}, c:=\left(\sigma_{1} \sigma_{2}\right)^{3}$.
It can be shown that $\left\langle x_{12}, x_{23}\right\rangle \cong F_{2}$, so we will identify F_{2} with $\left\langle x_{12}, x_{23}\right\rangle$. It is known that $P B_{3} \cong F_{2} \times\langle c\rangle$.

Definition ($N_{\text {ord }}$ and $N_{F_{2}}$)

Let $N \in N F I_{P B_{3}}\left(B_{3}\right)$ and let

$$
\begin{gathered}
\mathrm{N}_{\text {ord }}:=\operatorname{lcm}\left(\operatorname{ord}\left(x_{12} N\right), \operatorname{ord}\left(x_{23} N\right), \operatorname{ord}(c N)\right) \\
\mathrm{N}_{\mathrm{F}_{2}}:=\mathrm{N} \cap \mathrm{~F}_{2}
\end{gathered}
$$

Background

Definition (GT-pair with the target M)

A GT-pair with the target N is a pair

$$
\left(m+N_{\text {ord }} \mathbb{Z}, f N_{F_{2}}\right) \in \mathbb{Z} / N_{\text {ord }} \mathbb{Z} \times \mathrm{F}_{2} / \mathrm{N}_{\mathrm{F}_{2}}
$$

satisfying hexagon relations:

$$
\begin{gathered}
\sigma_{1}^{2 m+1} f^{-1} \sigma_{2}^{2 m+1} f \mathrm{~N}=f^{-1} \sigma_{1} \sigma_{2} x_{12}^{-m} c^{m} \mathrm{~N} \\
\text { and } \\
f^{-1} \sigma_{2}^{2 m+1} f \sigma_{1}^{2 m+1} \mathrm{~N}=\sigma_{2} \sigma_{1} x_{23}^{-m} c^{m} f \mathrm{~N}
\end{gathered}
$$

By writing $[m, f]$, we will mean the GT-pair represented by (m, f).
We will motivate the hexagon relations by the fact that if they are satisfied for a GT-pair $[m, f]$, then $T_{m, f}$, the map that is described on the next slide, is a homomorphism.

Background

Proposition

For every GT-pair with the target $\mathrm{N},[m, f]$, the formulas

$$
T_{m, f}\left(\sigma_{1}\right)=\sigma_{1}^{2 m+1} \mathrm{~N}, \quad T_{m, f}\left(\sigma_{2}\right)=f^{-1} \sigma_{2}^{2 m+1} f \mathrm{~N}
$$

define a group homomorphism from B_{3} to B_{3} / N.

Background

Proposition

For every GT-pair with the target $\mathrm{N},[m, f]$, the formulas

$$
T_{m, f}\left(\sigma_{1}\right)=\sigma_{1}^{2 m+1} \mathrm{~N}, \quad T_{m, f}\left(\sigma_{2}\right)=f^{-1} \sigma_{2}^{2 m+1} f \mathrm{~N}
$$

define a group homomorphism from B_{3} to B_{3} / N.

Definition (GT-shadow with the target N)

A GT-pair $[m, f]$ is called a GT-shadow with the target \mathbf{N} if it satisfies two technical conditions and if the homomorphism $T_{m, f}$ is surjective. The set of GT-shadows with the target N is denoted by GT(N).

Background

Proposition (Groupoid GTSh)

GT-shadows form a groupoid GTSh with $\mathrm{Ob}(\mathrm{GTSh}):=\mathrm{NFI}_{\mathrm{PB}_{3}}\left(\mathrm{~B}_{3}\right)$ and $\operatorname{GTSh}(\mathrm{K}, \mathrm{N}):=\left\{[m, f] \in \operatorname{GT}(N) \mid \operatorname{ker}\left(T_{m, f}\right)=\mathrm{K}\right\}$.

Background

Proposition (Groupoid GTSh)

GT-shadows form a groupoid GTSh with $\mathrm{Ob}(\mathrm{GTSh}):=\mathrm{NFI}_{\mathrm{PB}_{3}}\left(\mathrm{~B}_{3}\right)$ and $\operatorname{GTSh}(\mathrm{K}, \mathrm{N}):=\left\{[m, f] \in \operatorname{GT}(N) \mid \operatorname{ker}\left(T_{m, f}\right)=\mathrm{K}\right\}$.

$$
\begin{gathered}
\text { Let } E_{m, f}: F_{2} \rightarrow F_{2}, \\
E_{m, f}\left(x_{12}\right):=x_{12}^{2 m+1}, \quad E_{m, f}\left(x_{23}\right):=f^{-1} x_{23}^{2 m+1} f .
\end{gathered}
$$

Background

Proposition (Groupoid GTSh)

GT-shadows form a groupoid GTSh with $\mathrm{Ob}(\mathrm{GTSh}):=\mathrm{NFI}_{\mathrm{PB}_{3}}\left(\mathrm{~B}_{3}\right)$ and $\operatorname{GTSh}(\mathrm{K}, \mathrm{N}):=\left\{[m, f] \in \mathrm{GT}(N) \mid \operatorname{ker}\left(T_{m, f}\right)=\mathrm{K}\right\}$.

$$
\begin{gathered}
\text { Let } E_{m, f}: F_{2} \rightarrow F_{2} \\
E_{m, f}\left(x_{12}\right):=x_{12}^{2 m+1}, \quad E_{m, f}\left(x_{23}\right):=f^{-1} x_{23}^{2 m+1} f
\end{gathered}
$$

Then composition of morphisms in GTSh is defined like this:

$$
\left[m_{1}, f_{1}\right] \circ\left[m_{2}, f_{2}\right]:=\left[2 m_{1} m_{2}+m_{1}+m_{2}, f_{1} E_{m_{1}, f_{1}}\left(f_{2}\right)\right]
$$

Background

Let us denote $D_{n}:=\left\langle r, s \mid r^{n}, s^{2}, s r s r\right\rangle, n \in \mathbb{Z}_{\geq 3}$ the standard dihedral group and ψ_{n} the homomorphism $\mathrm{PB}_{3} \longrightarrow D_{n}^{3}$, which is defined by formulas:

$$
\psi_{n}\left(x_{12}\right):=(r, s, s), \quad \psi_{n}\left(x_{23}\right):=(r s, r, r s), \quad \psi_{n}(c):=(1,1,1)
$$

Background

Let us denote $D_{n}:=\left\langle r, s \mid r^{n}, s^{2}, s r s r\right\rangle, n \in \mathbb{Z}_{\geq 3}$ the standard dihedral group and ψ_{n} the homomorphism $\mathrm{PB}_{3} \longrightarrow D_{n}^{3}$, which is defined by formulas:

$$
\psi_{n}\left(x_{12}\right):=(r, s, s), \quad \psi_{n}\left(x_{23}\right):=(r s, r, r s), \quad \psi_{n}(c):=(1,1,1)
$$

Also we define $\mathrm{K}^{(n)}:=\operatorname{ker}\left(\psi_{n}\right)$ and $\mathrm{K}_{\mathrm{F}_{2}}^{(n)}=\mathrm{K}^{(n)} \cap \mathrm{F}_{2}$.

Background

Let us denote $D_{n}:=\left\langle r, s \mid r^{n}, s^{2}, s r s r\right\rangle, n \in \mathbb{Z}_{\geq 3}$ the standard dihedral group and ψ_{n} the homomorphism $\mathrm{PB}_{3} \longrightarrow D_{n}^{3}$, which is defined by formulas:

$$
\psi_{n}\left(x_{12}\right):=(r, s, s), \quad \psi_{n}\left(x_{23}\right):=(r s, r, r s), \quad \psi_{n}(c):=(1,1,1)
$$

Also we define $\mathrm{K}^{(n)}:=\operatorname{ker}\left(\psi_{n}\right)$ and $\mathrm{K}_{\mathrm{F}_{2}}^{(n)}=\mathrm{K}^{(n)} \cap \mathrm{F}_{2}$.
It can be shown that $\mathrm{K}^{(n)} \unlhd B_{3}$, and thus Dih := $\left\{\mathrm{K}^{(n)} \mid n \in \mathbb{Z}_{\geq 3}\right\}$ is a subposet of $\mathrm{NFI}_{\mathrm{PB}_{3}}\left(\mathrm{~B}_{3}\right)$. We call Dih the dihedral poset.

Background

Let us denote $D_{n}:=\left\langle r, s \mid r^{n}, s^{2}, s r s r\right\rangle, n \in \mathbb{Z}_{\geq 3}$ the standard dihedral group and ψ_{n} the homomorphism $\mathrm{PB}_{3} \longrightarrow D_{n}^{3}$, which is defined by formulas:

$$
\psi_{n}\left(x_{12}\right):=(r, s, s), \quad \psi_{n}\left(x_{23}\right):=(r s, r, r s), \quad \psi_{n}(c):=(1,1,1)
$$

Also we define $\mathrm{K}^{(n)}:=\operatorname{ker}\left(\psi_{n}\right)$ and $\mathrm{K}_{\mathrm{F}_{2}}^{(n)}=\mathrm{K}^{(n)} \cap \mathrm{F}_{2}$.
It can be shown that $\mathrm{K}^{(n)} \unlhd B_{3}$, and thus Dih := $\left\{\mathrm{K}^{(n)} \mid n \in \mathbb{Z}_{\geq 3}\right\}$ is a subposet of $\mathrm{NFI}_{\mathrm{PB}_{3}}\left(\mathrm{~B}_{3}\right)$. We call Dih the dihedral poset.
Note that $K_{\text {ord }}^{(n)}=\operatorname{Icm}(n, 2)$.

Results

- We have explicitly described the set GT($\left.\mathrm{K}^{(n)}\right)$ of GT-shadows with the target $\mathrm{K}^{(n)}$. If

$$
\begin{gathered}
\mathcal{X}_{n}:=\left\{m: m \in\left\{0,1, \ldots, K_{\text {ord }}^{(n)}-1\right\} \mid \operatorname{gcd}\left(2 m+1, K_{\text {ord }}^{(n)}\right)=1\right\} ; \\
\varkappa(m):= \begin{cases}m+1, & \text { if } 2 \nmid m, \\
-m, & \text { if } 2 \mid m ;\end{cases}
\end{gathered}
$$

then

$$
\operatorname{GT}\left(\mathrm{K}^{(n)}\right)=\left\{\left(m,\left(r^{2 k}, r^{-2 k}, r^{\varkappa(m)}\right)\right) \mid m \in \mathcal{X}_{n}, k \equiv \frac{\varkappa(m)}{2} \bmod 2\right\}
$$

Results

- We have explicitly described the set GT($\left.\mathrm{K}^{(n)}\right)$ of GT-shadows with the target $\mathrm{K}^{(n)}$. If

$$
\begin{gathered}
\mathcal{X}_{n}:=\left\{m: m \in\left\{0,1, \ldots, K_{\text {ord }}^{(n)}-1\right\} \mid \operatorname{gcd}\left(2 m+1, K_{\text {ord }}^{(n)}\right)=1\right\} ; \\
\varkappa(m):=\left\{\begin{array}{l}
m+1, \quad \text { if } 2 \nmid m, \\
-m, \quad \text { if } 2 \mid m ;
\end{array}\right.
\end{gathered}
$$

then

$$
\operatorname{GT}\left(\mathrm{K}^{(n)}\right)=\left\{\left(m,\left(r^{2 k}, r^{-2 k}, r^{\varkappa(m)}\right)\right) \mid m \in \mathcal{X}_{n}, k \equiv \frac{\varkappa(m)}{2} \bmod 2\right\}
$$

- We have shown that $K^{(n)}$ is an isolated object of the groupoid GTSh for every $n \in \mathbb{Z}_{\geq 3}$ (i.e., for $H \neq K^{(n)}, H \nrightarrow K^{(n)}$).

Results

- We have shown that

$$
K^{(q)} \subset K^{(n)} \Longleftrightarrow n \mid I c m(q, 2)
$$

Results

- We have shown that

$$
K^{(q)} \subset K^{(n)} \Longleftrightarrow n \mid I c m(q, 2)
$$

- We have shown that if $n, q \in \mathbb{Z}_{\geq 3}$ and $\mathrm{K}^{(q)} \subset \mathrm{K}^{(n)}$, then the natural reduction map

$$
\mathcal{R}_{\mathrm{K}^{(q)}, \mathrm{K}^{(n)}}: \mathrm{GT}\left(\mathrm{~K}^{(q)}\right) \rightarrow \mathrm{GT}\left(\mathrm{~K}^{(n)}\right)
$$

is surjective.

Future Plans

- Since $K^{(n)}$ is an isolated object of GTSh, GT $\left(K^{(n)}\right)$ is a group. We would like to describe this group.

Future Plans

- Since $K^{(n)}$ is an isolated object of GTSh, GT $\left(K^{(n)}\right)$ is a group. We would like to describe this group.
- We would like to find the limit of the functor from Dih to the category of the finite groups.

Future Plans

- Since $K^{(n)}$ is an isolated object of GTSh, GT $\left(K^{(n)}\right)$ is a group. We would like to describe this group.
- We would like to find the limit of the functor from Dih to the category of the finite groups. On the level of objects, the functor operates like this:

$$
K^{(n)} \rightarrow \mathrm{GT}\left(K^{(n)}\right)
$$

Future Plans

- Since $K^{(n)}$ is an isolated object of GTSh, GT $\left(K^{(n)}\right)$ is a group. We would like to describe this group.
- We would like to find the limit of the functor from Dih to the category of the finite groups. On the level of objects, the functor operates like this:

$$
K^{(n)} \rightarrow \mathrm{GT}\left(K^{(n)}\right)
$$

On the level of morphisms, the functor sends the natural morphism $K^{(q)} \rightarrow K^{(n)}$ to the reduction homomorphism $\mathcal{R}_{\mathrm{K}^{(q)}, \mathrm{K}(n)}: \mathrm{GT}\left(\mathrm{K}^{(q)}\right) \rightarrow \mathrm{GT}\left(\mathrm{K}^{(n)}\right)$.

Motivation

$$
\begin{gathered}
\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})=\operatorname{Aut}(\overline{\mathbb{Q}}), \quad \widehat{G T} \subset \widehat{\mathbb{Z}} \times \widehat{F_{2}}, \\
\operatorname{Gal}(E / \mathbb{Q})=\operatorname{Aut}(E), \quad E / \mathbb{Q} .
\end{gathered}
$$

Selected References

[1] V. Drinfeld, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal($\overline{\mathbb{Q}} / \mathbb{Q})$, Algebra i Analiz 2, 4 (1990) 149-181.
[2] V.A. Dolgushev and J.J. Guynee, GT-shadows for the gentle version $\widehat{\mathrm{GT}}_{\text {gen }}$ of the Grothendieck-Teichmueller group, in preparation.
[3] D. Harbater and L. Schneps, Approximating Galois orbits of dessins, Geometric Galois actions, 1, 205-230, London Math. Soc. Lecture Note Ser., 242, Cambridge Univ. Press, Cambridge, 1997.
[4] V. A. Dolgushev, K. Q. Le, A. A. Lorenz "What are GT-shadows?" arXiv:2008.00066.
[5] J. Xia, GT-Shadows related to finite quotients of the full modular group, Master Thesis, 2021, Temple University, https://scholarshare.temple.edu/handle/20.500.12613/6910.
[6] Y. Ihara, On the embedding of $G a(\bar{Q} / \mathbb{Q})$ into GT, Cambridge Univ. Press, Cambridge, 2011.

Acknowledgements

We are thankful to Vasily Dolgushev for his help and support and for mentoring our group in Yulia's Dream program.
We are thankful to Ihor Pylaiev, who unfortunately could not present with us today, for his contribution to this project. We are thankful to Pavel Etingof, Slava Gerovitch, and Dmytro Matvieievskyi for giving us the opportunity to participate in Yulia's Dream program.
We are thankful to the United Kingdom for its hospitality. We are thankful to our parents for their help and support.

THANK YOU!

