Perfect oidization and perfect prismatic complex $\Delta_{X/A, \mathrm{perf}}$

Zhiyu Zhang

STAGE seminar

May 14th, 2021

What is perfection in char p..?

2 Construction via prismatic cohomology

S p-complete ring, X = Sp(S).

Choose a perfect prism (A, I), with $A/I \rightarrow S$

$$\rightsquigarrow \Delta_{X/A} \in D(A), \ \Delta_{X/A, \text{perf}} \coloneqq (\operatorname{colim}_{\phi} \Delta_{X/A})^{\wedge} \in D_{(p,I)-comp}(A).$$

The (derived) "**perfectoidization**" of S

$$S_{\text{perfd}} \coloneqq \Delta_{X/A, \text{perf}} \otimes_A^L A/I \in D_{p-\text{comp}}(S).$$

S p-complete ring, X = Sp(S).

Choose a perfect prism (A, I), with $A/I \rightarrow S$

$$\rightsquigarrow \Delta_{X/A} \in D(A), \ \Delta_{X/A, \text{perf}} \coloneqq (\operatorname{colim}_{\phi} \Delta_{X/A})^{\wedge} \in D_{(p,I)-comp}(A).$$

The (derived) "**perfectoidization**" of S

$$S_{\text{perfd}} \coloneqq \Delta_{X/A, \text{perf}} \otimes_A^L A/I \in D_{p-\text{comp}}(S).$$

Why the name? Is S_{perfd} (derived) perfectoid / independent of (A, I) / the classical perfection in char p case? Is S_{perfd} universal ?

How do we study S_{perfd} ?

- HT comparison + goodness of $L_{X/(A/I)}$ + derived Nakayama \sim control $\Delta_{X/A}$ hence S_{perfd} , get descent and base change.
- Study general S via reduction to nice $A/I \rightarrow S$. For nice S (e.g quasiregular semi-perfectoid, in particular perfectoid), show S_{perfd} is a classical universal perfectoid over S.

How do we study S_{perfd} ?

- HT comparison + goodness of $L_{X/(A/I)}$ + derived Nakayama \sim control $\Delta_{X/A}$ hence S_{perfd} , get descent and base change.
- Study general S via reduction to nice $A/I \rightarrow S$. For nice S (e.g quasiregular semi-perfectoid, in particular perfectoid), show S_{perfd} is a classical universal perfectoid over S.
- Universality of S_{perfd} comes from **derived "functorial" universality** of $\Delta_{X/A}$. $\Delta_{X/A}$ has a derived δ -ring (even derived prism) structure (to see this, we must use simplicial and derived tools, not just classical rings).

So $\Delta_{X/A,\text{perf}}$ is a derived perfect δ -ring $\sim \Delta_{X/A,\text{perf}} \mod I$ is derived perfectoid.

 $X \in \mathcal{C}$, weakly initial < "functorial" initial < initial (uniqueness). "Functorial": for any $Y \in \mathcal{C}$, There is a map $X \to Y$, functorial on Y. Initial object × something can be "functorial" initial.

- By design, RΓ(-, O) = R lim(*) of a site, hence Δ_{X/A}, is only good for "functorial" universality (provided RΓ(-, O) is still in the site).
- So the conjecture in [BS] Lemma 7.7 seems open in general.

 $X \in \mathcal{C}$, weakly initial < "functorial" initial < initial (uniqueness). "Functorial": for any $Y \in \mathcal{C}$, There is a map $X \to Y$, functorial on Y. Initial object × something can be "functorial" initial.

- By design, RΓ(-, O) = R lim(*) of a site, hence Δ_{X/A}, is only good for "functorial" universality (provided RΓ(-, O) is still in the site).
- So the conjecture in [BS] Lemma 7.7 seems open in general.
- Upshot: Via computations on simple examples, still get universality of $S \rightarrow S_{\text{perfd}}$, and prove things needed for comparisons. The proof is delicate.

Why is perfectoidization powerful? Many applications via descent:

- Zariski closed=Strongly Zariski closed: If S is semiperfectoid, then $S \rightarrow S_{\text{perfd}}$ is surjective and universal among $S \rightarrow \text{perfds}$.
- (Universal property of S_{perfd} for general S) $\Delta_{X/A, \text{perf}} \cong R\Gamma((X/A)^{\text{perf}}_{\Delta}, O_{\Delta}).$
- Arc descent for $S \rightarrow S_{\text{perfd}}$ (next time).
- étale comparison for perfect prisms $R\Gamma_{et}(X_{\eta}, \mathbb{Z}/p^n) \cong (\Delta_{X/A}[1/d]/p^n)^{\phi=1}$, can be proved via descent to the perfectoidization (next time).

References

- (Main, Lemma 2.34, 3.7 (2), 3.9, 3.13, 4.8, 4.14, 4.17-4.18, Section
 6, 7, 8 of) B. Bhatt, P. Scholze, Prisms and Prismatic Cohomology, arxiv:1905.08229v3 (version 3, April 2021).
- (Main, Lecture VI, VII, VIII, IX of) B. Bhatt, Lectures on Prismatic cohomology, Fall 2018.
- (Section 3 of) B. Bhatt, Cohen-Macaulayness of absolute integral closures, Arxiv:2008.08070v1.
- (Section 2 of) D. Kubrak, A. Prikhodko, p-adic Hodge theory for Artin stacks, Arxiv:2105.05319.

k perfect field of char p > 0. The forgetful functor {perfect ring over k} \rightarrow {rings over k} has a left adjoint:

The perfection of a k-algebra R

 $R_{\text{perf}} \coloneqq \operatorname{colim}(R \xrightarrow{\phi} R \xrightarrow{\phi} R \xrightarrow{\phi} ..), \text{ where } \phi \colon x \to x^p.$

Observations (to be generalized later):

- R_{perf} is a *R*-algebra via first term of colim, or by adjointness.
- As an algebra, R_{perf} is independent of k.
- $R \rightarrow R_{\text{perf}}$ is the universal map from R to a perfect k-algebra.
- Zariski closed=Strongly Zariski closed: $R_1 \twoheadrightarrow R$ surjective with R_1 perfect, then $R \rightarrow R_{perf}$ is surjective.
- perfect rings are reduced. Frobenius is zero on higher $\pi_i, i > 0$.

 $dR_{-/k} = left$ Kan extension of de Rham complex $\Omega_{-/k}^*$ on polynomial k-algebras. ϕ on $R \rightsquigarrow \phi_k$ -semilinear endomorphism $\phi_R : dR_{R/k} \rightarrow dR_{R/k}.$

The perfection of $dR_{R/k}$

$$\mathrm{dR}_{R/k,perf} \coloneqq \mathrm{colim}(\mathrm{dR}_{R/k} \xrightarrow{\phi_R} \mathrm{dR}_{R/k} \xrightarrow{\phi_R} \mathrm{dR}_{R/k} \xrightarrow{\phi_R} \ldots).$$

 $dR_{-/k} = left$ Kan extension of de Rham complex $\Omega^*_{-/k}$ on polynomial k-algebras. ϕ on $R \rightsquigarrow \phi_k$ -semilinear endomorphism $\phi_R : dR_{R/k} \rightarrow dR_{R/k}$.

The perfection of $dR_{R/k}$

$$\mathrm{dR}_{R/k,perf} \coloneqq \mathrm{colim}(\mathrm{dR}_{R/k} \xrightarrow{\phi_R} \mathrm{dR}_{R/k} \xrightarrow{\phi_R} \mathrm{dR}_{R/k} \xrightarrow{\phi_R} \ldots).$$

The projection $dR_{R/k} \to R$ gives $dR_{R/k,perf} \cong R_{perf}$: we reduce to the case R is a polynomial algebra, then $d(x^p) = px^{p-1}dx = 0$, so colimits of $\Omega^i_{R/k}$ (i > 0) under ϕ_R is zero.

Reconstruction via derived prismatic cohomology

(A, I) = (W(k), p) the perfect prism corresponding to k. R a A/I = kalgebra. $\Delta_{R/A} \in D(A)$, with $R \to \overline{\Delta}_{R/A}$. $I = (p), \phi(p) \subseteq (p), \phi$ still acts on $\overline{\Delta}_{R/A}$.

Proposition

The map
$$R \to \overline{\Delta}_{R/A}$$
 gives $\overline{\Delta}_{R/A, \text{perf}} \cong R_{\text{perf}}$.

(A, I) = (W(k), p) the perfect prism corresponding to k. R a A/I = kalgebra. $\Delta_{R/A} \in D(A)$, with $R \to \overline{\Delta}_{R/A}$. $I = (p), \phi(p) \subseteq (p), \phi$ still acts on $\overline{\Delta}_{R/A}$.

Proposition

The map
$$R \to \overline{\Delta}_{R/A}$$
 gives $\overline{\Delta}_{R/A, \text{perf}} \cong R_{\text{perf}}$.

WLOG R is a polynomial algebra. By Hodge-Tate comparison $gr_i^{HT}(\overline{\Delta}_{R/A}) = \Omega_{R/k}^i$, only need to check $gr_i^{HT}(\phi) = 0, i > 0$, $gr_0^{HT}(\phi) = \phi_R, i > 0$. WLOG R = k[x]. By crystalline comparison, reduce to de Rham cohomology of \mathbb{A}_W^1 over W, mod p Hodge-Tate filtraion=canonical filtration. Then it's standard. **Conceptual leap**: this doesn't use the Frobenius on R, only Frobenius on the test objects.

S p-complete ring, X = Sp(S). Choose a perfect prism (A, I), with $A/I \to S$.

The prismatic site

 $(X/A)_{\Delta}$ is the opposite of the category of prisms (B, J) with a map $(A, I) \rightarrow (B, J)$ and a map $\operatorname{Sp}(B/J) \rightarrow X$ over $\operatorname{Sp}(A/I)$.

$$\mathcal{O}_{\Delta}: (B, J) \to B. \ \overline{\mathcal{O}_{\Delta}}: (B, J) \to B/J = B/IB.$$

 $\rightsquigarrow \Delta_{X/A} = R\Gamma((X/A)_{\Delta}, \mathcal{O}_{\Delta}) \in D(A), \text{ with } S \to \overline{\Delta}_{X/A}.$

Proposition

 $\overline{\Delta}_{X/A} \coloneqq \Delta_{X/A} \otimes_A^L A/I \text{ admits an increasing } \mathbb{N}\text{-indexed filtration with}$ $gr^i \text{ given by sending } R \text{to the derived } p\text{-completion of } \wedge^i L_{R/(A/I)} - i[-i].$

Idea: Universal property of the de Rham complex \sim the map from de Rham to Hodge-Tate in Hodge-Tate comparison.

k perfect field char p > 0. X over k smooth, relative Frobenius $F: X \to X^{(p)}$. Two filtration on de Rham complex $\Omega^*_{X/k}$:

- Hodge filtration=stupid filtration \rightsquigarrow Hodge spectral seq $E_1^{pq} = H^q(X, \Omega^p_{X/k}).$
- Conjugate filtraion=canonical filtration \rightsquigarrow Hodge-Tate spectral seq $E_2^{pq} = H^p(X, H^q(\Omega^*_{X/k})).$

Hodge-Tate filtration is a generalization of conjugate filtration, via Cartier isomorphism.

$$\Delta_{X/A, \text{perf}} \coloneqq (\operatorname{colim}_{\phi} \Delta_{X/A})^{\wedge} \in D_{(p,I)-comp}(A).$$

The (derived) "**perfectoidization**" of S

 $S_{\text{perfd}} \coloneqq \Delta_{X/A, \text{perf}} \otimes_A^L A/I \in D_{p-\text{comp}}(S)$ a commutative algebra object.

It can be non-discrete: $S = A/I[x^{\pm 1}]^{\wedge}$ for the perfection (A, I) of the q-prism.

The universal classical perfectoid of S

 $S_{\text{perfd}'} \coloneqq$ the universal classical perfectoid over S (**if it exists**), i.e $S_{\text{perfd}'}$ is perfectoid, and for any $S \rightarrow R$ with R perfectoid, there is a **unique** map $S_{\text{perfd}'} \rightarrow R$ extending it.

Proposition

Let $(A, I) \rightarrow (B, J)$ be a map of perfect prisms, and let S be a p-complete B/J-algebra. Then the natural map gives an isomorphism $\Delta_{S/A} \cong \Delta_{S/B}$. In particular, $\Delta_{S/A, perf} \cong \Delta_{S/B, perf}$, S_{perfd} is independent of (A, I).

Proof.

Use HT comparison. $L^{\wedge}_{(B/J)/(A/I)} = 0$ vanishes as A/I and B/J are both perfectoid.

The formation of $\Delta_{X/A}$ commutes with base change in the sense that for any map of bounded prisms $(A, I) \rightarrow (B, J)$, $\Delta_{X_B/B} = B \otimes_A^L \Delta_{X/A}$. We can check directly, $S \rightarrow S_{\text{perfd}'}$ also commutes with base change of the perfect prism.

$\overline{S_{\text{perfd}}} = S = S_{\text{perfd'}}$ if S is perfected

So if S perfectoid, $(S/A)_{\Delta}$ has an object $(A_{inf}(S), \operatorname{Ker}\theta_S)$, hence a map $\Delta_{S/A} \to A_{inf}(S)$, it's an isomorphism: apply derived Nakayama and HT, done by $L^{\wedge}_{S/(A/I)} = 0$. We see $S_{perfd} = S$, in particular discrete. Note $(A_{inf}(S), \operatorname{Ker}\theta_S)$ is also the initial object in $(S/A)_{\Delta}$:

Proposition

Let (A, I) be a perfect prism corresponding to a perfectoid ring R = A/I. Then for any prism (B, J), any map $A/I \rightarrow B/J$ of commutative rings lifts uniquely to a map $(A, I) \rightarrow (B, J)$ of prisms.

Proof: the relation between deformation theory and cotangent complex, done by $L^{\wedge}_{A/\mathbb{Z}_p} = 0.$

Proposition

If S is semiperfectoid i.e there is a surjection $R \rightarrow S$ with R perfectoid,

then $S_{\text{perfd}'}$ exists.

Proof.

Cut out the perfect prism for $S_{\text{perfd}'}$ using the perfect prism $(A_{inf}(R), d)$ for R $(R_{\text{perfd}'} = R = R_{\text{perfd}})$, and the kernel of $A_{inf}(R) \rightarrow S$. We need to do transfinite induction, to make it *d*-torsion free and derived complete.

Derived "functorial" universality of $\Delta_{X/A}$

Proposition

Assume $\overline{\Delta}_{X/A}$ is concentrated in degree zero. Then the pair $(\Delta_{X/A}, I\Delta_{X/A})$ gives a prism over (A, I), with a map $R \to \overline{\Delta}_{X/A}$. For any prism (B, J) over (A, I) equipped with a map $R \to B/J$, there is a map $\Delta_{X/A}, I\Delta_{X/A} \to (B, J)$, functorial on (B, J).

Derived "functorial" universality of $\Delta_{X/A}$

Proposition

Assume $\overline{\Delta}_{X/A}$ is concentrated in degree zero. Then the pair $(\Delta_{X/A}, I\Delta_{X/A})$ gives a prism over (A, I), with a map $R \to \overline{\Delta}_{X/A}$. For any prism (B, J) over (A, I) equipped with a map $R \to B/J$, there is a map $\Delta_{X/A}, I\Delta_{X/A} \to (B, J)$, functorial on (B, J).

Proof.

 $\Delta_{X/A} = R\Gamma((X/A)_{\Delta}, \mathcal{O}_{\Delta}) = R \lim_{(B,J)} (B, J).$ Use Cech-Alexander complexes. and the canonical simplicial resolution of X, one gets the derived δ structure i.e a section of $W_2(-) \rightarrow (-)$ on $\Delta_{X/A}$. Here by assumption $\Delta_{X/A}$ is discrete, so $(\Delta_{X/A}, I\Delta_{X/A})$ gives a prism over (A, I). The universality is clear by definition of $R\Gamma$. For any X, $\Delta_{X/A,perf}$ always lies in $D^{\geq 0}$, i.e. we have $H^i = 0, i < 0$. Frobenius is zero on higher $\pi_i, i > 0$.

If S is semiperfectoid, then $\Omega^1_{S/(A/I)} = 0$ hence $L_{X/A}[-1], \Delta_{X/A, \text{perf}} \in D^{\leq 0}$ by HT comparison. So $\Delta_{X/A, \text{perf}}$ is discrete, and a classical perfect δ -ring by previous proposition. It's *d*-torsion free, where *d* is the distinguished element. Hence S_{perfd} is discrete and perfectoid. By equivalence of perfectoid rings and perfect prisms, we see

Proposition

If S is semiperfectoid, then $S \to S_{\text{perfd}}$ satisfies "functorial" universality among $S \to perfds$, in particular a natural map $S_{\text{perfd}} \to S_{\text{perfd}'}$.

Proposition

Let R be a perfectoid ring. For any set $\{f_s \in R\}_{s \in I}$ of elements of \mathbb{R} , there exists a p-completely faithfully flat map $R \to R_{\infty}$ of perfectoid rings such that each f_s admits a compatible system of p-power roots in R_{∞} . In other words, the map $\# : \mathbb{R}^{\flat} \to \mathbb{R}$ is surjective locally for the p-completely flat topology. WLOG #I = 1. Let S be the p-adic completion of $R[x^{1/p^{\infty}}]/(x-f)$, so $R \to S$ is p-completely faithfully flat. We reduce the problem to S, but S is not perfected in general, just semiperfected. Let (A, I) be the perfect prism corresponding to R. We shall show that S_{perfd} solves the problem. We know discreteness and perfectedness, now only need to check S_{perfd} is p-completely faithfully flat over R.

Only need to check $A \to \Delta_{S/A, \text{perf}}$ is (p, I)-completely faithfully flat. Only need to check $A \to \Delta_{S/A}$ is (p, I)-completely faithfully flat. Only need to check $\overline{\Delta}_{S/A}$ is *p*-completely faithfully flat over *R*. Use HT filtration, only need to check $L_{S/R}[-1]$ (noting $\wedge^{i} L_{S/R}[-i] = \wedge^{i} (L_{S/R}[-1])).$ $R \to R[x^{1/p^{\infty}}] = R' \twoheadrightarrow S.$ $L^{\wedge}_{R'/R} = 0$ by perfectoidness. We only need to show $\wedge^i L_{S/R'}[-i]$ is p-completely faithfully flat over R. But S is the quotient of R' by non-zero divisor x - f, so $L_{S/R'}[-1]$ is simply isomorphic to S, hence p-completely flat over R. We're done.

Proposition

Let R be a perfectoid ring, and let S = R/J be a p-complete quotient (so S is semiperfectoid). Then there is a universal map $S \to S'$ with S'

being a perfectoid ring. Moreover, this map is surjective.

We just check $S \rightarrow S_{\text{perfd}}$ is surjective.

Assume first that the kernel $J \subseteq R$ of $R \to S$ is the *p*-completion of an ideal generated by a set $\{x_i\}$ of elements that lie in the image of the map $\# : R^{\flat} \to R$.

In this case, if J_{∞} denotes the *p*-completion of the ideal generated by $x^{1/p^{n\#}}$, then check directly that the R/J_{∞} is perfected, and $S \cong R/J \to R/J_{\infty}$ is the universal map from S to a perfected ring.

This proves the assertion in this case. In general, as the surjectivity of a map of *p*-complete *R*-modules can be detected after *p*-completely faithfully flat base change (and S_{perfd} commutes with base change), we reduce to previous case by Andre's flatness lemma. A complex M of A-modules is I-completely flat if for any I-torsion A-module N, the derived tensor product $M \otimes^L AN$ is concentrated in degree 0. This implies in particular that $M \otimes^L_A A/I$ is concentrated in degree 0, and is a flat A/I-module.

Proposition

Let (A, I) be a bounded prism. For any (p, I)-completely flat A-complex $M \in D(A)$. Then M is discrete and classically (p, I)-complete.

True universality of $S \to S_{\text{perfd}}$

Thank you!