# Physical Mathematics Seminar

### A general framework for modelling turbulent fluids

## **JUSTIN BEROZ**

Massachusetts Institute of Technology

#### **ABSTRACT:**

Despite significant advances over the past two centuries, a complete general mathematical framework for the turbulent motion of fluids has yet to be put forth, and remains the longest standing unsolved problem in classical physics. I will present such a framework, which is based on constructing the detailed equations of motion for a fluid's kinetic energy density from first principles. The approach departs from the usual Reynolds decomposition, and yields a set of closed and solvable equations. Within this prescription, the linear terms in the Navier-Stokes equations correspond to a symmetric matrix operator, and the nonlinear convective term enters as an anti-symmetric operator that provides coupling between eigenstates of the flow. In particular, I will present a derivation for the turbulent energy spectrum which includes the Kolmogorov energy cascade, elucidate the linear and nonlinear mechanisms for transitions to turbulence, and show a data collapse onto a single power law for a wide range of experimental measurements on the turbulent transition in pipe flow. Careful attention will be given to the physical picture and scaling, in addition to the rigorous mathematical program.

#### TUESDAY, SEPTEMBER 27, 2022 2:30 PM – 3:30 PM Building 2, Room 449

http://math.mit.edu/seminars/pms/

**ZOOM** (and in person)

https://mit.zoom.us/j/95597721876

