Dimers and embeddings

Marianna Russkikh

MIT

May 11, 2020

Based on: [KLRR] "Dimers and circle patterns" joint with R. Kenyon, W. Lam, S. Ramassamy. (arXiv:1810.05616) [CLR] "Dimer model and holomorphic functions on t-embeddings" joint with D. Chelkak, B. Laslier. (arXiv:2001.11871)

Dimer model

A dimer cover of a planar bipartite graph is a set of edges with the property: every vertex is contained in exactly one edge of the set.

(On the square lattice / honeycomb lattice it can be viewed as a tiling of a domain on the dual lattice by dominos / lozenges.)

Height function

Defined on \mathcal{G}^* , fixed reference configuration, random configuration

Note that $(h - \mathbb{E}h)$ doesn't depend on the reference configuration.

Gaussian Free Field

GFF with zero boundary conditions on a domain $\Omega \subset \mathbb{C}$ is a conformally invariant random generalized function:

$$\mathsf{GFF}(z) = \sum_{k} \xi_k \frac{\phi_k(z)}{\sqrt{\lambda_k}},$$

[1d analog: Brownian Bridge]

where ϕ_k are eigenfunctions of $-\Delta$ on Ω with zero boundary conditions, λ_k is the corresp. eigenvalue, and ξ_k are i.i.d. standard Gaussians. The GFF is not a random function, but a random distribution.

GFF is a Gaussian process on Ω with Green's function of the Laplacian as the covariance kernel.

- [Kenyon '01+] conjectured for general lattices/domains, proved for lozenge tilings without facets in the limit shape.
- [Petrov '12], [Bufetov-Gorin '16–17]: certain polygons

 $\hbar = h - \mathbb{E}h$

Ambitious goal [Chelkak, Laslier, R.]:

Given a big weighted bipartite planar graph to embed it so that

$$\hbar^{\delta} \to \mathsf{GFF}$$

Q: In which metric?

$$(\mathcal{G}, \mathcal{K})
ightarrow (\mathcal{T}(\mathcal{G}^*), \mathcal{K}_{\mathcal{T}}), \quad \mathcal{K}_{\mathsf{gauge}}^{\sim} \mathcal{K}_{\mathcal{T}}$$

t-embedding or circle pattern embedding

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Results

Theorem (Kenyon, Lam, Ramassamy, R.)

t-embeddings exist at least in the following cases:

• If \mathcal{G}^{δ} is a bipartite finite graph with outer face of degree 4.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If G^δ is a biperiodic bipartite graph.

Theorem (Chelkak, Laslier, R.) Assume \mathcal{G}^{δ} are perfectly t-embedded. a) Technical assumptions on faces

- b) The origami map is small in the bulk
- \Rightarrow convergence to $\pi^{-1/2} \operatorname{GFF}_{\mathbb{D}}$.

Weighted dimers and gauge equivalence

Weight function $\nu : E(\mathcal{G}) \to \mathbb{R}_{>0}$ Probability measure on dimer covers: $\mu(m) = \frac{1}{Z} \prod \nu(e)$

Definition

Two weight functions ν_1, ν_2 are said to be *gauge equivalent* if there are two functions $F : B \to \mathbb{R}$ and $G : W \to \mathbb{R}$ such that for any edge *bw*, $\nu_1(bw) = F(b)G(w)\nu_2(bw)$.

Gauge equivalent weights define the same probability measure μ .

Kasteleyn matrix

A (Percus–)Kasteleyn matrix K is a weighted, signed adjacency matrix whose rows index the white vertices and columns index the black vertices: $K(w, b) = \tau_{wb} \cdot \nu(wb)$.

- [Percus'69, Kasteleyn'61]: $Z = |\det K| = \sum_{m \in M} \nu(m)$
- The local statistics for the measure μ on dimer configurations can be computed using the inverse Kasteleyn matrix.

Kasteleyn matrix as a discrete Cauchy-Riemann operator

Kasteleyn \mathbb{C} signs proposed by **Kenyon** for the uniform dimer model on \mathbb{Z}^2 [flat case]:

Relation for 4 values of K_{Ω}^{-1} :

$$1 \cdot K_{\Omega}^{-1}(\mathbf{v}+1,\mathbf{v}') - 1 \cdot K_{\Omega}^{-1}(\mathbf{v}-1,\mathbf{v}') + i \cdot K_{\Omega}^{-1}(\mathbf{v}+i,\mathbf{v}') - i \cdot K_{\Omega}^{-1}(\mathbf{v}-i,\mathbf{v}') = \delta_{\{\mathbf{v}=\mathbf{v}'\}}$$

Discrete Cauchy-Riemann: $F(c) - F(a) = -i \cdot (F(d) - F(b))$

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

э

Kasteleyn matrix as a discrete Cauchy-Riemann operator

What about non-flat case / general weights / other grids?

A function $F^{\bullet}: B \to \mathbb{C}$ is discrete holomorphic at $w \in W$ if

$$[\bar{\partial}F^{\bullet}](w) := \sum_{b\sim w}F^{\bullet}(b)\cdot K(w,b) = [F^{\bullet}K](w) = 0.$$

For a fixed $w_0 \in W$ the function $K^{-1}(\cdot, w_0)$ is a discrete holomorphic function with a simple pole at w_0 .

Q: How do discrete holomorphic functions correspond to their continuous counterparts? [gauge + Kasteleyn signs + embedding]
(+) [flat] uniform dimer model on Z², isoradial graphs
(?) General weighted planar bipartite graphs [Chelkak, Laslier, R.]

Circle pattern

[Kenyon, Lam, Ramassamy, R.]

An embedding of a bipartite graph with cyclic faces.

Assume that each bounded face contains its circumcenter.

The circumcenters form an embedding of the dual graph.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Circle pattern

[Kenyon, Lam, Ramassamy, R.]

Circle pattern realisations with an embedded dual, where the dual graph is the graph of circle centres.

(!) Circle patterns themselves are not necessarily embedded.

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

Circle pattern

A circle pattern realisation with an embedded dual.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Circle pattern = t-embedding

[Chelkak, Laslier, R.]

A t-embedding \mathcal{T} :

- Proper: All edges are straight segments and they don't overlap.
- Bipartite dual: The dual graph of *T* is bipartite.
- Angle condition: For every vertex v one has

$$\sum_{f \text{ white}} \theta(f, \mathbf{v}) = \sum_{f \text{ black}} \theta(f, \mathbf{v}) = \pi,$$

where $\theta(f, v)$ denotes the angle of a face f at the neighbouring vertex v.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Circle pattern = t-embedding

Proposition (Kenyon, Lam, Ramassamy, R.)

Suppose \mathcal{G} is a bipartite graph and $u : V(\mathcal{G}^*) \to \mathbb{C}$ is a convex embedding of the dual graph (with the outer vertex at ∞). Then there exists a circle pattern $\mathcal{C} : V(\mathcal{G}) \to \mathbb{C}$ with u as centers if and only if the alternating sum of angles around every dual vertex is 0.

Circle pattern = t-embedding

Proposition (Kenyon, Lam, Ramassamy, R.)

Suppose \mathcal{G} is a bipartite graph and $u : V(\mathcal{G}^*) \to \mathbb{C}$ is a convex embedding of the dual graph (with the outer vertex at ∞). Then there exists a circle pattern $\mathcal{C} : V(\mathcal{G}) \to \mathbb{C}$ with u as centers if and only if the alternating sum of angles around every dual vertex is 0.

Existence of t-embeddings

$$(\mathcal{G}, \mathcal{K}) \to (\mathcal{G}^*, \mathcal{K}) \to (\mathcal{T}(\mathcal{G}^*), \mathcal{K}_{\mathcal{T}}), \quad \text{where} \quad \mathcal{K}_{\text{gauge}} \mathcal{K}_{\mathcal{T}}.$$

Theorem (Kenyon, Lam, Ramassamy, R.)

t-embeddings of the dual graph \mathcal{G}^* exist at least in the following cases:

- If G is a bipartite finite graph with outer face of degree 4, with an equivalence class of real Kasteleyn edge weights under gauge equivalence.
- If G is a biperiodic bipartite graph, with an equivalence class of biperiodic real Kasteleyn edge weights under gauge equivalence.

$$\mathcal{K}_{gauge}^{\sim}\mathcal{K}_{\mathcal{T}} \quad \longleftrightarrow \quad \mathcal{K}_{\mathcal{T}}(wb) = \mathcal{G}(w)\mathcal{K}(wb)\mathcal{F}(b)$$

Coulomb gauge for finite planar graphs

Def: Functions $G : W \to \mathbb{C}$ and $F : B \to \mathbb{C}$ are said to give Coulomb gauge for \mathcal{G} if for all internal white vertices w

$$\sum_{b} G(w) K_{wb} F(b) = 0,$$

and for all internal black vertices b

$$\sum_{w} G(w) K_{wb} F(b) = 0.$$

イロト イポト イヨト イヨト

$$\sum_{w} G(w) K_{wb_i} F(b_i) = B_i$$
$$\sum_{b} G(w_i) K_{w_i b} F(b) = -W_i$$

Coulomb gauge for finite planar graphs

Closed 1-form: $\omega(wb) = G(w)K_{wb}F(b)$.

Define $\phi : \mathcal{G}^* \to \mathbb{C}$ by the formula $\phi(f_1) - \phi(f_2) = \omega(wb)$.

Theorem (Kenyon, Lam, Ramassamy, R.)

Suppose G has an outer face of degree 4. The mapping ϕ defines a convex t-embedding into P of G^* sending the outer vertices to the corresponding vertices of P.

Circle patterns and elementary transformations

[Kenyon, Lam, Ramassamy, R.]: T-embeddings of \mathcal{G}^* are preserved under elementary transformations of $\mathcal{G}.$

t-embedding of a finite planar graph with an outer face of degree 4

[A. Postnikov]:

Any nondegenerate planar bipartite graph with 4 marked boundary vertices w_1, b_1, w_2, b_2 can be built up from the 4-cycle graph with vertices w_1, b_1, w_2, b_2 using a sequence of elementary transformations; moreover the marked vertices remain in all intermediate graphs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Origami map

To get an origami map $\mathcal{O}(\mathcal{G}^*)$ from $\mathcal{T}(\mathcal{G}^*)$ one can choose a root face $\mathcal{T}(w_0)$ and fold the plane along every edge of the embedding.

Uniqueness of biperiodic t-embeddings

To get an origami map $\mathcal{O}(\mathcal{G}^*)$ from $\mathcal{T}(\mathcal{G}^*)$ one can choose a root face $\mathcal{T}(w_0)$ and fold the plane along every edge of the embedding.

Theorem (Chelkak; Kenyon, Lam, Ramassamy, R.)

- 1. The boundedness of the origami map \mathcal{O} is equivalent to the boundedness of the radii in any circle pattern.
- If G is biperiodic with biperiodic real Kasteleyn edge weights. There exists unique periodic t-embedding with a bounded O.

T-holomorphicity, assumptions

[Chelkak, Laslier, R.]

Assumption (**Lip**(κ , δ))

Given two positive constant $\kappa < 1$ and $\delta > 0$ we say that a t-embedding \mathcal{T} satisfies assumption $\operatorname{Lip}(\kappa, \delta)$ in a region $U \subset \mathbb{C}$ if $|\mathcal{O}(z') - \mathcal{O}(z)| \leq \kappa \cdot |z' - z|$ for all $z, z' \in U$ such that $|z - z'| \geq \delta$.

Remark:

- We think of δ as the 'mesh size';
- All faces have diameter less than δ ;
- The actual size of faces could be in fact much smaller than δ .

T-holomorphicity, assumptions

[Chelkak, Laslier, R.]

Assumption (**Lip**(κ , δ))

Given two positive constant $\kappa < 1$ and $\delta > 0$ we say that a t-embedding \mathcal{T} satisfies assumption $\operatorname{Lip}(\kappa, \delta)$ in a region $U \subset \mathbb{C}$ if $|\mathcal{O}(z') - \mathcal{O}(z)| \leq \kappa \cdot |z' - z|$ for all $z, z' \in U$ such that $|z - z'| \geq \delta$.

Assumption (**Exp-Fat**(δ), triangulations)

A sequence \mathcal{T}^{δ} of t-embeddings with triangular faces satisfes assumption EXP-FAT(δ) on a region $U^{\delta} \subset \mathbb{C}$ as $\delta \to 0$ if the following is fulfilled for each $\beta > 0$:

If one removes all 'exp $(-\beta\delta^{-1})$ -fat' triangles from \mathcal{T}^{δ} , then the size of remaining vertex-connected components tends to zero as $\delta \to 0$.

T-holomorphicity

[Chelkak, Laslier, R.]

- t-holomorphicity: Fix $\widetilde{w} \in W$. Given a function $F^{\bullet}_{\widetilde{w}}$ on B, s.t. $F^{\bullet}_{\widetilde{w}}(b) \in \eta_b \mathbb{R}$ and $K_{\mathcal{T}} F^{\bullet}_{\widetilde{w}} = 0$ at w, there exists $F^{\circ}_{\widetilde{w}}$ such that $F^{\bullet}_{\widetilde{w}}(b_i)$ are projections of $F^{\circ}_{\widetilde{w}}(w)$
- bounded t-holomorphic functions are uniformly (in δ) Hölder and their contour integrals vanish as δ → 0.

(日) (四) (日) (日) (日)

 $K_{\mathcal{T}}^{-1}(\,\cdot\,,w_0)$ is a t-holomorphic function for a fixed white vertex w_0

T-graph = t-embedding + Origami map

[Kenyon-Sheffield]: A pairwise disjoint collection L_1, L_2, \ldots, L_n of open line segments in \mathbb{R}^2 forms a T-graph in \mathbb{R}^2 if $\bigcup_{i=1}^n L_i$ is connected and contains all of its limit points except for some set of boundary points.

[Chelkak, Laslier, R.]:

- For any α with $|\alpha| = 1$, the set $T + \alpha O$ is a T-graph, possibly non proper and with degenerate faces.
- A t-white-holomorphic function F_w, can be integrated into a real harmonic function on a T-graph (Re(I_ℂ[F_w]) is harmonic on T + O).
- Lipschitz regularity of harmonic functions on $\mathcal{T} + \alpha \mathcal{O}$.

$\mathsf{Height}\ \mathsf{function}\ \rightarrow\ \mathsf{GFF}$

Theorem (Chelkak, Laslier, R.) Assume that \mathcal{T}^{δ} satisfy assumptions $LiP(\kappa, \delta)$ and Exp- $Fat(\delta)$ on compact subsets of Ω and (I) The origami map is small: $\mathcal{O}^{\delta}(z) \xrightarrow[\delta \to 0]{} 0$

(II) K⁻¹_{T^δ}(b^δ, w^δ) is uniformly bounded as δ → 0
 (III) the correlations E[ħ^δ(v^δ₁)...ħ^δ(v^δ_n)] are uniformly small near the boundary of Ω

 \Rightarrow convergence to $\pi^{-1/2} \operatorname{GFF}_{\mathbb{D}}$.

A similar (though more involved) analysis can be performed assuming that the origami maps $\mathcal{O}^{\delta} \xrightarrow[\delta \to 0]{} \vartheta$, which is a graph of a Lorenz-minimal surface in \mathbb{R}^{2+2} . [Chelkak, Laslier, R.]: "Bipartite dimer model: perfect t-embeddings and Lorentz-minimal surfaces" (In preparation)

T-embeddings

Boundary of degree 2k:

[Kenyon, Lam, Ramassamy, R.]:

- For each (generic) polygon P, there exists a t-embedding "realisation onto P".
- Usually not unique (finitely many)
- Maybe self-intersections.

Open question: Is it always a proper embedding?

Perfect t-embeddings

[Chelkak, Laslier, R.]

Definition. Perfect t-embeddings:

- \blacktriangleright *P* tangental to $\mathbb D$
- $\mathcal{T}(f_i)\mathcal{T}(f'_i)$ bisector of the $\mathcal{T}(f_{i-1})\mathcal{T}(f_i)\mathcal{T}(f_{i+1})$

Remark:

- proper embeddings (no self-intersections) [at least if P is convex]
- Not unique: $(F, G) \sim$ perfect t-embedding, then for all $|\tau| < 1$ $(F + \tau \overline{F}, G + \tau \overline{G}) \sim$ perfect t-embedding.

Open question: existence of perfect t-embeddings.

Conjecture: perfect t-embedding always exists.

Generalization

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Chelkak, Laslier, R.)

Let \mathcal{G}^{δ} be finite weighted bipartite pnanar graphs. Assume that

- *T^δ* are perfect t-embeddings of (*G^δ*)^{*} satisfying assumption EXP-FAT(δ)
- $(\mathcal{T}^{\delta}, \mathcal{O}^{\delta})$ converge to a Lorentz-minimal surface S.

Then the height fluctuations converge to the standard Gaussian Free Field in the intrinsic metric of S.

Chelkak, Laslier, R. "Bipartite dimer model: perfect t-embeddings and Lorentz-minimal surfaces" (In preparation)

Chelkak, Ramassamy "Fluctuations in the Aztec diamonds via a Lorentz-minimal surface" (arXiv:2002.07540)

Thank you!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで