Exploration of Grothendieck-Teichmüller (GT) shadows for the dihedral poset

Ivan Bortnovskyi and Vadym Pashkovskyi

Mentor: Vasily Dolgushev

Yulia’s Dream Conference, May 14th
Background

Definition (Braid group B_3)

The Artin braid group on 3 strands is

$$B_3 := \langle \sigma_1, \sigma_2 \mid \sigma_1\sigma_2\sigma_1 = \sigma_2\sigma_1\sigma_2 \rangle.$$
The Artin braid group on 3 strands is

\[B_3 := \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle. \]

Let us denote by \(\rho \) a homomorphism that is defined as

\[\rho : B_3 \rightarrow S_3, \]

where \(S_3 \) is a symmetric group on a set of 3 elements and

\[\rho(\sigma_1) := (12), \quad \rho(\sigma_2) := (23). \]
Background

Definition (Braid group B_3)

The Artin braid group on 3 strands is

$$B_3 := \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle.$$

Let us denote by ρ a homomorphism that is defined as

$$\rho : B_3 \rightarrow S_3,$$

where S_3 is a symmetric group on a set of 3 elements and

$$\rho(\sigma_1) := (12), \quad \rho(\sigma_2) := (23).$$

Definition (Pure braid group PB_3)

Pure braid group PB_3 is the kernel of ρ:

$$PB_3 := \ker(\rho).$$
For $N \trianglelefteq_{f.i.} G$ the sets $\text{NFI}(G)$ and $\text{NFI}_N(G)$ are defined as

$$\text{NFI}(G) := \{ H \mid H \trianglelefteq_{f.i.} G \}, \quad \text{NFI}_N(G) := \{ H \mid H \subset N, H \trianglelefteq_{f.i.} G \}.$$
Definition \((NFI)\)

For \(N \trianglelefteq_{f.i.} G\) the sets \(NFI(G)\) and \(NFI_N(G)\) are defined as

\[
NFI(G) := \{ H \mid H \trianglelefteq_{f.i.} G \}, \quad NFI_N(G) := \{ H \mid H \subset N, H \trianglelefteq_{f.i.} G \}.
\]

Let us denote \(x_{12} := \sigma_1^2, x_{23} := \sigma_2^2, c := (\sigma_1 \sigma_2)^3\).

It can be shown that \(\langle x_{12}, x_{23} \rangle \cong F_2\), so we will identify \(F_2\) with \(\langle x_{12}, x_{23} \rangle\). It is known that \(PB_3 \cong F_2 \times \langle c \rangle\).
For $N \trianglelefteq_{f.i.} G$ the sets $\text{NFI}(G)$ and $\text{NFI}_N(G)$ are defined as

$$\text{NFI}(G) := \{ H \mid H \trianglelefteq_{f.i.} G \}, \quad \text{NFI}_N(G) := \{ H \mid H \subset N, H \trianglelefteq_{f.i.} G \}.$$

Let us denote $x_{12} := \sigma_1^2$, $x_{23} := \sigma_2^2$, $c := (\sigma_1 \sigma_2)^3$. It can be shown that $< x_{12}, x_{23} > \cong F_2$, so we will identify F_2 with $< x_{12}, x_{23} >$. It is known that $\text{PB}_3 \cong F_2 \times \langle c \rangle$.

Definition (N_{ord} and N_{F_2})

Let $N \in \text{NFI}_{\text{PB}_3}(B_3)$ and let

$$N_{ord} := \text{lcm}(\text{ord}(x_{12}N), \text{ord}(x_{23}N), \text{ord}(cN)),$$

$$N_{F_2} := N \cap F_2.$$
Definition \((GT\text{-pair with the target } N)\)

A GT-pair with the target \(N\) is a pair

\[
(m + N_{\text{ord}}\mathbb{Z}, fN_{F_2}) \in \mathbb{Z}/N_{\text{ord}}\mathbb{Z} \times F_2/N_{F_2}
\]

satisfying hexagon relations:

\[
\sigma_1^{2m+1} f^{-1} \sigma_2^{2m+1} fN = f^{-1} \sigma_1 \sigma_2 x_{12}^{-m} c^m N
\]

and

\[
f^{-1} \sigma_2^{2m+1} f \sigma_1^{2m+1} N = \sigma_2 \sigma_1 x_{23}^{-m} c^m fN.
\]

By writing \([m, f]\), we will mean the GT-pair represented by \((m, f)\).

We will motivate the hexagon relations by the fact that if they are satisfied for a GT-pair \([m, f]\), then \(T_{m,f}\), the map that is described on the next slide, is a homomorphism.
For every GT-pair with the target N, \([m, f]\), the formulas

\[
T_{m,f}(\sigma_1) = \sigma_1^{2m+1}N, \quad T_{m,f}(\sigma_2) = f^{-1}\sigma_2^{2m+1}fN
\]

define a group homomorphism from \(B_3\) to \(B_3/N\).
Proposition

For every GT-pair with the target \(N \), \([m, f]\), the formulas

\[
T_{m,f}(\sigma_1) = \sigma_1^{2m+1}N, \quad T_{m,f}(\sigma_2) = f^{-1}\sigma_2^{2m+1}fN
\]

define a group homomorphism from \(B_3 \) to \(B_3/N \).

Definition \((GT\text{-shadow with the target } N)\)

A GT-pair \([m, f]\) is called a \textbf{GT-shadow with the target }\(N\) if it satisfies two technical conditions and if the homomorphism \(T_{m,f} \) is surjective. The set of GT-shadows with the target \(N \) is denoted by \(\text{GT}(N) \).
Proposition (Groupoid GTSh)

GT-shadows form a groupoid GTSh with $\text{Ob}(\text{GTSh}) := N\text{FI}_{\text{PB}_3}(B_3)$ and $\text{GTSh}(K, N) := \{[m, f] \in \text{GT}(N) | \ker(T_{m,f}) = K\}$.

Let $E_{m,f}: F_2 \to F_2$, $E_{m,f}(x_12) := x_2^m + x_1^2$, $E_{m,f}(x_23) := f - x_2^m + x_2^2f$. Then composition of morphisms in GTSh is defined like this: $[m_1, f_1] \circ [m_2, f_2] := [2m_1m_2 + m_1 + m_2, f_1E_{m_1,f_1}(f_2)]$.

Ivan B. and Vadym P. Dihedral Poset and GT-Shadows
Proposition \textit{(Groupoid GTSh)}

GT-shadows form a groupoid GTSh with $\text{Ob}(\text{GTSh}) := \text{NFI}_{PB_3}(B_3)$ and $\text{GTSh}(K, N) := \{[m, f] \in \text{GT}(N) \mid \ker(T_{m,f}) = K\}$.

Let $E_{m,f} : F_2 \rightarrow F_2$,

$E_{m,f}(x_{12}) := x_{12}^{2m+1}$, \quad $E_{m,f}(x_{23}) := f^{-1}x_{23}^{2m+1}f$.

Proposition (*Groupoid GTSh*)

GT-shadows form a groupoid GTSh with $\text{Ob}(\text{GTSh}) := \text{NFI}_{PB_3}(B_3)$ and $\text{GTSh}(K, N) := \{[m, f] \in \text{GT}(N) | \ker(T_{m,f}) = K\}$.

Let $E_{m,f} : F_2 \to F_2$,

$$E_{m,f}(x_{12}) := x_{12}^{2m+1}, \quad E_{m,f}(x_{23}) := f^{-1}x_{23}^{2m+1}f.$$

Then composition of morphisms in GTSh is defined like this:

$$[m_1, f_1] \circ [m_2, f_2] := [2m_1 m_2 + m_1 + m_2, f_1 E_{m_1,f_1}(f_2)].$$
Let us denote $D_n := \langle r, s \mid r^n, s^2, srs \rangle$, $n \in \mathbb{Z}_{\geq 3}$ the standard dihedral group and ψ_n the homomorphism $\text{PB}_3 \rightarrow D_n^3$, which is defined by formulas:

$$
\psi_n(x_{12}) := (r, s, s), \quad \psi_n(x_{23}) := (rs, r, rs), \quad \psi_n(c) := (1, 1, 1).
$$
Let us denote $D_n := \langle r, s \mid r^n, s^2, srs \rangle$, $n \in \mathbb{Z}_{\geq 3}$ the standard dihedral group and ψ_n the homomorphism $\text{PB}_3 \longrightarrow D_n^3$, which is defined by formulas:

$$\psi_n(x_{12}) := (r, s, s), \quad \psi_n(x_{23}) := (rs, r, rs), \quad \psi_n(c) := (1, 1, 1).$$

Also we define $K^{(n)} := \ker(\psi_n)$ and $K^{(n)}_{F_2} = K^{(n)} \cap F_2$.
Let us denote $D_n := \langle r, s \mid r^n, s^2, srsr \rangle$, $n \in \mathbb{Z}_{\geq 3}$ the standard dihedral group and ψ_n the homomorphism $\text{PB}_3 \rightarrow D_n^3$, which is defined by formulas:

$$
\psi_n(x_{12}) := (r, s, s), \quad \psi_n(x_{23}) := (rs, r, rs), \quad \psi_n(c) := (1, 1, 1).
$$

Also we define $K^{(n)} := \ker(\psi_n)$ and $K^{(n)}_{F_2} = K^{(n)} \cap F_2$. It can be shown that $K^{(n)} \leq B_3$, and thus $\text{Dih} := \{K^{(n)} \mid n \in \mathbb{Z}_{\geq 3}\}$ is a subposet of $\text{NFI}_{\text{PB}_3}(B_3)$. We call Dih the \textbf{dihedral poset}.
Let us denote $D_n := \langle r, s \mid r^n, s^2, srsr \rangle$, $n \in \mathbb{Z}_{\geq 3}$ the standard dihedral group and ψ_n the homomorphism $\text{PB}_3 \rightarrow D_n^3$, which is defined by formulas:

\[\psi_n(x_{12}) := (r, s, s), \quad \psi_n(x_{23}) := (rs, r, rs), \quad \psi_n(c) := (1, 1, 1). \]

Also we define $K^{(n)} := \ker(\psi_n)$ and $K^{(n)}_{F_2} = K^{(n)} \cap F_2$.

It can be shown that $K^{(n)} \leq B_3$, and thus $\text{Dih} := \{ K^{(n)} \mid n \in \mathbb{Z}_{\geq 3} \}$ is a subposet of $\text{NFI}_{\text{PB}_3}(B_3)$. We call Dih the dihedral poset.

Note that $K_{\text{ord}}^{(n)} = \text{lcm}(n, 2)$.

Results

We have explicitly described the set $\text{GT}(K^{(n)})$ of GT-shadows with the target $K^{(n)}$. If

$$\mathcal{X}_n := \{ m : m \in \{0, 1, \ldots, K^{(n)}_{\text{ord}} - 1\} \mid \gcd(2m + 1, K^{(n)}_{\text{ord}}) = 1 \};$$

$$\kappa(m) := \begin{cases}
 m + 1, & \text{if } 2 \nmid m, \\
 -m, & \text{if } 2 \mid m;
\end{cases}$$

then

$$\text{GT}(K^{(n)}) = \{ (m, (r^{2k}, r^{-2k}, r^{\kappa(m)})) \mid m \in \mathcal{X}_n, k \equiv \frac{\kappa(m)}{2} \mod 2 \}. $$
We have explicitly described the set $\text{GT}(K^{(n)})$ of GT-shadows with the target $K^{(n)}$. If

$$\mathcal{X}_n := \{ m : m \in \{0, 1, \ldots, K^{(n)}_{\text{ord}} - 1\} \mid \gcd(2m + 1, K^{(n)}_{\text{ord}}) = 1 \};$$

$$\varphi(m) := \begin{cases} m + 1, & \text{if } 2 \nmid m, \\ -m, & \text{if } 2 \mid m; \end{cases}$$

then

$$\text{GT}(K^{(n)}) = \{(m, (r^{2k}, r^{-2k}, \varphi(m))) \mid m \in \mathcal{X}_n, k \equiv \frac{\varphi(m)}{2} \text{ mod } 2\}.$$

We have shown that $K^{(n)}$ is an isolated object of the groupoid GTSh for every $n \in \mathbb{Z}_{\geq 3}$ (i.e., for $H \neq K^{(n)}$, $H \not\rightarrow K^{(n)}$).
We have shown that

\[K^{(q)} \subsetneq K^{(n)} \iff n \mid \text{lcm}(q, 2). \]
We have shown that

\[K^{(q)} \subset K^{(n)} \iff n \mid \text{lcm}(q, 2). \]

We have shown that if \(n, q \in \mathbb{Z}_{\geq 3} \) and \(K^{(q)} \subset K^{(n)} \), then the natural reduction map

\[R_{K^{(q)}, K^{(n)}} : \text{GT}(K^{(q)}) \to \text{GT}(K^{(n)}) \]

is surjective.
Since $K^{(n)}$ is an isolated object of GTSh, $\text{GT}(K^{(n)})$ is a group. We would like to describe this group.
Since $K^{(n)}$ is an isolated object of GTSh, GT($K^{(n)}$) is a group. We would like to describe this group.

We would like to find the limit of the functor from Dih to the category of the finite groups.
Since $K^{(n)}$ is an isolated object of $GTSh$, $GT(K^{(n)})$ is a group. We would like to describe this group.

We would like to find the limit of the functor from Dih to the category of the finite groups. On the level of objects, the functor operates like this:

$$K^{(n)} \rightarrow GT(K^{(n)}).$$
Since $K^{(n)}$ is an isolated object of GTSh, $\text{GT}(K^{(n)})$ is a group. We would like to describe this group.

We would like to find the limit of the functor from Dih to the category of the finite groups. On the level of objects, the functor operates like this:

$$K^{(n)} \rightarrow \text{GT}(K^{(n)}).$$

On the level of morphisms, the functor sends the natural morphism $K^{(q)} \rightarrow K^{(n)}$ to the reduction homomorphism $\mathcal{R}_{K^{(q)},K^{(n)}} : \text{GT}(K^{(q)}) \rightarrow \text{GT}(K^{(n)})$.
Motivation

\[\text{Ihara embedding} \]

\[\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \widehat{\text{GT}} \rightarrow \widehat{\text{GT}} \times \text{NFI}_{PB_3}(B_3) \]

\[g \mid_{E \in \text{Gal}(E/\mathbb{Q})} \] (surjective)

\[\text{Gal}(E/\mathbb{Q}) \]

Dessins d’enfant (Child’s drawings)

\[\text{Mor}(\text{GTSh}) \]

\[\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) = \text{Aut}(\overline{\mathbb{Q}}), \quad \widehat{\text{GT}} \subset \hat{\mathbb{Z}} \times \hat{F}_2, \]

\[\text{Gal}(E/\mathbb{Q}) = \text{Aut}(E), \quad E/\mathbb{Q}. \]
Selected References

Acknowledgements

We are thankful to Vasily Dolgushev for his help and support and for mentoring our group in Yulia’s Dream program.
We are thankful to Ihor Pylaiev, who unfortunately could not present with us today, for his contribution to this project.
We are thankful to Pavel Etingof, Slava Gerovitch, and Dmytro Matvieievskyi for giving us the opportunity to participate in Yulia’s Dream program.
We are thankful to the United Kingdom for its hospitality.
We are thankful to our parents for their help and support.
THANK YOU!