
p-adic Modular Forms à la Serre
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1 Introduction

These notes are for a lecture given at STAGE. They cover the basics of Serre’s theory of p-adic
modular forms, as presented in [2]. In this concrete and elementary theory, Serre defines a p-adic
modular form (on SL2(Z)) to be a q-expansion f ∈ Qp[[q]] which is the p-adic limit of q-expansions
of classical modular forms. Theorems are proved about p-adic modular forms by studying the
algebra M(Fp) of mod p modular forms, which is nothing more than the collection of q-expansions
f ∈ Fp[[q]] that are mod p reductions of classical modular forms. Especially important is a result
of Swinnerton-Dyer which shows that the kernel of this reduction map is generated by Ep−1 − 1,
where Ep−1 is an Eisenstein series.

Despite its elementarity, Serre’s theory proves fruitful. Here we present the two applications that
most motivated Serre’s work: proving congruence properties of modular forms and constructing
p-adic zeta functions. Both of these applications capture the general principal that the nonconstant
Fourier coefficients of a p-adic modular form determine the constant term. Moreover, by studying
how the nonconstant terms of Eisenstein series vary in a family, Serre easily deduces that the p-adic
zeta function is continuous.

Nowadays, the study of p-adic modular forms finds its foundations in Katz’s geometric appraoch
(see [1]) instead of Serre’s theory. Accordingly, STAGE will study Katz’s theory in greater detail.
Why, then, are we spending a lesson on Serre’s theory? I think there are three reasons. First, the
concreteness of Serre’s theory helps to fix ideas. We will encounter many objects – such as the
ordinary space, the ordinary projector, the p-adic weight space, and the space of p-adic or mod
p modular forms themselves – which will reappear in Katz’s framework with much more abstract
definitions. Serre’s theory provides concrete models of these objects, making them much easier to
think about. Second, and relatedly, the simplicity of the theory makes clear what sort of problems
we hope to solve with the study of p-adic modular forms, and what sorts of methods will be useful.
And third, Serre’s theory gives us great results with minimal set-up; questions posed at the start
of the lecture will be answered by the end, not after wading through three lectures of complicated
algebraic geometry. We simply can’t resist the instant gratification.

Throughout p denotes a prime. Although results are stated in general, we will restrict proofs
to the case p ≥ 3 or p ≥ 5 when simpler. Following Serre, we will also consider modular forms on
the full modular group SL2(Z) only. The space of weight k classical modular forms is denoted Mk.

2 Motivation

We explain here some of the things on Serre’s mind that led him to formulate a p-adic theory of
modular forms. We’ll also fix some notation that will be used in the rest of the notes.
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2.1 Modular forms congruences

Let j =
E3

4
∆ be the modular j function, normalized so that

j = q−1 + 744 + 196884q + · · · = 744 +
∑
n≥−1

c(n)qn

for integers c(n) ∈ Z. In 1949, Lehner proved some interesting divisibility properties of these
integers mod p = 2, 3, 5, 7.

Theorem 1 (Lehner). For all natural numbers α ≥ 1,

c(2αn) ≡ 0 (mod 23α+8)

c(3αn) ≡ 0 (mod 32α+3)

c(5αn) ≡ 0 (mod 5α + 1)

c(7αn) ≡ 0 (mod 7α).

There is also a similar congruence for p = 11. Lehner proved these congruences via esplicit prime-
by-prime computation, leaving something to be desired conceptually.

To view these congruences differently, let Up be a linear operator which acts on a q-expansion∑
a(n)qn via (∑

a(n)qn
)
|Up =

∑
a(pn)qn.

Then the theorem implies that (j−744)|Unp → 0 in the p-adic limit. We will see how Serre’s theory
gives an easy, conceptual proof of theorems of this sort.

2.2 p-adic L-functions

Recall that the values of ζ(s) at negative odd integers are

ζ(1− k) = −Bk
k

where Bk is the kth Bernoulli number. Bernoulli numbers have some interesting divisibility prop-
erties. Here is an easy theorem about Bernoulli numbers.

Theorem 2 (Clausen-von Staudt). For all k ∈ N, we have

Bk +
∑

p prime
p−1|k

1

p
∈ Z.

In particular, vp(Bk) = −1 if (p− 1)|k, and vp(Bk) ≥ 0 otherwise.

And here’s a harder theorem about Bernoulli numbers.

Theorem 3 (Kummer congruences). If k, k′ ∈ N are even with k ≡ k′ 6≡ 0 (mod p− 1) then

Bk
k
≡ Bk′

k′
mod p.

More generally, if k, k′ ∈ N are even, not divisible by p− 1, and k ≡ k′ (mod pa(p− 1)) then

(1− pk−1)
Bk
k
≡ (1− pk′−1)

Bk′

k′
(mod pa+1).
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A reader experienced with L-functions will recognize the numbers appearing in the general
Kummer congruences as special values of the Riemann zeta function with its p-part stripped out.
Therefore, the Kummer congruences indicate some sort of p-adic continuity properties of the func-
tion (1 − p−s)ζ(s). Indeed, the Kummer congruences were used by Kubota and Leopoldt to con-
struct a p-adic L-function that interpolated the values of ζ. We present below Serre’s construction
of the p-adic zeta function, which is much simplier and whose proof does not rely on the Kummer
congruences.

3 Eisenstein series and congruences

We denote by Gk and Ek the weight k Eisenstein series, normalized so that

Gk = −Bk
2k

+
∑
n≥1

σk−1(n)qn

Ek = 1− 2k

Bk

∑
n≥1

σk−1(n)qn.

Recall that for k > 2 these are modular forms on SL2(Z) and that the algebra of modular forms on
SL2(Z) is generated by E4 and E6. This implies, for example, that dimM8 = 1 and E2

4 = E8 since
they are both weight 8 modular forms with the same constant term.

By Clausen-von Staudt’s theorem, we have vp(k/Bk) ≥ pa+1 when k ≡ 0 (mod pa(p−1)) so that
Ep−1 ≡ 1 (mod p), and more generally Epa(p−1) ≡ 1 (mod pa+1). Having noted these congruences,
we fix the following notation.

Definition 4.

(1) Mk(Z(p)) = Mk ∩ Z(p)[[q]] denotes the Z(p)-module of weight k modular forms with p-integral
Fourier coefficients. We denote by Mk(Fp) the image of the reduction mod p map Mk(Z(p)) →
Fp[[q]], f 7→ f .

(2) Since Ep−1 ≡ 1 (mod p) we have inclusions

Mk(Fp) ⊆Mk+p−1(Fp) ⊆Mk+2(p−1)(Fp) ⊆ · · ·

and for α ∈ Z/(p− 1)Z we set

Mα(Fp) =
⋃

k≡α (mod p−1)

Mk(Fp).

(3) We set M(Fp) =
∑

kMk(Fp) to be the subalgebra of Fp[[q]], and similarly for M(Z(p)).

We know that Ep−1 − 1 is in the kernel of the reduction map M(Z(p))→M(Fp). In fact, its is
the whole kernel.

Theorem 5 (Swinnerton-Dyer).

(1) For p ≥ 5 we have M(Fp) = Fp[E4, E6]/(Ep−1 − 1). This Fp-space is a direct sum

M(Fp) =
⊕

α∈Z/(p−1)Z

Mα(Fp).
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(2) For p = 2, 3, we have M(Fp) = M0(Fp) = Fp[∆] for the weight-12 cusp form ∆.

This structure theorem has the following crucial consequence.

Theorem 6. Let f, f ′ ∈M(Z(p)) be nonzero of weights k, k′. If

f ≡ f ′ (mod pm)

then

k ≡ k′ (mod pm−1(p− 1)) if p ≥ 3

k ≡ k′ (mod 2m−2) if p = 2.

For p ≥ 5 and m = 1, the theorem follows immediately from Theorem 5 since f ≡ f ′ (mod p)
implies that f, f ′ are in the same component Mα(Fp) of M(Fp) so that k ≡ k′ (mod p − 1). The
full proof of the m ≥ 2 case requires a deeper study of filtrations and is relegated to the appendix.
However, we’ll mention here a key ingredient of the proof.

Definition 7. The Ramanujan theta operator is a differential operator defined by

Θ = q
d

dq

so that Θ (
∑
a(n)qn) =

∑
na(n)qn.

Two key properties of Θ are given here.

Proposition 8.

(1) Θ “almost” increases the weight of a modular form by 2. More precisely, for a weight k modular

form f , we have Θ(f) = f̃+kfE2

12 where f̃ is modular of weight k + 2. (Recall that E2 is not a
modular form.)

(2) If f ∈Mα(Fp) then Θ(f) ∈Mα+2(Fp).

Note that (2) follows easily from (1): we have that Ep+1 = E2Ep−1 ≡ E2 (mod p) so that fE2 is
congruent to a modular form of weight k + p + 1. The theta operator will reappear in the theory
of Katz, defined in abstract Hodge-theoretic language.

As another consequence of Theorem 5, we can prove the Kummer congruences for a = 1.

Proof of Kummer congruences for a = 1. If k ≡ k′ 6≡ 0 (mod p − 1) then σk−1(n) ≡ σk′−1(n)
(mod p) for all n. Since p− 1 - k, k′, Clausen-von Staudt gives Gk, G

′
k ∈M(Z(p)). Hence

Mk(Fp) 3 Gk −Gk′ =
Bk
k
− Bk′

k′
∈M0(Fp).

As k 6≡ 0 (mod p− 1), Theorem 5 asserts that this quantity is 0, so that Bk
k −

Bk′
k′ ≡ 0 (mod p) as

desired.
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4 p-adic modular forms

We finally are ready to define p-adic modular forms.

Definition 9. A p-adic modular form is a power series f ∈ Qp[[q]] such that there is a sequence
of modular forms fi ∈ M(Q) with rational coefficients with f = lim fi. In other words, the space
M(Qp) of p-adic modular forms is the p-adic completion of M(Q).

Let f be a p-adic modular form, and let ki be the weights of the fi ∈Mki(Q) converging to f .
By Theorem 6, for all m ≥ 1, the ki eventually becomes stationary in Z/pm(p − 1)Z. It follows
that the weights have a limit k = lim ki in

X = lim←−Z/pm(p− 1)Z ∼= Zp × Z/(p− 1)Z

and this limit is independent of the sequence of fi chosen. We call k the weight of f , and denote
by Mk(Qp) the space of p-adic modular forms of weight k.

Remark 10. The significance of X ∼= Zp×Z/(p−1)Z is that X is the space of continuous characters
Z×p → C×p . Indeed, since Zp contains the (p− 1)st roots of unity, all of which are incongruent mod
p, the reduction map

0 −→ 1 + pZp −→ Z×p −→ F×p −→ 0

splits, giving
Z×p = µp−1 × (1 + pZp).

The characters of 1 +pZp are given by α 7→ αk for k ∈ Zp. Thus, the characters of µp−1× (1 +pZp)
are given by

(u, α) 7→ (uh, αk)

for some (h, k) ∈ Z/(p−1)Z×Zp. This makes conceptual sense: from the example of Eisenstein series
we see that weights are things used in exponents, and characters of Z×p all come from exponentiating.

For a (p-adic) modular form f =
∑
anq

n, let vp(f) = infn vp(an). Since any modular form can
be scaled to have integral Fourier coefficients, we have vp(f) > −∞. The following is a restatement
of Theorem 6.

Proposition 11.

(1) Let f, f ′ ∈M(Q) be nonzero with weights k, k′ satisfying

vp(f − f ′) ≥ vp(f) +m

for m ≥ 1. Then

k ≡ k′ (mod (p− 1)pm−1) if p ≥ 3

k ≡ k′ (mod 2m−2) if p = 2.

(2) The same is true for p-adic modular forms f, f ′ ∈M(Qp).

Proof. For part (1), we have
p−vp(f)f ≡ p−vp(f)f ′ (mod pm)

so that f, f ′ ∈M(Z(p)) and the result follows from Theorem 6. Part (2) follows immediately.
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The thrust of the following propositions is that p-adic properties of the nonconstant Fourier
coefficients give information about the constant coefficient.

Proposition 12.

(1) Let f =
∑
anq

n ∈Mk(Qp) for k ∈ X. If m ≥ 0 is such that k 6≡ 0 (mod pm(p− 1)) then

vp(a0) +m ≥ inf
n≥1

vp(an).

(2) Let f (i) =
∑
a

(i)
n be a sequence of p-adic modular forms of weight k(i) ∈ X. If

(a) the a
(i)
n

i→∞−→ an uniformly in n, and

(b) the k(i) i→∞−→ k 6= 0

then also a0
i→∞−→ a0, and f =

∑
n≥0 anq

n ∈Mk(Qp).

Proof. (1). If a0 = 0 we are done. Otherwise, since a0 ∈ M0(Qp), the contrapositive of proposi-
tion 11 gives

inf
n≥1

(an) = vp(f − a0) < vp(f) +m+ 1.

Thus vp(a0) +m ≥ vp(f) +m ≥ infn≥1 vp(an).
(2). Since k 6= 0, we can pick m large enough that k 6≡ 0 (mod pm(p− 1)). By the uniformity

assumption in (a), we can pick t ∈ Z so that vp(a
(i)
n ) ≥ t for all n ≥ 1 and i � 0. By part (1) we

have vp(a
(i)
0 ) > t−m for all i � 0. As pt−mZp is compact, we have that some subsequence of the

a
(i)
0 has a limit a0 and that f =

∑
n≥0 anq

n ∈ Mk(Qp). If a′0 is a limit of a different subsequence
then f ′ = a0 +

∑
n≥1 anq

n ∈Mk(Qp) as well so that

f − f ′ = a0 − a′0 ∈Mk(Qp) ∩M0(Qp) = 0.

Hence a
(i)
0 converges to a0.

Note that this is a rather mild example of the p-adic properties of nonconstant coefficients giving
information about the constant term. We will see more extreme examples later.

5 The p-adic zeta function

Let σ∗k denote the kth-power divisor sum with the p-part removed:

σ∗k(n) =
∑
d|n
p-d

dk.

Since all of the d appearing in the sum are units in Z/pmZ for any m ≥ 1 we see that

σ∗k(n) ≡ σ∗k′(n) (mod pm) when k ≡ k′ (mod pm−1(p− 1)).

Also note that if ki ∈ Z is a sequence of integers converging to k ∈ X with ki → ∞ in the
archemedian sense, then

σki(n)→ σ∗k(n) uniformly in n.

As the numbers on the left are Fourier coefficients of the Eisenstein series Gki proposition 12(2)
gives the following.
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Proposition 13. For 0 6= k ∈ X even, there is a p-adic modular form

G∗k = a0 +
∑
n≥1

σ∗k−1(n)

where

a0 = lim
i→∞

−Bki
2ki

=
1

2
lim
i→∞

ζ(1− ki).

We denote this constant term by ζ∗(1−k). Thus ζ∗(k) defines a function on the odd k ∈ X−{1};
we call this the p-adic zeta function. Since the nonzero Fourier coefficients of G∗k vary continuously
with k, proposition 12(2) shows that ζ∗ is continuous! Note that since ki →∞ in the archemedian
sense, if k ≥ 2 is an integer then

ζ∗(1− k) = lim
i→∞

ζ(1− ki) = lim
i→∞

∏
` prime

1

1− `ki−1
=
∏
`6=p

1

1− `ki−1
= (1− pk−1)ζ(1− k).

Remark 14. Since ζ∗ is continuous and interpolates the values of (1−pk−1)ζ(1−k) on a p-adically
dense set of integers, it must be none other than the Kubota-Leopoldt L-function! More precisely
for p 6= 2 and (s, u) ∈ Zp × Z/(p− 1)Z ∼= X we have

ζ∗(s, u) = Lp(s, ω
1−u)

where ω is the Teichmuller character. (There is a similar statement for p = 2.) So Serre not only
constructed Lp, he did it without using the Kummer congruences in a way that gives continuity
for free!

6 More congruences

Recall the operator Up defined by(∑
a(n)qn

)
|Up =

∑
a(pn)qn.

In this section we will summarize results about the action of Up on M(Fp). The takeaway is a
decomposition M(Fp) = S ⊕ N where Up is bijective on S and nilpotent on N . Moreover S is
finite-dimensional and easy to compute, making it easy to understand the eventual behavior of
f |Unp .

Recall that for primes `, Hecke operator T` acts on the Fourier expansion of a weight k modular
form via (∑

a(n)qn
)
|T` =

∑
a(`n)qn + `k−1

∑
a(n)q`n

which is another modular form of weight k. Hence for k ∈ N we have f |Tp ≡ f |Up (mod p), so that
Up gives a map Mk(Fp) → Mk(Fp). Also, if f ∈ Mk(Qp) with k ∈ X, then picking a sequence of
fi ∈Mki(Q) converging to f so that ki →∞ in the archemedian sense, we see

fi|Tp → f |Up

so that Up gives a map Mk(Qp)→Mk(Qp).
Recall the inclusions

Mk(Fp) ⊆Mk+p−1(Fp) ⊆Mk+2(p−1)(Fp) ⊆ · · · .

The key fact about Up is the following.
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Theorem 15 (Théorème 6 in [2]).

(1) If k > p+ 1 then Up sends Mk(Fp) to Mk′(Fp) for some k′ < k.

(2) Up is bijective on Mp−1(Fp).

Note that the k, k′ in part (1) must be congruent mod p− 1 by 5.

Proof. Part (1) follows from proposition 22(1) in the appendix. For part (2), it suffices to show
that Up is injective. Indeed, if f ∈ Mp−1(Fp) is nonzero, then either is is constant, in which case
f |Up = f 6= 0, or w(f |Up) = p− 1 so that f |Up 6= 0.

This theorem is truly remarkable. It says that if we take f ∈Mk(Fp) and apply Up repeatedly,
it will move down the filtration of Mk(Fp) until it cannot anymore. At this point, it will be in
Mk′(Fp) for some k′ ≤ p+ 1, which is finite dimensional. In particular, we have the following.

Proposition 16.

(1) For α ∈ Z/(p− 1)Z, there is a decomposition

Mα(Fp) = Sα ⊕Nα

so that Up is nilpotent on Nα and bijective on Sα. Moreover, Sα ⊂Mk(Fp) such that k ≤ p+ 1,
so that Sα is finite dimensional.

(2) For α = 0 we have S0 = Mp−1(Fp).

The space Sα of the proposition is called the ordinary space. The map e = limn→∞ U
n!
p projects

f ∈ Mα(Fp) onto Sα and is called the ordinary projector. Both of these objects will reappear
in Katz’s geometric formulation, where again the ordinary space will govern the limiting p-adic
behavior of a modular form.

The simplest applications of this proposition occur when Mk(Fp) is as small as possible for all
k ≤ p+ 1.

Proposition 17. Suppose p ≤ 7. Then for all p-adic cusp forms f ∈M(Qp), we have

lim
n→∞

f |Unp = 0.

(Recall that a modular form is a cusp form when its constant coefficient is 0.)

Proof. Scale f so that f ∈ M(Zp). For k < 12 we know that dimMk = 1 with basis {Ek}.
Therefore the only forms in Mk(Fp) with constant term 0 is 0 itself. Hence f |Unp = 0 for n large

enough. Dividing by pvp(f |Un
p ) and repeating, we obtain the result.

We can now demonstrate a strong sense in which the nonconstant terms of a p-adic modular
form determine the constant term.

Proposition 18. Suppose p ≤ 7. If f =
∑
anq

n is a p-adic modular form of weight k 6= 0 then

a0 =
1

2
ζ∗(1− k) lim

n→∞
apn .
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Proof. For these primes, we have ζ∗(1− k) 6= 0. Therefore we can write f = cG∗k + g where g is a
cusp form. Therefore it suffices to prove the proposition for f = G∗k and f a cusp form. For f = G∗k
we have

lim
n→∞

apn = lim
n→∞

σ∗k−1(pn) = lim
n→∞

1 = 1

and a0 = 1
2ζ
∗(1 − k). And for f a cusp form, we have limn→∞ f |Unp = 0 by the preceding

proposition.

Remark 19. Let j again be the modular j-function. Although j has a pole at the cusp∞, j|Up is a
perfectly good q-expansion, as well as a weight 0 modular function (on Γ0(p), however, not SL2(Z)).
Nevertheless, it ends up that j|Up does define a p-adic modular form of weight ≡ 0 (mod p − 1).
Then for p ≤ 11 we know that Mp−1(Fp) = Fp. Thus (j − 744)|Unp → 0, recovering the p-adic
properties of j. Note that we’ve gotten one more prime than Lehner did: p = 11. In fact, p = 11
is the largest prime for which such congruences hold.

Appendix: filtrations

In this section, we discuss only p ≥ 5.

Definition 20. For f ∈ M(Fp), we define the filtration w(f) to be the minimal k such that f is
the mod p reduction of a weight k modular form. That is,

w(f) = min{k : f ∈Mk(Fp)}.

If f ∈Mk, then w(f) denotes w(f).

Showing that two modular forms have different filtrations is a great way to show that they are
not equal. Proving theorems about filtrations crucially relies on the fact that Ep−1− 1 is “the only
relation” in M(Fp). We thus need the following structural facts about M(Fp).

Proposition 21.

(1) M(Fp) ∼= Fp[X,Y ]/(A− 1) where A ∈ Z[X,Y ] is such that Ep−1 = A(E4, E6).

(2) If B ∈ Z[X,Y ] is such that Ep+1 = B(E4, E6) then B and A are coprime.

(3) A has no multiple-factors (i.e. it is square-free).

In Katz’s theory, A will be replaced with the Hasse invariant.

Proposition 22. Let f be a modular form.

(1) w(Θ(f)) ≤ w(f) + p+ 1 with equality if and only if w(f) 6≡ 0 (mod p).

(2) w(f i) = iw(f).

(3) w(f |Up) ≤ p+ w(f)−1
p .

(4) If w(f) = p− 1 then w(f |Up) = p− 1.
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Proof. (1). Let the weight of f be k = w(f). Since

Θ(f) =
f̃ + kE2f

12
≡ f̃ + kEp+1f

12
(mod p)

for some modular form f̃ of weight k+ 2 we have w(f) ≤ max{k+ 2, k+ p+ 1} = k+ p+ 1. If p - k
then since A is coprime to B, we get the equality case.

(2). This follows from Ã having no multiple factors.
(3). Let the weight of f be k = w(f), and set k′ = w(f |Up). We have (f |Up)p ≡ f − Θp−1(f)

(mod p), as one can easily check. Since w(Θp−1(f)) ≤ k + p2 − 1 we have

pk′ ≤ k + p2 − 1

as desired.
(4). Let f have weight k = p − 1. Clearly w(Θ2(f)) = 4 or p + 3. It cannot be 4 since the

constant term of Θ2(f) is 0. Thus w(Θ2(f)) = p+3. Applying part (1) gives w(Θp−1(f)) = p(p−1).
From the formula (f |Up)p ≡ f − θp−1(f) (mod p) and part (2) we deduce w(f |Up) = p− 1.

We are now ready to prove Theorem 6. The only additional input is that M0(Fp) is integrally
closed (in its field of fractions). This is ultimately a geometric fact.

Proof of Theorem 6 for m ≥ 2. Replacing f ′ with f ′E(p−1)pn for n large enough, we may assume
h = k′ − k ≥ 4. Setting r = vp(h) + 1 we want to show that r ≥ m. So suppose towards a
contradiction that r < m. Then

fEh − f ′ = f − f ′ + f(Eh − 1) ≡ 0 (mod pr)

and
p−r(fEh − f ′) ≡ p−rf(Eh − 1) (mod p).

By Clausen-von Staudt, we have
p−r(Eh − 1) = λφ

where vp(λ) = 0 and φ =
∑

n≥1 σh−1q
n. Thus we have

φ =
fEh − f ′

λf

in the field of fractions of M0(Fp).
Note now that

φ− φp ≡ ψ (mod p)

where

ψ =
∑

(p,n)=1

σh−1(n)qn ≡ − 1

24
Θh−1(E2) ≡ − 1

24
Θp−2(Ep+1) (mod p).

Hence ψ ∈M0(Fp), so that φ is integral, and therefore in M0(Fp).
But φ cannot be a modular form, for if it were then by taking the filtration of both sides of the

equation above we would find
pw(φ) = p2 − 1

which is impossible as the RHS is not divisible by p. Contradiction.
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