The Riemann Hypothesis for Hypersurfaces

Ziquan Yang

Harvard University

October 26, 2020

RH for Hypersurfaces

- Let \mathbb{F}_{q} be our base field. Let X_{0} be a smooth projective variety over \mathbb{F}_{q} and set $X:=X_{0} \otimes \overline{\mathbb{F}}_{q}$.

RH for Hypersurfaces

- Let \mathbb{F}_{q} be our base field. Let X_{0} be a smooth projective variety over \mathbb{F}_{q} and set $X:=X_{0} \otimes \overline{\mathbb{F}}_{q}$.
- Recall that the RH for X_{0} states that every eigenvalue α_{i} of the Frobenius action on $H_{e ̂ t}^{i}\left(X, \mathbb{Q}_{\ell}\right)$ has $\left|\iota\left(\alpha_{i}\right)\right|=q^{i / 2}$ for every embedding $\iota: \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$.

RH for Hypersurfaces

- Let \mathbb{F}_{q} be our base field. Let X_{0} be a smooth projective variety over \mathbb{F}_{q} and set $X:=X_{0} \otimes \overline{\mathbb{F}}_{q}$.
- Recall that the RH for X_{0} states that every eigenvalue α_{i} of the Frobenius action on $H_{e ̂ t}^{i}\left(X, \mathbb{Q}_{\ell}\right)$ has $\left|\iota\left(\alpha_{i}\right)\right|=q^{i / 2}$ for every embedding $\iota: \overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}$.
- Today we prove the RH for $X_{0} \subset \mathbb{P}^{n+1}$ a smooth hypersurface of degree d. As usual we start with understanding the cohomology.

RH for Hypersurfaces

- Let \mathbb{F}_{q} be our base field. Let X_{0} be a smooth projective variety over \mathbb{F}_{q} and set $X:=X_{0} \otimes \overline{\mathbb{F}}_{q}$.
- Recall that the RH for X_{0} states that every eigenvalue α_{i} of the Frobenius action on $H_{e ̂ t}^{i}\left(X, \mathbb{Q}_{\ell}\right)$ has $\left|\iota\left(\alpha_{i}\right)\right|=q^{i / 2}$ for every embedding $\iota: \overline{\mathbb{Q}} \hookrightarrow \hookrightarrow \mathbb{C}$.
- Today we prove the RH for $X_{0} \subset \mathbb{P}^{n+1}$ a smooth hypersurface of degree d. As usual we start with understanding the cohomology.
- First of all, we recall the cohomology of $\mathbb{P}^{n}: \mathrm{H}^{*}\left(\mathbb{P}^{n}\right) \cong \mathbb{Z}[h] / h^{n+1}$ where H is the class of a hyperplane H.

Lefschetz Hyperplane Theorem

Theorem (Lefschetz Hyperplane Theorem)
Let X be a smooth ample divisor of a smooth projective variety Y with $\operatorname{dim} Y=n+1$. Suppose the base field k is algebraically closed. Write $H^{j}(-)$ for $H_{e ́ t}^{j}\left((-), \mathbb{Q}_{\ell}\right), \ell \neq$ char k.
(1) $\mathrm{H}^{j}(Y) \rightarrow \mathrm{H}^{j}(X)$ is bijective for $j<n$ and injective for $j=n$.
(2) $H_{j}(X) \rightarrow H_{j}(Y)$ is bijective for $j<n$ and surjective for $j=n$.

Lefschetz Hyperplane Theorem

Theorem (Lefschetz Hyperplane Theorem)
Let X be a smooth ample divisor of a smooth projective variety Y with $\operatorname{dim} Y=n+1$. Suppose the base field k is algebraically closed. Write $H^{j}(-)$ for $H_{e ́ t}^{j}\left((-), \mathbb{Q}_{\ell}\right), \ell \neq$ char k.
(1) $\mathrm{H}^{j}(Y) \rightarrow \mathrm{H}^{j}(X)$ is bijective for $j<n$ and injective for $j=n$.
(2) $H_{j}(X) \rightarrow H_{j}(Y)$ is bijective for $j<n$ and surjective for $j=n$.

- Let's view $H_{j}(X)$ simply as $H^{j}(X)^{\vee}$.

Lefschetz Hyperplane Theorem

Theorem (Lefschetz Hyperplane Theorem)

Let X be a smooth ample divisor of a smooth projective variety Y with $\operatorname{dim} Y=n+1$. Suppose the base field k is algebraically closed. Write $H^{j}(-)$ for $H_{e t}^{j}\left((-), \mathbb{Q}_{\ell}\right), \ell \neq$ char k.
(1) $\mathrm{H}^{j}(Y) \rightarrow \mathrm{H}^{j}(X)$ is bijective for $j<n$ and injective for $j=n$.
(2) $H_{j}(X) \rightarrow H_{j}(Y)$ is bijective for $j<n$ and surjective for $j=n$.

- Let's view $H_{j}(X)$ simply as $H^{j}(X)^{\vee}$.
- Apply the above to $Y:=\mathbb{P}^{n+1}$. Again let h denote the class of a hyperplane. For all $j \neq n$, we have $H^{j}(X) \cong \mathbb{Q}_{\ell}\left(h^{j}\right) \cong \mathbb{Q}_{\ell}(j)$.

Lefschetz Hyperplane Theorem

Theorem (Lefschetz Hyperplane Theorem)

Let X be a smooth ample divisor of a smooth projective variety Y with $\operatorname{dim} Y=n+1$. Suppose the base field k is algebraically closed. Write $H^{j}(-)$ for $H_{e t}^{j}\left((-), \mathbb{Q}_{\ell}\right), \ell \neq$ char k.
(1) $\mathrm{H}^{j}(Y) \rightarrow \mathrm{H}^{j}(X)$ is bijective for $j<n$ and injective for $j=n$.
(2) $H_{j}(X) \rightarrow H_{j}(Y)$ is bijective for $j<n$ and surjective for $j=n$.

- Let's view $H_{j}(X)$ simply as $H^{j}(X)^{\vee}$.
- Apply the above to $Y:=\mathbb{P}^{n+1}$. Again let h denote the class of a hyperplane. For all $j \neq n$, we have $H^{j}(X) \cong \mathbb{Q}_{\ell}\left(h^{j}\right) \cong \mathbb{Q}_{\ell}(j)$.
- The only interesting part of the cohomology of X is $H^{n}(X)$.

Zeta Function of Hypersurfaces

- Back to our situation when $X_{0} \subset \mathbb{P}^{n+1}$ is a hypersurface of degree d, and $X:=X_{0} \otimes \overline{\mathbb{F}}_{q}$.

Zeta Function of Hypersurfaces

- Back to our situation when $X_{0} \subset \mathbb{P}^{n+1}$ is a hypersurface of degree d, and $X:=X_{0} \otimes \overline{\mathbb{F}}_{q}$.
- Let $h \in \mathrm{H}^{2}(X)$ be the hyperplane section. Consider the primitive cohomology

$$
\mathrm{P}^{n}(X)=\mathrm{H}^{n}(X) \text { if } n \text { is odd, and } \mathrm{P}^{n}(X)=\mathrm{H}^{n}(X) /\left\langle h^{n / 2}\right\rangle \text { if } n \text { is even. }
$$

Then we have $H^{*}(X) \cong H^{*}\left(\mathbb{P}^{n}\right) \oplus \mathrm{P}^{n}(X)$.

Zeta Function of Hypersurfaces

- Back to our situation when $X_{0} \subset \mathbb{P}^{n+1}$ is a hypersurface of degree d, and $X:=X_{0} \otimes \overline{\mathbb{F}}_{q}$.
- Let $h \in \mathrm{H}^{2}(X)$ be the hyperplane section. Consider the primitive cohomology

$$
\mathrm{P}^{n}(X)=\mathrm{H}^{n}(X) \text { if } n \text { is odd, and } \mathrm{P}^{n}(X)=\mathrm{H}^{n}(X) /\left\langle h^{n / 2}\right\rangle \text { if } n \text { is even. }
$$

Then we have $H^{*}(X) \cong H^{*}\left(\mathbb{P}^{n}\right) \oplus \mathrm{P}^{n}(X)$.

- The Zeta function $Z\left(X_{0}, T\right)$ is given by

$$
\frac{P(T)}{\prod_{i=0}^{n}\left(1-q^{i} T\right)}(n \text { odd }), \text { or } \frac{1}{P(T) \prod_{i=0}^{n}\left(1-q^{i} T\right)}(n \text { even })
$$

with $P(T):=\operatorname{det}\left(1-\left.T \operatorname{Frob}_{q}\right|_{\mathrm{P}^{n}\left(X_{0}\right)}\right)$.

Zeta Function of Hypersurfaces

- Back to our situation when $X_{0} \subset \mathbb{P}^{n+1}$ is a hypersurface of degree d, and $X:=X_{0} \otimes \overline{\mathbb{F}}_{q}$.
- Let $h \in \mathrm{H}^{2}(X)$ be the hyperplane section. Consider the primitive cohomology

$$
\mathrm{P}^{n}(X)=\mathrm{H}^{n}(X) \text { if } n \text { is odd, and } \mathrm{P}^{n}(X)=\mathrm{H}^{n}(X) /\left\langle h^{n / 2}\right\rangle \text { if } n \text { is even. }
$$

Then we have $H^{*}(X) \cong H^{*}\left(\mathbb{P}^{n}\right) \oplus \mathrm{P}^{n}(X)$.

- The Zeta function $Z\left(X_{0}, T\right)$ is given by

$$
\frac{P(T)}{\prod_{i=0}^{n}\left(1-q^{i} T\right)}(n \text { odd }), \text { or } \frac{1}{P(T) \prod_{i=0}^{n}\left(1-q^{i} T\right)}(n \text { even })
$$

with $P(T):=\operatorname{det}\left(1-\left.T \operatorname{Frob}_{q}\right|_{P^{n}\left(X_{0}\right)}\right)$.

- In either case, we see that $P(T)$ has integer coefficients. In particular, the coefficients are totally real.

Reduction to Point Counting

- Since $\alpha \mapsto q^{n} / \alpha$ defines an involution on the eigenvalues of Frob_{q}, it suffices to show that every eigenvalue of Frob_{q} on $\mathrm{P}^{n}(X)$ has t-norm $\leq q^{n / 2}$, for any $\left\llcorner: \overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}\right.$.

Reduction to Point Counting

- Since $\alpha \mapsto q^{n} / \alpha$ defines an involution on the eigenvalues of Frob_{q}, it suffices to show that every eigenvalue of Frob_{q} on $\mathrm{P}^{n}(X)$ has t-norm $\leq q^{n / 2}$, for any $\left\llcorner: \overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}\right.$.
- Recall that $H^{*}(X) \cong H^{*}\left(\mathbb{P}^{n}\right) \oplus \mathrm{P}^{n}(X)$, so that

$$
\# X_{0}\left(\mathbb{F}_{q^{r}}\right)=\# \mathbb{P}^{n}\left(\mathbb{F}_{q^{r}}\right)+(-1)^{r} \operatorname{tr}\left(\left.\left(\operatorname{Frob}_{q}\right)^{r}\right|_{\mathrm{P}^{n}(X)}\right)
$$

by the point counting formula.

Reduction to Point Counting

- Since $\alpha \mapsto q^{n} / \alpha$ defines an involution on the eigenvalues of Frob_{q}, it suffices to show that every eigenvalue of Frob_{q} on $\mathrm{P}^{n}(X)$ has t-norm $\leq q^{n / 2}$, for any $\left\llcorner: \overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}\right.$.
- Recall that $H^{*}(X) \cong H^{*}\left(\mathbb{P}^{n}\right) \oplus \mathrm{P}^{n}(X)$, so that

$$
\# X_{0}\left(\mathbb{F}_{q^{r}}\right)=\# \mathbb{P}^{n}\left(\mathbb{F}_{q^{r}}\right)+(-1)^{r} \operatorname{tr}\left(\left.\left(\operatorname{Frob}_{q}\right)^{r}\right|_{P^{n}(X)}\right)
$$

by the point counting formula.

- It suffices to show that

$$
\# X_{0}\left(\mathbb{F}_{q^{r}}\right)=\# \mathbb{P}^{n}\left(\mathbb{F}_{q^{r}}\right)+O\left(q^{r n / 2}\right)
$$

as $r \geq 1$ varies.

Reduction to a Single Hypersurface

- Just as what we did last time, we first reduce to treating one hypersurface via deformation.

Reduction to a Single Hypersurface

- Just as what we did last time, we first reduce to treating one hypersurface via deformation.
- Let U_{0} be an affine, smooth, and geometrically connected curve over \mathbb{F}_{q} and \mathcal{F} be an ℓ-adic local system (lisse $\overline{\mathbb{Q}}_{\ell}$-sheaf) on U_{0}.

Reduction to a Single Hypersurface

- Just as what we did last time, we first reduce to treating one hypersurface via deformation.
- Let U_{0} be an affine, smooth, and geometrically connected curve over \mathbb{F}_{q} and \mathcal{F} be an ℓ-adic local system (lisse $\overline{\mathbb{Q}}_{\ell}$-sheaf) on U_{0}.
- For each closed point $u \in U_{0}$, we have a pullback $\left.\mathcal{F}\right|_{u}$, which is an ℓ-adic local system on $\operatorname{Spec} k(u)$.

Reduction to a Single Hypersurface

- Just as what we did last time, we first reduce to treating one hypersurface via deformation.
- Let U_{0} be an affine, smooth, and geometrically connected curve over \mathbb{F}_{q} and \mathcal{F} be an ℓ-adic local system (lisse $\overline{\mathbb{Q}}_{\ell}$-sheaf) on U_{0}.
- For each closed point $u \in U_{0}$, we have a pullback $\left.\mathcal{F}\right|_{u}$, which is an ℓ-adic local system on $\operatorname{Spec} k(u)$.
- Recall that to giving such a local system amounts to giving a represention $\operatorname{Gal}_{\mathrm{k}(u)} \rightarrow \mathrm{GL}\left(\mathcal{F}_{\bar{u}}\right)$ for the geometric point \bar{u} over u.

Reduction to a Single Hypersurface

- Just as what we did last time, we first reduce to treating one hypersurface via deformation.
- Let U_{0} be an affine, smooth, and geometrically connected curve over \mathbb{F}_{q} and \mathcal{F} be an ℓ-adic local system (lisse $\overline{\mathbb{Q}}_{\ell}$-sheaf) on U_{0}.
- For each closed point $u \in U_{0}$, we have a pullback $\left.\mathcal{F}\right|_{u}$, which is an ℓ-adic local system on $\operatorname{Spec} k(u)$.
- Recall that to giving such a local system amounts to giving a represention $\operatorname{Gal}_{\mathrm{k}(u)} \rightarrow \mathrm{GL}\left(\mathcal{F}_{\bar{u}}\right)$ for the geometric point \bar{u} over u.
- Let Frob_{u} be the generator of $\operatorname{Gal}_{\mathbf{k}(u)}$ given by $\lambda \mapsto \lambda^{\# \mathrm{k}(u)}$. Set

$$
P_{\mathcal{F}, u}(T):=\operatorname{det}\left(1-T^{[k(u): k]} \operatorname{Frob}_{u} \mid \mathcal{F}_{\bar{u}}\right)
$$

and

$$
L_{\mathcal{F}}(T):=\prod_{u \in U} P_{\mathcal{F}, u}(T)^{-1}
$$

Reduction to a Single Hypersurface

- Recall that last time we proved

Abstract

Theorem Let \mathcal{F} be an ℓ-adic local system on U_{0} which is \imath-real. Suppose that for some closed point $u \in U_{0}$, every eigenvalue $\alpha_{i, u}$ of $\left.\operatorname{Frob}_{u}\right|_{\mathcal{F}_{\bar{u}}}$ satisfies $\left|\iota\left(\alpha_{i, u}\right)\right| \leq 1$. Then the same is true for any other closed point $u^{\prime} \in U_{0}$.

Reduction to a Single Hypersurface

- Recall that last time we proved

Abstract

Theorem Let \mathcal{F} be an ℓ-adic local system on U_{0} which is l -real. Suppose that for some closed point $u \in U_{0}$, every eigenvalue $\alpha_{i, u}$ of $\left.\operatorname{Frob}_{u}\right|_{\mathcal{F}_{\bar{u}}}$ satisfies $\left|\iota\left(\alpha_{i, u}\right)\right| \leq 1$. Then the same is true for any other closed point $u^{\prime} \in U_{0}$.

- We also showed that the above theorem holds with $\left|\iota\left(\alpha_{i, u}\right)\right| \leq 1$ replaced by $\left|\iota\left(\alpha_{i, u}\right)\right|=1$ (persistence of purity).

Reduction to a Single Hypersurface

- Recall that last time we proved

Abstract

Theorem Let \mathcal{F} be an ℓ-adic local system on U_{0} which is l -real. Suppose that for some closed point $u \in U_{0}$, every eigenvalue $\alpha_{i, u}$ of $\left.\operatorname{Frob}_{u}\right|_{\mathcal{F}_{\bar{u}}}$ satisfies $\left|\iota\left(\alpha_{i, u}\right)\right| \leq 1$. Then the same is true for any other closed point $u^{\prime} \in U_{0}$.

- We also showed that the above theorem holds with $\left|\iota\left(\alpha_{i, u}\right)\right| \leq 1$ replaced by $\left|\iota\left(\alpha_{i, u}\right)\right|=1$ (persistence of purity).
- We first argue that given this, we can complete the reduction step.

Reduction to a Single Hypersurface

- Recall that last time we proved

Theorem

Let \mathcal{F} be an ℓ-adic local system on U_{0} which is 1 -real. Suppose that for some closed point $u \in U_{0}$, every eigenvalue $\alpha_{i, u}$ of $\left.\operatorname{Frob}_{u}\right|_{\mathcal{F}_{\bar{u}}}$ satisfies $\left|\iota\left(\alpha_{i, u}\right)\right| \leq 1$. Then the same is true for any other closed point $u^{\prime} \in U_{0}$.

- We also showed that the above theorem holds with $\left|\iota\left(\alpha_{i, u}\right)\right| \leq 1$ replaced by $\left|\iota\left(\alpha_{i, u}\right)\right|=1$ (persistence of purity).
- We first argue that given this, we can complete the reduction step.
- Given two homogenous polynomials F_{0}, F_{1}, we can consider the pencil $t F_{0}+(1-t) F_{1}$, thereby obtaining a family over \mathbb{A}^{1}. If F_{0}, F_{1} are smooth, by removing singular fibers, we obtain a family $f: X \rightarrow U$ containing F_{0}, F_{1}.

Reduction to a Single Hypersurface

- Recall that last time we proved

Theorem

Let \mathcal{F} be an ℓ-adic local system on U_{0} which is 1 -real. Suppose that for some closed point $u \in U_{0}$, every eigenvalue $\alpha_{i, u}$ of $\left.\operatorname{Frob}_{u}\right|_{\mathcal{F}_{\bar{u}}}$ satisfies $\left|\iota\left(\alpha_{i, u}\right)\right| \leq 1$. Then the same is true for any other closed point $u^{\prime} \in U_{0}$.

- We also showed that the above theorem holds with $\left|\iota\left(\alpha_{i, u}\right)\right| \leq 1$ replaced by $\left|\iota\left(\alpha_{i, u}\right)\right|=1$ (persistence of purity).
- We first argue that given this, we can complete the reduction step.
- Given two homogenous polynomials F_{0}, F_{1}, we can consider the pencil $t F_{0}+(1-t) F_{1}$, thereby obtaining a family over \mathbb{A}^{1}. If F_{0}, F_{1} are smooth, by removing singular fibers, we obtain a family $f: X \rightarrow U$ containing F_{0}, F_{1}.
- Apply the proposition to $\mathcal{F}:=\mathbb{R}^{n} f_{*} \overline{\mathbb{Q}}_{\ell}(n / 2)$. (Recall that the Zeta function ensures that our \mathcal{F} is in fact integral.)

Interlude : Algebraic Groups

- Let k be a field and G be a k-variety. Let $m: G \times G \rightarrow G$ be a morphism and $e: \operatorname{Spec} k \rightarrow G$ be a k-point.

Interlude : Algebraic Groups

- Let k be a field and G be a k-variety. Let $m: G \times G \rightarrow G$ be a morphism and $e: \operatorname{Spec} k \rightarrow G$ be a k-point.
- We say that (G, m, e) gives an algebraic group if m satisfies the group axioms with e being the identity.

Interlude : Algebraic Groups

- Let k be a field and G be a k-variety. Let $m: G \times G \rightarrow G$ be a morphism and $e: \operatorname{Spec} k \rightarrow G$ be a k-point.
- We say that (G, m, e) gives an algebraic group if m satisfies the group axioms with e being the identity.
- We say that G is a linear algebraic group it is isomorphic to a subgroup of GL_{n} for some n. An algebraic group is linear if and only if it is affine.

Interlude : Algebraic Groups

- Let k be a field and G be a k-variety. Let $m: G \times G \rightarrow G$ be a morphism and $e: \operatorname{Spec} k \rightarrow G$ be a k-point.
- We say that (G, m, e) gives an algebraic group if m satisfies the group axioms with e being the identity.
- We say that G is a linear algebraic group it is isomorphic to a subgroup of GL_{n} for some n. An algebraic group is linear if and only if it is affine.
- If $\operatorname{Spec} \mathcal{O}_{G}$ is equipped with the structure of an algebraic group, then \mathcal{O}_{G} is equipped with a distinguished $\mathcal{O}_{G} \rightarrow k$ and a co-multiplication structure $\Delta: \mathcal{O}_{G} \rightarrow \mathcal{O}_{G} \otimes \mathcal{O}_{G}$.

Interlude : Algebraic Groups

- Let k be a field and G be a k-variety. Let $m: G \times G \rightarrow G$ be a morphism and $e: \operatorname{Spec} k \rightarrow G$ be a k-point.
- We say that (G, m, e) gives an algebraic group if m satisfies the group axioms with e being the identity.
- We say that G is a linear algebraic group it is isomorphic to a subgroup of GL_{n} for some n. An algebraic group is linear if and only if it is affine.
- If $\operatorname{Spec} \mathcal{O}_{G}$ is equipped with the structure of an algebraic group, then \mathcal{O}_{G} is equipped with a distinguished $\mathcal{O}_{G} \rightarrow k$ and a co-multiplication structure $\Delta: \mathcal{O}_{G} \rightarrow \mathcal{O}_{G} \otimes \mathcal{O}_{G}$.
- For example, \mathbb{G}_{m} is given by $\mathcal{O}_{G}:=k\left[T^{ \pm}\right]$and $\Delta(T)=T \otimes T$.

Interlude : Algebraic Groups

- Let k be a field and G be a k-variety. Let $m: G \times G \rightarrow G$ be a morphism and $e: \operatorname{Spec} k \rightarrow G$ be a k-point.
- We say that (G, m, e) gives an algebraic group if m satisfies the group axioms with e being the identity.
- We say that G is a linear algebraic group it is isomorphic to a subgroup of GL_{n} for some n. An algebraic group is linear if and only if it is affine.
- If $\operatorname{Spec} \mathcal{O}_{G}$ is equipped with the structure of an algebraic group, then \mathcal{O}_{G} is equipped with a distinguished $\mathcal{O}_{G} \rightarrow k$ and a co-multiplication structure $\Delta: \mathcal{O}_{G} \rightarrow \mathcal{O}_{G} \otimes \mathcal{O}_{G}$.
- For example, \mathbb{G}_{m} is given by $\mathcal{O}_{G}:=k\left[T^{ \pm}\right]$and $\Delta(T)=T \otimes T$.
- A character of a group G is a morphism $G \rightarrow \mathbb{G}_{m}$. The group of characters is denoted by $X^{*}(G)$.

Interlude: Groups of Multiplicative Type

- Given a finitely generated abelian group M. Consider the functor $\operatorname{Hom}\left(M, \mathbb{G}_{m}\right): \operatorname{Alg} / k \rightarrow \operatorname{Grp}$ defined by $R \mapsto \operatorname{Hom}\left(M, R^{\times}\right)$.

Interlude: Groups of Multiplicative Type

- Given a finitely generated abelian group M. Consider the functor $\operatorname{Hom}\left(M, \mathbb{G}_{m}\right): \operatorname{Alg} / k \rightarrow \operatorname{Grp}$ defined by $R \mapsto \operatorname{Hom}\left(M, R^{\times}\right)$.
- This functor is represented by a commutative algebraic group. When $M=\mathbb{Z}, \operatorname{Hom}\left(M, \mathbb{G}_{m}\right)=\mathbb{G}_{m}$.

Interlude: Groups of Multiplicative Type

- Given a finitely generated abelian group M. Consider the functor $\operatorname{Hom}\left(M, \mathbb{G}_{m}\right): \operatorname{Alg} / k \rightarrow \operatorname{Grp}$ defined by $R \mapsto \operatorname{Hom}\left(M, R^{\times}\right)$.
- This functor is represented by a commutative algebraic group. When $M=\mathbb{Z}, \operatorname{Hom}\left(M, \mathbb{G}_{m}\right)=\mathbb{G}_{m}$.
- Groups obtained this way are said to be of multiplicative type.

Interlude: Groups of Multiplicative Type

- Given a finitely generated abelian group M. Consider the functor $\operatorname{Hom}\left(M, \mathbb{G}_{m}\right): \operatorname{Alg} / k \rightarrow \operatorname{Grp}$ defined by $R \mapsto \operatorname{Hom}\left(M, R^{\times}\right)$.
- This functor is represented by a commutative algebraic group. When $M=\mathbb{Z}, \operatorname{Hom}\left(M, \mathbb{G}_{m}\right)=\mathbb{G}_{m}$.
- Groups obtained this way are said to be of multiplicative type.
- $\operatorname{Hom}\left(-, \mathbb{G}_{m}\right)$ and $X^{*}(-)$ are quasi-inverses to each other and defines an equivalence between the category groups of multiplicative type and the category of finitely generated abelian groups.

Interlude: Groups of Multiplicative Type

- Given a finitely generated abelian group M. Consider the functor $\operatorname{Hom}\left(M, \mathbb{G}_{m}\right): \operatorname{Alg} / k \rightarrow \operatorname{Grp}$ defined by $R \mapsto \operatorname{Hom}\left(M, R^{\times}\right)$.
- This functor is represented by a commutative algebraic group. When $M=\mathbb{Z}, \operatorname{Hom}\left(M, \mathbb{G}_{m}\right)=\mathbb{G}_{m}$.
- Groups obtained this way are said to be of multiplicative type.
- $\operatorname{Hom}\left(-, \mathbb{G}_{m}\right)$ and $X^{*}(-)$ are quasi-inverses to each other and defines an equivalence between the category groups of multiplicative type and the category of finitely generated abelian groups.
- A morphism $G \rightarrow Q$ of algebraic groups is called a quotient map if it is faithfully flat.

Interlude: Groups of Multiplicative Type

- Given a finitely generated abelian group M. Consider the functor $\operatorname{Hom}\left(M, \mathbb{G}_{m}\right): \operatorname{Alg} / k \rightarrow \operatorname{Grp}$ defined by $R \mapsto \operatorname{Hom}\left(M, R^{\times}\right)$.
- This functor is represented by a commutative algebraic group. When $M=\mathbb{Z}, \operatorname{Hom}\left(M, \mathbb{G}_{m}\right)=\mathbb{G}_{m}$.
- Groups obtained this way are said to be of multiplicative type.
- $\operatorname{Hom}\left(-, \mathbb{G}_{m}\right)$ and $X^{*}(-)$ are quasi-inverses to each other and defines an equivalence between the category groups of multiplicative type and the category of finitely generated abelian groups.
- A morphism $G \rightarrow Q$ of algebraic groups is called a quotient map if it is faithfully flat.
- Fact: Every normal algebraic group N of G arises the kernel of a quotient map $G \rightarrow Q$.

Interlude: Galois cohomology

- If $0 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 0$ is an exact sequence, then the induced sequence $0 \rightarrow N(\bar{k}) \rightarrow G(\bar{k}) \rightarrow Q(\bar{k}) \rightarrow 0$ is exact.

Interlude: Galois cohomology

- If $0 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 0$ is an exact sequence, then the induced sequence $0 \rightarrow N(\bar{k}) \rightarrow G(\bar{k}) \rightarrow Q(\bar{k}) \rightarrow 0$ is exact.
- To obtain information on k-points, we need to apply Galois cohomology $H^{i}\left(\mathrm{Gal}_{k},-\right), i=0,1$,

$$
0 \rightarrow N(k) \rightarrow G(k) \rightarrow Q(k) \rightarrow \mathrm{H}^{1}(k, N(\bar{k})) \rightarrow \cdots
$$

Interlude: Galois cohomology

- If $0 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 0$ is an exact sequence, then the induced sequence $0 \rightarrow N(\bar{k}) \rightarrow G(\bar{k}) \rightarrow Q(\bar{k}) \rightarrow 0$ is exact.
- To obtain information on k-points, we need to apply Galois cohomology $H^{i}\left(\mathrm{Gal}_{k},-\right), i=0,1$,

$$
0 \rightarrow N(k) \rightarrow G(k) \rightarrow Q(k) \rightarrow \mathrm{H}^{1}(k, N(\bar{k})) \rightarrow \cdots
$$

- Hilbert theorem 90: $\mathrm{H}^{1}\left(k, \mathbb{G}_{m}(\bar{k})\right)=0$ for any field k.

Interlude: Galois cohomology

- If $0 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 0$ is an exact sequence, then the induced sequence $0 \rightarrow N(\bar{k}) \rightarrow G(\bar{k}) \rightarrow Q(\bar{k}) \rightarrow 0$ is exact.
- To obtain information on k-points, we need to apply Galois cohomology $H^{i}\left(\mathrm{Gal}_{k},-\right), i=0,1$,

$$
0 \rightarrow N(k) \rightarrow G(k) \rightarrow Q(k) \rightarrow \mathrm{H}^{1}(k, N(\bar{k})) \rightarrow \cdots
$$

- Hilbert theorem 90: $\mathrm{H}^{1}\left(k, \mathbb{G}_{m}(\bar{k})\right)=0$ for any field k.
- Example: $\mathrm{H}^{1}\left(k, \mu_{n}(\bar{k})\right)=k^{\times} /\left(k^{\times}\right)^{n}$, for $\mu_{n}:=\operatorname{Hom}\left(\mathbb{Z} / n \mathbb{Z}, \mathbb{G}_{m}\right)$.

Interlude : Gauss Sums

- Let \mathbb{F}_{q} be a finite field. $\chi: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$be a mutliplicative character and $\psi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$be an additive character.

Interlude: Gauss Sums

- Let \mathbb{F}_{q} be a finite field. $\chi: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$be a mutliplicative character and $\psi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$be an additive character.
- Set $\mu(\chi, \psi):=\sum_{x \in \mathbb{F}_{q}^{\times}} \chi(x) \psi(x)$.

Interlude: Gauss Sums

- Let \mathbb{F}_{q} be a finite field. $\chi: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$be a mutliplicative character and $\psi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$be an additive character.
- Set $\mu(\chi, \psi):=\sum_{x \in \mathbb{F}_{q}^{\times}} \chi(x) \psi(x)$.
- It is hard to compute $\mu(\chi, \psi)$ in general, but we know its norm:

Theorem

If χ and ψ are both nontrivial, then $|\mu(\chi, \psi)|=\sqrt{q}$.

Interlude : Gauss Sums

- Let \mathbb{F}_{q} be a finite field. $\chi: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$be a mutliplicative character and $\psi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$be an additive character.
- Set $\mu(\chi, \psi):=\sum_{x \in \mathbb{F}_{q}^{\times}} \chi(x) \psi(x)$.
- It is hard to compute $\mu(\chi, \psi)$ in general, but we know its norm:

Theorem
 If χ and ψ are both nontrivial, then $|\mu(\chi, \psi)|=\sqrt{q}$.

- The proof uses orthogonality relaitions in the character theory of finite groups, as well as some elementary tricks of rearranging the order of summations.

Interlude: Gauss Sums

- Let \mathbb{F}_{q} be a finite field. $\chi: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$be a mutliplicative character and $\psi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$be an additive character.
- Set $\mu(\chi, \psi):=\sum_{x \in \mathbb{F}_{q}^{\times}} \chi(x) \psi(x)$.
- It is hard to compute $\mu(\chi, \psi)$ in general, but we know its norm:

Theorem

If χ and ψ are both nontrivial, then $|\mu(\chi, \psi)|=\sqrt{q}$.

- The proof uses orthogonality relaitions in the character theory of finite groups, as well as some elementary tricks of rearranging the order of summations.
- Reference: Kowalski's notes https://people.math.ethz.ch/~kowalski/exp-sums.pdf.

Point Counting

- Recall that it suffices to show that for some smooth hypersurface X_{0} of degree d in \mathbb{P}^{n+1}, we have the point-count estimate:

$$
\# X_{0}\left(\mathbb{F}_{q^{r}}\right)=\# \mathbb{P}^{n}\left(\mathbb{F}_{q^{r}}\right)+O\left(q^{r n / 2}\right)
$$

as $r \rightarrow \infty$.

Point Counting

- Recall that it suffices to show that for some smooth hypersurface X_{0} of degree d in \mathbb{P}^{n+1}, we have the point-count estimate:

$$
\# X_{0}\left(\mathbb{F}_{q^{r}}\right)=\# \mathbb{P}^{n}\left(\mathbb{F}_{q^{r}}\right)+O\left(q^{r n / 2}\right)
$$

as $r \rightarrow \infty$.

- If $p \nmid d$, we can just use the Fermat hypersurface $x_{0}^{d}+\cdots+x_{n+1}^{d}=0$. Weil provided a formula for the number of solutions $\sum_{i=0}^{r} a_{i} x_{i}^{n_{i}}=b$ in \mathbb{A}^{r+1}, so the bound can be checked by hand.

Point Counting

- Recall that it suffices to show that for some smooth hypersurface X_{0} of degree d in \mathbb{P}^{n+1}, we have the point-count estimate:

$$
\# X_{0}\left(\mathbb{F}_{q^{r}}\right)=\# \mathbb{P}^{n}\left(\mathbb{F}_{q^{r}}\right)+O\left(q^{r n / 2}\right)
$$

as $r \rightarrow \infty$.

- If $p \nmid d$, we can just use the Fermat hypersurface $x_{0}^{d}+\cdots+x_{n+1}^{d}=0$. Weil provided a formula for the number of solutions $\sum_{i=0}^{r} a_{i} x_{i}^{n_{i}}=b$ in \mathbb{A}^{r+1}, so the bound can be checked by hand.
- We treat the case $d=2$ separately (this only matters when $p=2$).

$$
\mathrm{H}^{n}(X)= \begin{cases}\mathbb{Q}_{\ell} \oplus \mathbb{Q}_{\ell}, & \text { if } n \text { is even } \\ 0, & \text { if } n \text { is odd }\end{cases}
$$

Point Counting

- Recall that it suffices to show that for some smooth hypersurface X_{0} of degree d in \mathbb{P}^{n+1}, we have the point-count estimate:

$$
\# X_{0}\left(\mathbb{F}_{q^{r}}\right)=\# \mathbb{P}^{n}\left(\mathbb{F}_{q^{r}}\right)+O\left(q^{r n / 2}\right)
$$

as $r \rightarrow \infty$.

- If $p \nmid d$, we can just use the Fermat hypersurface $x_{0}^{d}+\cdots+x_{n+1}^{d}=0$. Weil provided a formula for the number of solutions $\sum_{i=0}^{r} a_{i} x_{i}^{n_{i}}=b$ in \mathbb{A}^{r+1}, so the bound can be checked by hand.
- We treat the case $d=2$ separately (this only matters when $p=2$).

$$
\mathrm{H}^{n}(X)= \begin{cases}\mathbb{Q}_{\ell} \oplus \mathbb{Q}_{\ell}, & \text { if } n \text { is even } \\ 0, & \text { if } n \text { is odd. }\end{cases}
$$

- To compute $\operatorname{dim} \mathrm{H}^{n}(X)$, it suffices to compute the Euler characteristic. Moreover, when n is even, $\mathrm{H}^{n}(X)$ is spanned by algebraic classes. (e.g., $X \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ when $n=2$.)

Gabber's Hypersurface

- If $d \geq 3$ and $p \mid d$, use Gabber's hypersurface

$$
X_{0}^{d}+\sum_{i=0}^{n} X_{i} X_{i+1}^{d-1}=0
$$

Gabber's Hypersurface

- If $d \geq 3$ and $p \mid d$, use Gabber's hypersurface

$$
X_{0}^{d}+\sum_{i=0}^{n} X_{i} X_{i+1}^{d-1}=0
$$

- We consider the affine cone $H_{0}^{\text {aff }} \subset \mathbb{A}^{n+2}$ defined by the same equation. It suffices to show that

$$
\# H_{0}^{\text {aff }}\left(\mathbb{F}_{q^{r}}\right)=q^{r(n+1)}+O\left(q^{r(n+2) / 2}\right)
$$

Gabber's Hypersurface

- If $d \geq 3$ and $p \mid d$, use Gabber's hypersurface

$$
X_{0}^{d}+\sum_{i=0}^{n} X_{i} X_{i+1}^{d-1}=0
$$

- We consider the affine cone $H_{0}^{\text {aff }} \subset \mathbb{A}^{n+2}$ defined by the same equation. It suffices to show that

$$
\# H_{0}^{\mathrm{aff}}\left(\mathbb{F}_{q^{r}}\right)=q^{r(n+1)}+O\left(q^{r(n+2) / 2}\right)
$$

- For an N-tuple $W=\left(w_{1}, \cdots, w_{N}\right)$ of nonnegative integers, we write X^{W} for the monomial $X_{1}^{w_{1}} \cdots X_{N}^{W_{N}}$.

Theorem

Let $N \geq 1$, and $X^{W_{1}}, \cdots, X^{W_{N}}$ be N monomials in N variables with W_{i} 's linearly independent over \mathbb{Q}. Suppose that each variable X_{i} occurs in at most two of these monomials. Then for $V:=\sum_{i} X^{W_{i}}=0$ in \mathbb{A}^{N}, we have $\# V\left(\mathbb{F}_{q}\right)=q^{N-1}+O\left(q^{N / 2}\right)$.

Delsarte's Theorem

Theorem (Delsarte)
Let $N>k \geq 0$ and suppose given $N-k$ linearly independent monomials $X^{W_{1}}, \cdots, X_{N}^{W_{N}}$ in N variables. Let $V:=\left\{\sum_{i} X_{i}^{W_{i}}=0\right\}$ and $V^{*}:=V \cap\left(\mathbb{G}_{m}^{N} \cap \mathbb{A}_{m}^{N}\right)$. Then $\# V^{*}\left(\mathbb{F}_{q}\right)=q^{-1}(q-1)^{N}+O\left(q^{(N+k) / 2}\right)$.

Delsarte's Theorem

Theorem (Delsarte)

Let $N>k \geq 0$ and suppose given $N-k$ linearly independent monomials $X^{W_{1}}, \cdots, X_{N}^{W_{N}}$ in N variables. Let $V:=\left\{\sum_{i} X_{i}^{W_{i}}=0\right\}$ and $V^{*}:=V \cap\left(\mathbb{G}_{m}^{N} \cap \mathbb{A}_{m}^{N}\right)$. Then $\# V^{*}\left(\mathbb{F}_{q}\right)=q^{-1}(q-1)^{N}+O\left(q^{(N+k) / 2}\right)$.

- We omit the reduction step to Delsarte's theorem (This step uses that each variable X_{i} occurs in at most two of the variables.)

Delsarte's Theorem

Theorem (Delsarte)

Let $N>k \geq 0$ and suppose given $N-k$ linearly independent monomials $X^{W_{1}}, \cdots, X_{N}^{W_{N}}$ in N variables. Let $V:=\left\{\Sigma_{i} X_{i}^{W_{i}}=0\right\}$ and $V^{*}:=V \cap\left(\mathbb{G}_{m}^{N} \cap \mathbb{A}_{m}^{N}\right)$. Then $\# V^{*}\left(\mathbb{F}_{q}\right)=q^{-1}(q-1)^{N}+O\left(q^{(N+k) / 2}\right)$.

- We omit the reduction step to Delsarte's theorem (This step uses that each variable X_{i} occurs in at most two of the variables.)
- We view the $N-k$ linearly independent vectors W_{i} as giving rise to an surjection $\phi: \mathbb{G}_{m}^{N} \rightarrow \mathbb{G}_{m}^{N-k}$ of split tori over \mathbb{F}_{q} : $\left(X_{1}, \cdots, X_{N}\right) \mapsto\left(X^{W_{1}}, \cdots, X^{W_{N-k}}\right)$. Then we only need to show:

Delsarte's Theorem

Theorem (Delsarte)

Let $N>k \geq 0$ and suppose given $N-k$ linearly independent monomials $X^{W_{1}}, \cdots, X_{N}^{W_{N}}$ in N variables. Let $V:=\left\{\Sigma_{i} X_{i}^{W_{i}}=0\right\}$ and $V^{*}:=V \cap\left(\mathbb{G}_{m}^{N} \cap \mathbb{A}_{m}^{N}\right)$. Then $\# V^{*}\left(\mathbb{F}_{q}\right)=q^{-1}(q-1)^{N}+O\left(q^{(N+k) / 2}\right)$.

- We omit the reduction step to Delsarte's theorem (This step uses that each variable X_{i} occurs in at most two of the variables.)
- We view the $N-k$ linearly independent vectors W_{i} as giving rise to an surjection $\phi: \mathbb{G}_{m}^{N} \rightarrow \mathbb{G}_{m}^{N-k}$ of split tori over \mathbb{F}_{q} : $\left(X_{1}, \cdots, X_{N}\right) \mapsto\left(X^{W_{1}}, \cdots, X^{W_{N-k}}\right)$. Then we only need to show:

Theorem

Let $N>k \geq 0$, and suppose given a surjection $\phi: \mathbb{G}_{m}^{N} \rightarrow \mathbb{G}_{m}^{N-k}$ of split tori over \mathbb{F}_{q}. Denote by $\Sigma: \mathbb{G}_{m}^{N-k} \rightarrow \mathbb{A}^{1}$ the sum of coordinates. Then

$$
\#\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right): \Sigma(\phi(x))=0\right\}=\frac{(q-1)^{N}}{q}+O\left(q^{(N+k) / 2}\right)
$$

Count Points on Tori

Theorem

Let $N>k \geq 0$, and suppose given a surjection $\phi: \mathbb{G}_{m}^{N} \rightarrow \mathbb{G}_{m}^{N-k}$ of split tori over \mathbb{Z}. Denote by $\Sigma: \mathbb{G}_{m}^{N-k} \rightarrow \mathbb{A}^{1}$ the sum of coordinates. Then

$$
\#\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right): \Sigma(\phi(x))=0\right\}=\frac{(q-1)^{N}}{q}+O\left(q^{(N+k) / 2}\right)
$$

Count Points on Tori

Theorem

Let $N>k \geq 0$, and suppose given a surjection $\phi: \mathbb{G}_{m}^{N} \rightarrow \mathbb{G}_{m}^{N-k}$ of split tori over \mathbb{Z}. Denote by $\Sigma: \mathbb{G}_{m}^{N-k} \rightarrow \mathbb{A}^{1}$ the sum of coordinates. Then

$$
\#\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right): \Sigma(\phi(x))=0\right\}=\frac{(q-1)^{N}}{q}+O\left(q^{(N+k) / 2}\right)
$$

- By taking characters, ϕ is given by an injective group homomorphism $\phi^{\vee}: \mathbb{Z}^{N-k} \hookrightarrow \mathbb{Z}^{N}$ which sends e_{i} to W_{i}.

Count Points on Tori

Theorem

Let $N>k \geq 0$, and suppose given a surjection $\phi: \mathbb{G}_{m}^{N} \rightarrow \mathbb{G}_{m}^{N-k}$ of split tori over \mathbb{Z}. Denote by $\Sigma: \mathbb{G}_{m}^{N-k} \rightarrow \mathbb{A}^{1}$ the sum of coordinates. Then

$$
\#\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right): \Sigma(\phi(x))=0\right\}=\frac{(q-1)^{N}}{q}+O\left(q^{(N+k) / 2}\right)
$$

- By taking characters, ϕ is given by an injective group homomorphism $\phi^{\vee}: \mathbb{Z}^{N-k} \hookrightarrow \mathbb{Z}^{N}$ which sends e_{i} to W_{i}.
- We have that $T^{*}(\operatorname{ker}(\phi))=\operatorname{coker}\left(\phi^{\vee}\right)$. Denote it by M.

Count Points on Tori

Theorem

Let $N>k \geq 0$, and suppose given a surjection $\phi: \mathbb{G}_{m}^{N} \rightarrow \mathbb{G}_{m}^{N-k}$ of split tori over \mathbb{Z}. Denote by $\Sigma: \mathbb{G}_{m}^{N-k} \rightarrow \mathbb{A}^{1}$ the sum of coordinates. Then

$$
\#\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right): \Sigma(\phi(x))=0\right\}=\frac{(q-1)^{N}}{q}+O\left(q^{(N+k) / 2}\right)
$$

- By taking characters, ϕ is given by an injective group homomorphism $\phi^{\vee}: \mathbb{Z}^{N-k} \hookrightarrow \mathbb{Z}^{N}$ which sends e_{i} to W_{i}.
- We have that $T^{*}(\operatorname{ker}(\phi))=\operatorname{coker}\left(\phi^{\vee}\right)$. Denote it by M.
- $\operatorname{dim} M \otimes \mathbb{Q}=k$ and consider $0 \rightarrow M_{\text {tor }} \rightarrow M \rightarrow M / M_{\text {tor }} \cong \mathbb{Z}^{k} \rightarrow 0$.

Count Points on Tori

Theorem

Let $N>k \geq 0$, and suppose given a surjection $\phi: \mathbb{G}_{m}^{N} \rightarrow \mathbb{G}_{m}^{N-k}$ of split tori over \mathbb{Z}. Denote by $\Sigma: \mathbb{G}_{m}^{N-k} \rightarrow \mathbb{A}^{1}$ the sum of coordinates. Then

$$
\#\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right): \Sigma(\phi(x))=0\right\}=\frac{(q-1)^{N}}{q}+O\left(q^{(N+k) / 2}\right)
$$

- By taking characters, ϕ is given by an injective group homomorphism $\phi^{\vee}: \mathbb{Z}^{N-k} \hookrightarrow \mathbb{Z}^{N}$ which sends e_{i} to W_{i}.
- We have that $T^{*}(\operatorname{ker}(\phi))=\operatorname{coker}\left(\phi^{\vee}\right)$. Denote it by M.
- $\operatorname{dim} M \otimes \mathbb{Q}=k$ and consider $0 \rightarrow M_{\text {tor }} \rightarrow M \rightarrow M / M_{\text {tor }} \cong \mathbb{Z}^{k} \rightarrow 0$.
- Taking $\operatorname{Hom}\left(-, \mathbb{G}_{m}\right)$, we obtain $0 \rightarrow \mathbb{G}_{m}^{k} \rightarrow \operatorname{ker}(\phi) \rightarrow \mu_{M_{\text {tor }}} \rightarrow 0$.

Count Points on Tori

Theorem

Let $N>k \geq 0$, and suppose given a surjection $\phi: \mathbb{G}_{m}^{N} \rightarrow \mathbb{G}_{m}^{N-k}$ of split tori over \mathbb{Z}. Denote by $\Sigma: \mathbb{G}_{m}^{N-k} \rightarrow \mathbb{A}^{1}$ the sum of coordinates. Then

$$
\#\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right): \Sigma(\phi(x))=0\right\}=\frac{(q-1)^{N}}{q}+O\left(q^{(N+k) / 2}\right)
$$

- By taking characters, ϕ is given by an injective group homomorphism $\phi^{\vee}: \mathbb{Z}^{N-k} \hookrightarrow \mathbb{Z}^{N}$ which sends e_{i} to W_{i}.
- We have that $T^{*}(\operatorname{ker}(\phi))=\operatorname{coker}\left(\phi^{\vee}\right)$. Denote it by M.
- $\operatorname{dim} M \otimes \mathbb{Q}=k$ and consider $0 \rightarrow M_{\text {tor }} \rightarrow M \rightarrow M / M_{\text {tor }} \cong \mathbb{Z}^{k} \rightarrow 0$.
- Taking $\operatorname{Hom}\left(-, \mathbb{G}_{m}\right)$, we obtain $0 \rightarrow \mathbb{G}_{m}^{k} \rightarrow \operatorname{ker}(\phi) \rightarrow \mu_{M_{\text {tor }}} \rightarrow 0$.
- We first treat the free part.

Counting Points on Tori

Recall the sequence $0 \rightarrow \mathbb{G}_{m}^{k} \rightarrow \operatorname{ker}(\phi) \rightarrow \mu_{M_{\text {tor }}} \rightarrow 0$

Counting Points on Tori

Recall the sequence $0 \rightarrow \mathbb{G}_{m}^{k} \rightarrow \operatorname{ker}(\phi) \rightarrow \mu_{M_{\text {tor }}} \rightarrow 0$

- The composite inclusion $\mathbb{G}_{m}^{k} \rightarrow \operatorname{ker}(\phi) \subset \mathbb{G}^{N}$ sits inside an exact sequence

$$
0 \rightarrow \mathbb{G}_{m}^{k} \rightarrow \mathbb{G}_{m}^{N} \xrightarrow{\pi} \mathbb{G}_{m}^{N-k} \rightarrow 0
$$

Counting Points on Tori

Recall the sequence $0 \rightarrow \mathbb{G}_{m}^{k} \rightarrow \operatorname{ker}(\phi) \rightarrow \mu_{M_{\text {tor }}} \rightarrow 0$

- The composite inclusion $\mathbb{G}_{m}^{k} \rightarrow \operatorname{ker}(\phi) \subset \mathbb{G}^{N}$ sits inside an exact sequence

$$
0 \rightarrow \mathbb{G}_{m}^{k} \rightarrow \mathbb{G}_{m}^{N} \xrightarrow{\pi} \mathbb{G}_{m}^{N-k} \rightarrow 0
$$

- By Hilbert theorem $90\left(\mathrm{H}^{1}\left(\mathrm{k}, \mathbb{G}_{m}\right)=0\right.$ for any field k$)$,

$$
0 \rightarrow \mathbb{G}_{m}^{k}\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \xrightarrow{\pi} \mathbb{G}_{m}^{N-k}\left(\mathbb{F}_{q}\right) \rightarrow 0
$$

Counting Points on Tori

Recall the sequence $0 \rightarrow \mathbb{G}_{m}^{k} \rightarrow \operatorname{ker}(\phi) \rightarrow \mu_{M_{\text {tor }}} \rightarrow 0$

- The composite inclusion $\mathbb{G}_{m}^{k} \rightarrow \operatorname{ker}(\phi) \subset \mathbb{G}^{N}$ sits inside an exact sequence

$$
0 \rightarrow \mathbb{G}_{m}^{k} \rightarrow \mathbb{G}_{m}^{N} \xrightarrow{\pi} \mathbb{G}_{m}^{N-k} \rightarrow 0 .
$$

- By Hilbert theorem $90\left(\mathrm{H}^{1}\left(\mathrm{k}, \mathbb{G}_{m}\right)=0\right.$ for any field k$)$,

$$
0 \rightarrow \mathbb{G}_{m}^{k}\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \xrightarrow{\pi} \mathbb{G}_{m}^{N-k}\left(\mathbb{F}_{q}\right) \rightarrow 0
$$

- By construction, ϕ factors as $\mathbb{G}_{m}^{N} \xrightarrow{\pi} \mathbb{G}_{m}^{N-k} \xrightarrow{\bar{\phi}} \mathbb{G}_{m}^{N-k}$. Hence

$$
\left|\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right): \Sigma(\phi(x))=0\right\}\right|=(q-1)^{k}\left|\left\{x \in \mathbb{G}_{m}^{N-k}\left(\mathbb{F}_{q}\right): \Sigma(\bar{\phi}(x))=0\right\}\right| .
$$

Counting Points on Tori

Recall the sequence $0 \rightarrow \mathbb{G}_{m}^{k} \rightarrow \operatorname{ker}(\phi) \rightarrow \mu_{M_{\text {tor }}} \rightarrow 0$

- The composite inclusion $\mathbb{G}_{m}^{k} \rightarrow \operatorname{ker}(\phi) \subset \mathbb{G}^{N}$ sits inside an exact sequence

$$
0 \rightarrow \mathbb{G}_{m}^{k} \rightarrow \mathbb{G}_{m}^{N} \xrightarrow{\pi} \mathbb{G}_{m}^{N-k} \rightarrow 0 .
$$

- By Hilbert theorem $90\left(\mathrm{H}^{1}\left(\mathrm{k}, \mathbb{G}_{m}\right)=0\right.$ for any field k$)$,

$$
0 \rightarrow \mathbb{G}_{m}^{k}\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \xrightarrow{\pi} \mathbb{G}_{m}^{N-k}\left(\mathbb{F}_{q}\right) \rightarrow 0
$$

- By construction, ϕ factors as $\mathbb{G}_{m}^{N} \xrightarrow{\pi} \mathbb{G}_{m}^{N-k} \xrightarrow{\bar{\phi}} \mathbb{G}_{m}^{N-k}$. Hence $\left|\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right): \Sigma(\phi(x))=0\right\}\right|=(q-1)^{k}\left|\left\{x \in \mathbb{G}_{m}^{N-k}\left(\mathbb{F}_{q}\right): \Sigma(\bar{\phi}(x))=0\right\}\right|$.
- Recall that we want a big O estimate of the LHS, now we reduce to considering the RHS. Hence we reduce to the case $k=0$.

Counting Points on Tori

- Our new goal: Given $0 \rightarrow \mu_{M_{\text {tor }}} \rightarrow \mathbb{G}_{m}^{N} \xrightarrow{\phi} \mathbb{G}_{m}^{N} \rightarrow 0$, estimate $T:=\#\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)\left(\mathbb{F}_{q}\right): \Sigma(\phi(x))=0\right\}$. Let's write $\mu_{M_{\text {tor }}}$ simply as μ.

Counting Points on Tori

- Our new goal: Given $0 \rightarrow \mu_{M_{\text {tor }}} \rightarrow \mathbb{G}_{m}^{N} \xrightarrow{\phi} \mathbb{G}_{m}^{N} \rightarrow 0$, estimate $T:=\#\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)\left(\mathbb{F}_{q}\right): \Sigma(\phi(x))=0\right\}$. Let's write $\mu_{M_{\text {tor }}}$ simply as μ.
- Hilbert theorem 90 gives a four term SES

$$
0 \rightarrow \mu\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \xrightarrow{\phi} \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \rightarrow \mathrm{H}^{1}\left(\mathbb{F}_{q}, \mu\left(\overline{\mathbb{F}}_{q}\right)\right) \rightarrow 0
$$

Note that $\# \mu\left(\mathbb{F}_{q}\right)=\# H^{1}\left(\mathbb{F}_{q}, \mu\left(\bar{F}_{q}\right)\right)$

Counting Points on Tori

- Our new goal: Given $0 \rightarrow \mu_{M_{\text {tor }}} \rightarrow \mathbb{G}_{m}^{N} \xrightarrow{\phi} \mathbb{G}_{m}^{N} \rightarrow 0$, estimate $T:=\#\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)\left(\mathbb{F}_{q}\right): \Sigma(\phi(x))=0\right\}$. Let's write $\mu_{M_{\text {tor }}}$ simply as μ.
- Hilbert theorem 90 gives a four term SES

$$
0 \rightarrow \mu\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \xrightarrow{\phi} \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \rightarrow \mathrm{H}^{1}\left(\mathbb{F}_{q}, \mu\left(\overline{\mathbb{F}}_{q}\right)\right) \rightarrow 0
$$

Note that $\# \mu\left(\mathbb{F}_{q}\right)=\# H^{1}\left(\mathbb{F}_{q}, \mu\left(\overline{\mathbb{F}}_{q}\right)\right)$

- $T=\left(\# \mu\left(\mathbb{F}_{q}\right)\right) \cdot\left(\#\left\{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right): \sum_{i} t_{i}=0, t \in \operatorname{im}(\phi)\right\}\right)$

Counting Points on Tori

- Our new goal: Given $0 \rightarrow \mu_{M_{\text {tor }}} \rightarrow \mathbb{G}_{m}^{N} \xrightarrow{\phi} \mathbb{G}_{m}^{N} \rightarrow 0$, estimate $T:=\#\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)\left(\mathbb{F}_{q}\right): \Sigma(\phi(x))=0\right\}$. Let's write $\mu_{M_{\text {tor }}}$ simply as μ.
- Hilbert theorem 90 gives a four term SES

$$
0 \rightarrow \mu\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \xrightarrow{\phi} \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \rightarrow \mathrm{H}^{1}\left(\mathbb{F}_{q}, \mu\left(\overline{\mathbb{F}}_{q}\right)\right) \rightarrow 0
$$

Note that $\# \mu\left(\mathbb{F}_{q}\right)=\# H^{1}\left(\mathbb{F}_{q}, \mu\left(\overline{\mathbb{F}}_{q}\right)\right)$

- $T=\left(\# \mu\left(\mathbb{F}_{q}\right)\right) \cdot\left(\#\left\{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right): \sum_{i} t_{i}=0, t \in \operatorname{im}(\phi)\right\}\right)$
- Consider $\mathcal{K}:=\operatorname{ker}\left(\operatorname{Hom}\left(\mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right), \mathbb{C}^{\times}\right) \rightarrow \operatorname{Hom}\left(\mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right), \mathbb{C}^{\times}\right)\right)$. Then

$$
\sum_{x \in \mathcal{K}} \chi(t)=\# \mu\left(\mathbb{F}_{q}\right) \text { if } t \in \operatorname{im}(\phi), \text { and } 0 \text { otherwise. }
$$

Counting Points on Tori

- Our new goal: Given $0 \rightarrow \mu_{M_{\text {tor }}} \rightarrow \mathbb{G}_{m}^{N} \xrightarrow{\phi} \mathbb{G}_{m}^{N} \rightarrow 0$, estimate $T:=\#\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)\left(\mathbb{F}_{q}\right): \Sigma(\phi(x))=0\right\}$. Let's write $\mu_{M_{\text {tor }}}$ simply as μ.
- Hilbert theorem 90 gives a four term SES

$$
0 \rightarrow \mu\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \xrightarrow{\phi} \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \rightarrow \mathrm{H}^{1}\left(\mathbb{F}_{q}, \mu\left(\overline{\mathbb{F}}_{q}\right)\right) \rightarrow 0
$$

Note that $\# \mu\left(\mathbb{F}_{q}\right)=\# H^{1}\left(\mathbb{F}_{q}, \mu\left(\overline{\mathbb{F}}_{q}\right)\right)$

- $T=\left(\# \mu\left(\mathbb{F}_{q}\right)\right) \cdot\left(\#\left\{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right): \sum_{i} t_{i}=0, t \in \operatorname{im}(\phi)\right\}\right)$
- Consider $\mathcal{K}:=\operatorname{ker}\left(\operatorname{Hom}\left(\mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right), \mathbb{C}^{\times}\right) \rightarrow \operatorname{Hom}\left(\mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right), \mathbb{C}^{\times}\right)\right)$. Then

$$
\sum_{x \in \mathcal{K}} \chi(t)=\# \mu\left(\mathbb{F}_{q}\right) \text { if } t \in \operatorname{im}(\phi), \text { and } 0 \text { otherwise. }
$$

- Therefore, we get

$$
T=\sum_{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right), \Sigma_{i}} \sum_{t_{i}=0} \chi(t)
$$

Gauss Sums

- Take a nontrivial additive character $\psi: \mathbb{G}_{a}\left(\mathbb{F}_{q}\right)=\mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$. We have

$$
\sum_{a \in \mathbb{F}_{q}} \psi(a x)=q \text { if } x=0 \text { and } 0 \text { otherwise. }
$$

Gauss Sums

- Take a nontrivial additive character $\psi: \mathbb{G}_{a}\left(\mathbb{F}_{q}\right)=\mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$. We have

$$
\sum_{a \in \mathbb{F}_{q}} \psi(a x)=q \text { if } x=0 \text { and } 0 \text { otherwise. }
$$

- Now we rewrite the sum as

$$
T=\frac{1}{q} \sum_{a \in \mathbb{F}_{q}} \sum_{\chi \in \mathcal{K}} \sum_{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)} \chi(t) \psi\left(a \sum_{i} t_{i}\right) .
$$

Gauss Sums

- Take a nontrivial additive character $\psi: \mathbb{G}_{a}\left(\mathbb{F}_{q}\right)=\mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$. We have

$$
\sum_{a \in \mathbb{F}_{q}} \psi(a x)=q \text { if } x=0 \text { and } 0 \text { otherwise. }
$$

- Now we rewrite the sum as

$$
T=\frac{1}{q} \sum_{a \in \mathbb{F}_{q}} \sum_{\chi \in \mathcal{K}} \sum_{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)} \chi(t) \psi\left(a \sum_{i} t_{i}\right) .
$$

- Recall that we have

Theorem (Modulus of Gauss sums)

For any nontrivial additive character ψ and nontrivial multiplicative character χ on $\mathbb{F}_{q},\left|\sum_{t \in \mathbb{F}_{q}^{\times}} \chi(t) \psi(t)\right|=\sqrt{q}$.

Gauss Sums

$$
T=\frac{1}{q} \sum_{a \in \mathbb{F}_{q}} \sum_{\chi \in \mathcal{K}} \sum_{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)} \chi(t) \psi\left(a \sum_{i} t_{i}\right)
$$

Gauss Sums

$$
T=\frac{1}{q} \sum_{a \in \mathbb{F}_{q}} \sum_{x \in \mathcal{K}} \sum_{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)} \chi(t) \psi\left(a \sum_{i} t_{i}\right)
$$

- The $a=0$ term is $q^{-1} \sum_{\chi \in \mathcal{K}} \sum_{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)} \chi(t)=q^{-1}(q-1)^{N}$.

Gauss Sums

$$
T=\frac{1}{q} \sum_{a \in \mathbb{F}_{q}} \sum_{x \in \mathcal{X}} \sum_{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)} \chi(t) \psi\left(a \sum_{i} t_{i}\right)
$$

- The $a=0$ term is $q^{-1} \sum_{\chi \in \mathcal{K}} \sum_{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)} \chi(t)=q^{-1}(q-1)^{N}$.
- For the other a's, the term has norm $q^{N / 2}$ (a product of N Gauss sums). There are $\# \mathcal{K}=\# H^{1}\left(\mathbb{F}_{q}, \mu\left(\overline{\mathbb{F}}_{q}\right)\right) \leq \# M_{\text {tor }}$ of them.

Gauss Sums

$$
T=\frac{1}{q} \sum_{a \in \mathbb{F}_{q}} \sum_{x \in \mathcal{K}} \sum_{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)} \chi(t) \psi\left(a \sum_{i} t_{i}\right)
$$

- The $a=0$ term is $q^{-1} \sum_{\chi \in \mathcal{K}} \sum_{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)} \chi(t)=q^{-1}(q-1)^{N}$.
- For the other a's, the term has norm $q^{N / 2}$ (a product of N Gauss sums). There are $\# \mathcal{K}=\# H^{1}\left(\mathbb{F}_{q}, \mu\left(\overline{\mathbb{F}}_{q}\right)\right) \leq \# M_{\text {tor }}$ of them.
- To sum up, we have

$$
\left|T-\frac{(q-1)^{N}}{q}\right| \leq \frac{q-1}{q} \# M_{\mathrm{tor}} q^{N / 2}
$$

Gauss Sums

$$
T=\frac{1}{q} \sum_{a \in \mathbb{F}_{q}} \sum_{x \in \mathcal{K}} \sum_{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)} \chi(t) \psi\left(a \sum_{i} t_{i}\right)
$$

- The $a=0$ term is $q^{-1} \sum_{\chi \in \mathcal{K}} \sum_{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)} \chi(t)=q^{-1}(q-1)^{N}$.
- For the other a's, the term has norm $q^{N / 2}$ (a product of N Gauss sums). There are $\# \mathcal{K}=\# H^{1}\left(\mathbb{F}_{q}, \mu\left(\overline{\mathbb{F}}_{q}\right)\right) \leq \# M_{\text {tor }}$ of them.
- To sum up, we have

$$
\left|T-\frac{(q-1)^{N}}{q}\right| \leq \frac{q-1}{q} \# M_{\mathrm{tor}} q^{N / 2}
$$

- Now we are done!

(From now on optional) Torsors

- Let G be a group and S be a set on which G acts on the right. We say that S is a G-torsor if for every $s \in S$, the map $G \rightarrow S$ defined by $g \mapsto s g$ is a bijection.

(From now on optional) Torsors

- Let G be a group and S be a set on which G acts on the right. We say that S is a G-torsor if for every $s \in S$, the map $G \rightarrow S$ defined by $g \mapsto s g$ is a bijection.
- Now suppose X is a scheme, \mathcal{G} is a sheaf of groups on $X_{\text {ét }}$ and \mathcal{S} is a sheaf of sets on $X_{\text {ét }}$. We say that \mathcal{S} is a \mathcal{G}-torsor if
- for some covering $\left\{U_{i}\right\} \rightarrow X, \mathcal{S}\left(U_{i}\right) \neq \emptyset$ for each U_{i};
- for every $U \rightarrow X$ étale and $s \in \Gamma(U, \mathcal{S})$, the map $g \mapsto s g:\left.\left.\mathcal{G}\right|_{U} \rightarrow \mathcal{S}\right|_{U}$ is an isomorphism of sheaves.

(From now on optional) Torsors

- Let G be a group and S be a set on which G acts on the right. We say that S is a G-torsor if for every $s \in S$, the map $G \rightarrow S$ defined by $g \mapsto s g$ is a bijection.
- Now suppose X is a scheme, \mathcal{G} is a sheaf of groups on $X_{\text {ét }}$ and \mathcal{S} is a sheaf of sets on $X_{\text {ét }}$. We say that \mathcal{S} is a \mathcal{G}-torsor if
- for some covering $\left\{U_{i}\right\} \rightarrow X, \mathcal{S}\left(U_{i}\right) \neq \emptyset$ for each U_{i};
- for every $U \rightarrow X$ étale and $s \in \Gamma(U, \mathcal{S})$, the map $g \mapsto s g:\left.\left.\mathcal{G}\right|_{U} \rightarrow \mathcal{S}\right|_{U}$ is an isomorphism of sheaves.
- Assume that every finite subset of X is contained in an open affine and X is quasi-compact (e.g., X is a quasi-projective variety). Then for any sheaf of abelian groups \mathcal{F}, Čech cohomology agrees with derived functor cohomology, so that elements $\mathrm{H}^{1}\left(X_{\text {ét }}, \mathcal{F}\right)$ correspond bijectively to isomorphism classes of \mathcal{F}-torsors.

(From now on optional) Torsors

- Let G be a group and S be a set on which G acts on the right. We say that S is a G-torsor if for every $s \in S$, the map $G \rightarrow S$ defined by $g \mapsto s g$ is a bijection.
- Now suppose X is a scheme, \mathcal{G} is a sheaf of groups on $X_{\text {ét }}$ and \mathcal{S} is a sheaf of sets on $X_{\text {ét }}$. We say that \mathcal{S} is a \mathcal{G}-torsor if
- for some covering $\left\{U_{i}\right\} \rightarrow X, \mathcal{S}\left(U_{i}\right) \neq \emptyset$ for each U_{i};
- for every $U \rightarrow X$ étale and $s \in \Gamma(U, \mathcal{S})$, the map $g \mapsto s g:\left.\left.\mathcal{G}\right|_{U} \rightarrow \mathcal{S}\right|_{U}$ is an isomorphism of sheaves.
- Assume that every finite subset of X is contained in an open affine and X is quasi-compact (e.g., X is a quasi-projective variety). Then for any sheaf of abelian groups \mathcal{F}, Čech cohomology agrees with derived functor cohomology, so that elements $\mathrm{H}^{1}\left(X_{\text {ét }}, \mathcal{F}\right)$ correspond bijectively to isomorphism classes of \mathcal{F}-torsors.
- Torsors of a finite group G over X are representable by a Galois cover of X (not necessarily connected).

(From now on optional) Torsors

- Let G be a group and S be a set on which G acts on the right. We say that S is a G-torsor if for every $s \in S$, the map $G \rightarrow S$ defined by $g \mapsto s g$ is a bijection.
- Now suppose X is a scheme, \mathcal{G} is a sheaf of groups on $X_{\text {ét }}$ and \mathcal{S} is a sheaf of sets on $X_{\text {ét }}$. We say that \mathcal{S} is a \mathcal{G}-torsor if
- for some covering $\left\{U_{i}\right\} \rightarrow X, \mathcal{S}\left(U_{i}\right) \neq \emptyset$ for each U_{i};
- for every $U \rightarrow X$ étale and $s \in \Gamma(U, \mathcal{S})$, the map $g \mapsto s g:\left.\left.\mathcal{G}\right|_{U} \rightarrow \mathcal{S}\right|_{U}$ is an isomorphism of sheaves.
- Assume that every finite subset of X is contained in an open affine and X is quasi-compact (e.g., X is a quasi-projective variety). Then for any sheaf of abelian groups \mathcal{F}, Čech cohomology agrees with derived functor cohomology, so that elements $\mathrm{H}^{1}\left(X_{\text {ét }}, \mathcal{F}\right)$ correspond bijectively to isomorphism classes of \mathcal{F}-torsors.
- Torsors of a finite group G over X are representable by a Galois cover of X (not necessarily connected).
- If G is a profinite abelian group, then there is a canonical identification $\mathrm{H}^{1}\left(X_{\text {ét }}, G\right)=\operatorname{Hom}_{\text {cts }}\left(\pi_{1}^{\text {ét }}(X), G\right)$.

Persistence of purity

- We go over the persistence of purity theorem with a bit more detail.
Theorem (Persistence of Purity)
Let \mathcal{F} be an ℓ-adic local system on U_{0} which is ι-real. Suppose that for
some closed point $u_{0} \in U_{0}$, every eigenvalue $\alpha_{i, u_{0}}$ of Frob $\left.{ }_{u_{0}}\right|_{\mathcal{F}_{\bar{u}_{0}}}$ satisfies
$\left|\iota\left(\alpha_{i, u_{0}}\right)\right|=1$. Then the same is true for any other closed point $u \in U_{0}$.

Persistence of purity

- We go over the persistence of purity theorem with a bit more detail.

Theorem (Persistence of Purity)

Let \mathcal{F} be an ℓ-adic local system on U_{0} which is 1 -real. Suppose that for some closed point $u_{0} \in U_{0}$, every eigenvalue $\alpha_{i, u_{0}}$ of $\left.\operatorname{Frob}_{u_{0}}\right|_{\mathcal{T}_{u_{0}}}$ satisfies $\left|\iota\left(\alpha_{i, u_{0}}\right)\right|=1$. Then the same is true for any other closed point $u \in U_{0}$.

- We already know that $\left|\iota\left(\alpha_{i, u^{\prime}}\right)\right| \leq 1$ for every i. Therefore, it suffices to prove that $\left|\iota\left(\operatorname{det}\left(\left.\operatorname{Frob}_{u}\right|_{\mathcal{F}_{\bar{u}}}\right)\right)\right|=1$.

Persistence of purity

- We go over the persistence of purity theorem with a bit more detail.

Theorem (Persistence of Purity)

Let \mathcal{F} be an ℓ-adic local system on U_{0} which is 1 -real. Suppose that for some closed point $u_{0} \in U_{0}$, every eigenvalue $\alpha_{i, u_{0}}$ of $\operatorname{Frob}_{u_{0}} \mid \mathcal{F}_{\bar{u}_{0}}$ satisfies $\left|\iota\left(\alpha_{i, u_{0}}\right)\right|=1$. Then the same is true for any other closed point $u \in U_{0}$.

- We already know that $\left|\iota\left(\alpha_{i, u^{\prime}}\right)\right| \leq 1$ for every i. Therefore, it suffices to prove that $\left|\iota\left(\operatorname{det}\left(\left.\operatorname{Frob}_{u}\right|_{\mathcal{F}_{\bar{u}}}\right)\right)\right|=1$.
- We reduce to proving that $\operatorname{det}(\mathcal{F})$ is t-pure of weight 0 if $\operatorname{det}\left(\left.\mathcal{F}\right|_{u_{0}}\right)$ is.

Persistence of purity

- We go over the persistence of purity theorem with a bit more detail.

Theorem (Persistence of Purity)

Let \mathcal{F} be an ℓ-adic local system on U_{0} which is 1 -real. Suppose that for some closed point $u_{0} \in U_{0}$, every eigenvalue $\alpha_{i, u_{0}}$ of $\operatorname{Frob}_{u_{0}} \mid \mathcal{F}_{\bar{u}_{0}}$ satisfies $\left|\iota\left(\alpha_{i, u_{0}}\right)\right|=1$. Then the same is true for any other closed point $u \in U_{0}$.

- We already know that $\left|\iota\left(\alpha_{i, u^{\prime}}\right)\right| \leq 1$ for every i. Therefore, it suffices to prove that $\left|\mathfrak{l}\left(\operatorname{det}\left(\operatorname{Frob}_{u} \mid \mathcal{F}_{\bar{u}}\right)\right)\right|=1$.
- We reduce to proving that $\operatorname{det}(\mathcal{F})$ is t-pure of weight 0 if $\operatorname{det}\left(\left.\mathcal{F}\right|_{u_{0}}\right)$ is.
- In order to do this, we may of course replace $\operatorname{det}(\mathcal{F})$ by any power $\operatorname{det}(\mathcal{F})^{\otimes m}$ for any $m \geq 1$. Therefore, it suffices to prove the following:

Persistence of purity

- We go over the persistence of purity theorem with a bit more detail.

Theorem (Persistence of Purity)

Let \mathcal{F} be an ℓ-adic local system on U_{0} which is 1 -real. Suppose that for some closed point $u_{0} \in U_{0}$, every eigenvalue $\alpha_{i, u_{0}}$ of $\operatorname{Frob}_{u_{0}} \mid \mathcal{F}_{\bar{u}_{0}}$ satisfies $\left|\iota\left(\alpha_{i, u_{0}}\right)\right|=1$. Then the same is true for any other closed point $u \in U_{0}$.

- We already know that $\left|\iota\left(\alpha_{i, u^{\prime}}\right)\right| \leq 1$ for every i. Therefore, it suffices to prove that $\left|\mathfrak{L}\left(\operatorname{det}\left(\left.\operatorname{Frob}_{u}\right|_{\mathcal{F}_{\bar{u}}}\right)\right)\right|=1$.
- We reduce to proving that $\operatorname{det}(\mathcal{F})$ is t-pure of weight 0 if $\operatorname{det}\left(\left.\mathcal{F}\right|_{u_{0}}\right)$ is.
- In order to do this, we may of course replace $\operatorname{det}(\mathcal{F})$ by any power $\operatorname{det}(\mathcal{F})^{\otimes m}$ for any $m \geq 1$. Therefore, it suffices to prove the following:

Lemma

Let \mathcal{L} be an ℓ-adic local system on U_{0} of rank 1 . Then for some power $\mathcal{L}^{\otimes m}$, there exists $\alpha \in \overline{\mathbb{Q}}_{\ell}^{\times}$such that $\left.\mathrm{Frob}_{u}\right|_{\mathcal{L} \otimes m}=\alpha^{\mathrm{deg} u}$.

Generalities

Generalities

- Put $k=\mathbb{F}_{q}$ and choose an algebraic closure \bar{k} / k. The sequence $U \rightarrow U_{0} \rightarrow$ Speck induces a short exact sequence

$$
1 \rightarrow \pi_{1}^{e \mathrm{et}}\left(U, \bar{u}_{0}\right) \rightarrow \pi_{1}^{\text {et }}\left(U_{0}, \bar{u}_{0}\right) \rightarrow \pi_{1}^{e \mathrm{et}}\left(\text { Spec } k, \bar{u}_{0}\right) \rightarrow 1
$$

Generalities

- Put $k=\mathbb{F}_{q}$ and choose an algebraic closure \bar{k} / k. The sequence $U \rightarrow U_{0} \rightarrow$ Speck induces a short exact sequence

$$
1 \rightarrow \pi_{1}^{\text {ett }}\left(U, \bar{u}_{0}\right) \rightarrow \pi_{1}^{\text {et }}\left(U_{0}, \bar{u}_{0}\right) \rightarrow \pi_{1}^{\text {ét }}\left(\text { Spec } k, \bar{u}_{0}\right) \rightarrow 1
$$

- Assume that u_{0} is defined over k. Then $\left(u_{0}, \bar{u}_{0}\right) \rightarrow\left(U, \bar{u}_{0}\right)$ induces a splitting

$$
\pi_{1}^{e \mathrm{et}}\left(\operatorname{Spec} k, \bar{u}_{0}\right)=\operatorname{Gal}_{\mathrm{k}} \rightarrow \pi_{1}^{\text {ét }}\left(U_{0}, \bar{u}_{0}\right)
$$

Generalities

- Put $k=\mathbb{F}_{q}$ and choose an algebraic closure \bar{k} / k. The sequence $U \rightarrow U_{0} \rightarrow$ Speck induces a short exact sequence

$$
1 \rightarrow \pi_{1}^{\text {ét }}\left(U, \bar{u}_{0}\right) \rightarrow \pi_{1}^{\text {ét }}\left(U_{0}, \bar{u}_{0}\right) \rightarrow \pi_{1}^{\text {ét }}\left(\text { Spec } k, \bar{u}_{0}\right) \rightarrow 1
$$

- Assume that u_{0} is defined over k. Then $\left(u_{0}, \bar{u}_{0}\right) \rightarrow\left(U, \bar{u}_{0}\right)$ induces a splitting

$$
\pi_{1}^{e \mathrm{et}}\left(\operatorname{Spec} k, \bar{u}_{0}\right)=\operatorname{Gal}_{\mathrm{k}} \rightarrow \pi_{1}^{\text {ét }}\left(U_{0}, \bar{u}_{0}\right)
$$

- We now have a picture

Generalities

- Put $k=\mathbb{F}_{q}$ and choose an algebraic closure \bar{k} / k. The sequence $U \rightarrow U_{0} \rightarrow$ Speck induces a short exact sequence

$$
1 \rightarrow \pi_{1}^{\text {ét }}\left(U, \bar{u}_{0}\right) \rightarrow \pi_{1}^{\text {ét }}\left(U_{0}, \bar{u}_{0}\right) \rightarrow \pi_{1}^{\text {ét }}\left(\text { Spec } k, \bar{u}_{0}\right) \rightarrow 1
$$

- Assume that u_{0} is defined over k. Then $\left(u_{0}, \bar{u}_{0}\right) \rightarrow\left(U, \bar{u}_{0}\right)$ induces a splitting

$$
\pi_{1}^{\text {ét }}\left(\operatorname{Spec} k, \bar{u}_{0}\right)=\operatorname{Gal}_{k} \rightarrow \pi_{1}^{\text {ét }}\left(U_{0}, \bar{u}_{0}\right)
$$

- We now have a picture

- Via the splitting, Gal ${ }_{k}$ acts by conjugation on $\pi_{1}^{\text {ét }}(U)$, and hence on $\pi_{1}^{\text {ét }}(U)$-representations. This action fixes $\left.\mathcal{L}\right|_{\pi_{1}^{\text {et }}(U)}$.

Proof of Persistence of Purity

- Since $\pi_{1}^{\text {ét }}\left(U_{0}\right)$ is compact, $\mathcal{L}: \pi_{1}^{\text {ét }}\left(U_{0}\right) \rightarrow \overline{\mathbb{Q}}_{l}^{\times}$lands in $\mathcal{O}_{E_{\lambda}}^{\times}$for some finite extension $E_{\lambda} / \mathbb{Q}_{\ell}$. Let \mathbb{F}_{λ} be the residue field, where $\lambda \in \ell^{\infty}$.

Proof of Persistence of Purity

- Since $\pi_{1}^{\text {ét }}\left(U_{0}\right)$ is compact, $\mathcal{L}: \pi_{1}^{e t}\left(U_{0}\right) \rightarrow \overline{\mathbb{Q}}_{\ell}^{\times}$lands in $\mathcal{O}_{E_{\lambda}}^{\times}$for some finite extension $E_{\lambda} / \mathbb{Q}_{\ell}$. Let \mathbb{F}_{λ} be the residue field, where $\lambda \in \ell^{\infty}$.
- Up to replacing \mathcal{L} by its $\# \mathbb{F}_{\lambda}^{\times}$-power, $\mathcal{L}\left(\pi_{1}^{\text {ét }}\left(U_{0}\right)\right) \subseteq 1+\mathfrak{m}_{\lambda}$, where $\mathfrak{m}_{\lambda} \subset \mathcal{O}_{E_{\lambda}}$ is the maximal ideal.

Proof of Persistence of Purity

- Since $\pi_{1}^{e \mathrm{et}}\left(U_{0}\right)$ is compact, $\mathcal{L}: \pi_{1}^{e t}\left(U_{0}\right) \rightarrow \overline{\mathbb{Q}}_{\ell}^{\times}$lands in $\mathcal{O}_{E_{\lambda}}^{\times}$for some finite extension $E_{\lambda} / \mathbb{Q}_{\ell}$. Let \mathbb{F}_{λ} be the residue field, where $\lambda \in \ell^{\infty}$.
- Up to replacing \mathcal{L} by its $\# \mathbb{F}_{\lambda}^{\times}$-power, $\mathcal{L}\left(\tau_{1}^{\text {ét }}\left(U_{0}\right)\right) \subseteq 1+\mathfrak{m}_{\lambda}$, where $\mathfrak{m}_{\lambda} \subset \mathcal{O}_{E_{\lambda}}$ is the maximal ideal.
- Up to replacing \mathcal{L} again by its ℓ-th power, we may assume $\mathcal{L}\left(\pi_{1}^{\text {et }}\left(U_{0}\right)\right) \subseteq 1+\ell \mathfrak{m}_{\lambda}$, which is isomorphic to $\ell \mathfrak{m}_{\lambda} \subset \overline{\mathbb{Q}}_{\ell}$ via the logarithm. Hence \mathcal{L} gives rise to an element in $\operatorname{Hom}_{\text {cts }}\left(U_{0}, \overline{\mathbb{Q}}_{\ell}\right)$.

Proof of Persistence of Purity

- Since $\pi_{1}^{\text {et }}\left(U_{0}\right)$ is compact, $\mathcal{L}: \pi_{1}^{e t}\left(U_{0}\right) \rightarrow \overline{\mathbb{Q}}_{l}^{\times}$lands in $\mathcal{O}_{E_{\lambda}}^{\times}$for some finite extension $E_{\lambda} / \mathbb{Q}_{\ell}$. Let \mathbb{F}_{λ} be the residue field, where $\lambda \in \ell^{\infty}$.
- Up to replacing \mathcal{L} by its $\# \mathbb{F}_{\lambda}^{\times}$-power, $\mathcal{L}\left(\tau_{1}^{\text {ét }}\left(U_{0}\right)\right) \subseteq 1+\mathfrak{m}_{\lambda}$, where $\mathfrak{m}_{\lambda} \subset \mathcal{O}_{E_{\lambda}}$ is the maximal ideal.
- Up to replacing \mathcal{L} again by its ℓ-th power, we may assume $\mathcal{L}\left(\pi_{1}^{\text {et }}\left(U_{0}\right)\right) \subseteq 1+\ell \mathfrak{m}_{\lambda}$, which is isomorphic to $\ell \mathfrak{m}_{\lambda} \subset \overline{\mathbb{Q}}_{\ell}$ via the logarithm. Hence \mathcal{L} gives rise to an element in $\operatorname{Hom}_{\text {cts }}\left(U_{0}, \overline{\mathbb{Q}}_{\ell}\right)$.
- Recall that $\operatorname{Hom}_{\text {cts }}\left(U_{0}, \overline{\mathbb{Q}}_{\ell}\right)$ is identified with $\mathrm{H}^{1}\left(U_{0}, \overline{\mathbb{Q}}_{\ell}\right)$, so we may view \mathcal{L} as an element of $\mathrm{H}^{1}\left(U_{0}, \overline{\mathbb{Q}}_{\ell}\right)$. Similarly, $\left.\mathcal{L}\right|_{\pi_{1}^{\text {et }}(U)} \in \mathrm{H}^{1}\left(U, \overline{\mathbb{Q}}_{\ell}\right)$.

Proof of Persistence of Purity

- Since $\pi_{1}^{\text {et }}\left(U_{0}\right)$ is compact, $\mathcal{L}: \pi_{1}^{e t}\left(U_{0}\right) \rightarrow \overline{\mathbb{Q}}_{l}^{\times}$lands in $\mathcal{O}_{E_{\lambda}}^{\times}$for some finite extension $E_{\lambda} / \mathbb{Q}_{\ell}$. Let \mathbb{F}_{λ} be the residue field, where $\lambda \in \ell^{\infty}$.
- Up to replacing \mathcal{L} by its $\# \mathbb{F}_{\lambda}^{\times}$-power, $\mathcal{L}\left(\tau_{1}^{\text {ét }}\left(U_{0}\right)\right) \subseteq 1+\mathfrak{m}_{\lambda}$, where $\mathfrak{m}_{\lambda} \subset \mathcal{O}_{E_{\lambda}}$ is the maximal ideal.
- Up to replacing \mathcal{L} again by its ℓ-th power, we may assume $\mathcal{L}\left(\pi_{1}^{\text {et }}\left(U_{0}\right)\right) \subseteq 1+\ell \mathfrak{m}_{\lambda}$, which is isomorphic to $\ell \mathfrak{m}_{\lambda} \subset \overline{\mathbb{Q}}_{\ell}$ via the logarithm. Hence \mathcal{L} gives rise to an element in $\operatorname{Hom}_{\text {cts }}\left(U_{0}, \overline{\mathbb{Q}}_{\ell}\right)$.
- Recall that $\operatorname{Hom}_{\text {cts }}\left(U_{0}, \overline{\mathbb{Q}}_{\ell}\right)$ is identified with $\mathrm{H}^{1}\left(U_{0}, \overline{\mathbb{Q}}_{\ell}\right)$, so we may view \mathcal{L} as an element of $\mathrm{H}^{1}\left(U_{0}, \overline{\mathbb{Q}}_{\ell}\right)$. Similarly, $\left.\mathcal{L}\right|_{\pi_{1}^{\text {et }}(U)} \in \mathrm{H}^{1}\left(U, \overline{\mathbb{Q}}_{\ell}\right)$.
- We have argued that $\left.\mathcal{L}\right|_{\pi_{1}^{\text {et }}(U)}$ is $\mathrm{Frob}_{q^{-i n v a r i a n t}}$. However, the RH for curves implies that eigenvalues of Frob_{q} on $H^{1}\left(U, \overline{\mathbb{Q}}_{\ell}\right) \cong H_{c}^{1}\left(U, \overline{\mathbb{Q}}_{\ell}\right)^{\vee}$ have absolute value $\geq q^{1 / 2}>1$.

Proof of Persistence of Purity

- Since $\pi_{1}^{\text {et }}\left(U_{0}\right)$ is compact, $\mathcal{L}: \pi_{1}^{e t}\left(U_{0}\right) \rightarrow \overline{\mathbb{Q}}_{l}^{\times}$lands in $\mathcal{O}_{E_{\lambda}}^{\times}$for some finite extension $E_{\lambda} / \mathbb{Q}_{\ell}$. Let \mathbb{F}_{λ} be the residue field, where $\lambda \in \ell^{\infty}$.
- Up to replacing \mathcal{L} by its $\# \mathbb{F}_{\lambda}^{\times}$-power, $\mathcal{L}\left(\tau_{1}^{\text {ét }}\left(U_{0}\right)\right) \subseteq 1+\mathfrak{m}_{\lambda}$, where $\mathfrak{m}_{\lambda} \subset \mathcal{O}_{E_{\lambda}}$ is the maximal ideal.
- Up to replacing \mathcal{L} again by its ℓ-th power, we may assume $\mathcal{L}\left(\pi_{1}^{\text {et }}\left(U_{0}\right)\right) \subseteq 1+\ell \mathfrak{m}_{\lambda}$, which is isomorphic to $\ell \mathfrak{m}_{\lambda} \subset \overline{\mathbb{Q}}_{\ell}$ via the logarithm. Hence \mathcal{L} gives rise to an element in $\operatorname{Hom}_{\text {cts }}\left(U_{0}, \overline{\mathbb{Q}}_{\ell}\right)$.
- Recall that $\operatorname{Hom}_{\text {cts }}\left(U_{0}, \overline{\mathbb{Q}}_{\ell}\right)$ is identified with $\mathrm{H}^{1}\left(U_{0}, \overline{\mathbb{Q}}_{\ell}\right)$, so we may view \mathcal{L} as an element of $\mathrm{H}^{1}\left(U_{0}, \overline{\mathbb{Q}}_{\ell}\right)$. Similarly, $\left.\mathcal{L}\right|_{\pi_{1}^{e t}(U)} \in \mathrm{H}^{1}\left(U, \overline{\mathbb{Q}}_{\ell}\right)$.
- We have argued that $\left.\mathcal{L}\right|_{\pi_{1}^{\text {et }}(U)}$ is $\mathrm{Frob}_{q^{-i n v a r i a n t}}$. However, the RH for curves implies that eigenvalues of Frob_{q} on $H^{1}\left(U, \overline{\mathbb{Q}}_{\ell}\right) \cong H_{c}^{1}\left(U, \overline{\mathbb{Q}}_{\ell}\right)^{\vee}$ have absolute value $\geq q^{1 / 2}>1$.
- Therefore, $\left.\mathcal{L}\right|_{\pi_{1}^{\text {et }}(U)}$ is trivial.

Proof of Persistence of Purity

- Recall that our goal is to show that for every closed point $u \in U_{0}$, $\left.\operatorname{Frob}_{u}\right|_{\mathcal{L}_{\bar{u}}}=(\alpha)^{\text {deg } u}$ for some $\alpha \in \overline{\mathbb{Q}}^{\times}$. The the point is that α is uniform over all points. (\mathcal{L} has already been replaced by a power.)

Proof of Persistence of Purity

- Recall that our goal is to show that for every closed point $u \in U_{0}$, $\left.\operatorname{Frob}_{u}\right|_{\mathcal{L}_{\bar{u}}}=(\alpha)^{\text {deg } u}$ for some $\alpha \in \overline{\mathbb{Q}}^{\times}$. The the point is that α is uniform over all points. (\mathcal{L} has already been replaced by a power.)
- This is a consequence of $\left.\mathcal{L}\right|_{\pi_{1}^{e t}(U)}=0$ and α is just $\left.\operatorname{Frob}_{u_{0}}\right|_{\mathcal{L}_{\bar{u}_{0}}}$.

Proof of Persistence of Purity

- Recall that our goal is to show that for every closed point $u \in U_{0}$, $\left.\operatorname{Frob}_{u}\right|_{\mathcal{L}_{\bar{u}}}=(\alpha)^{\text {deg } u}$ for some $\alpha \in \overline{\mathbb{Q}}^{\times}$. The the point is that α is uniform over all points. (\mathcal{L} has already been replaced by a power.)
- This is a consequence of $\left.\mathcal{L}\right|_{\pi_{1}^{\text {et }}(U)}=0$ and α is just $\left.\operatorname{Frob}_{u_{0}}\right|_{\mathcal{L}_{\bar{u}_{0}}}$.
- Up to replacing U by $U \otimes k(u)$, we reduce to the case $\operatorname{deg} u=1$.

Proof of Persistence of Purity

- Recall that our goal is to show that for every closed point $u \in U_{0}$, $\left.\operatorname{Frob}_{u}\right|_{\mathcal{L}_{\bar{u}}}=(\alpha)^{\operatorname{deg} u}$ for some $\alpha \in \overline{\mathbb{Q}}^{\times}$. The the point is that α is uniform over all points. (\mathcal{L} has already been replaced by a power.)
- This is a consequence of $\left.\mathcal{L}\right|_{\pi_{1}^{\text {et }}(U)}=0$ and α is just $\left.\operatorname{Frob}_{u_{0}}\right|_{\mathcal{L}_{\bar{u}_{0}}}$.
- Up to replacing U by $U \otimes k(u)$, we reduce to the case $\operatorname{deg} u=1$.
- Consider the abelianization $\pi_{1}^{\text {ett }}\left(U_{0}\right)^{\mathrm{ab}}:=\pi_{1}^{\text {et }}\left(U_{0}, \bar{u}_{0}\right)^{\mathrm{ab}}$.

Proof of Persistence of Purity

- Recall that our goal is to show that for every closed point $u \in U_{0}$, $\left.\operatorname{Frob}_{u}\right|_{\mathcal{L}_{\bar{u}}}=(\alpha)^{\operatorname{deg} u}$ for some $\alpha \in \overline{\mathbb{Q}}^{\times}$. The the point is that α is uniform over all points. (\mathcal{L} has already been replaced by a power.)
- This is a consequence of $\left.\mathcal{L}\right|_{\pi_{1}^{e t}(U)}=0$ and α is just $\left.\operatorname{Frob}_{u_{0}}\right|_{\mathcal{L}_{\bar{u}_{0}}}$.
- Up to replacing U by $U \otimes k(u)$, we reduce to the case $\operatorname{deg} u=1$.
- Consider the abelianization $\pi_{1}^{\text {ett }}\left(U_{0}\right)^{\mathrm{ab}}:=\pi_{1}^{\text {et }}\left(U_{0}, \bar{u}_{0}\right)^{\mathrm{ab}}$.
- If we choose another geometric point \bar{u} on U, and étale path $\bar{u}_{0} \rightsquigarrow \bar{u}$, then we have an isomorphism $\pi_{1}^{\text {et }}\left(U_{0}, \bar{u}_{0}\right) \xrightarrow{\sim} \pi_{1}^{\text {ét }}\left(U_{0}, \bar{u}\right)$, which descends to $\pi_{1}^{\text {ét }}\left(U_{0}, \bar{u}_{0}\right)^{\mathrm{ab}} \xrightarrow[\rightarrow]{\sim} \pi_{1}^{e t}\left(U_{0}, \bar{u}\right)^{\mathrm{ab}}$.

Proof of Persistence of Purity

- Recall that our goal is to show that for every closed point $u \in U_{0}$, $\left.\operatorname{Frob}_{u}\right|_{\mathcal{L}_{\bar{u}}}=(\alpha)^{\operatorname{deg} u}$ for some $\alpha \in \overline{\mathbb{Q}}^{\times}$. The the point is that α is uniform over all points. (\mathcal{L} has already been replaced by a power.)
- This is a consequence of $\left.\mathcal{L}\right|_{\pi_{1}^{e t}(U)}=0$ and α is just $\left.\operatorname{Frob}_{u_{0}}\right|_{\mathcal{L}_{\bar{u}_{0}}}$.
- Up to replacing U by $U \otimes k(u)$, we reduce to the case $\operatorname{deg} u=1$.
- Consider the abelianization $\pi_{1}^{\text {ét }}\left(U_{0}\right)^{\mathrm{ab}}:=\pi_{1}^{\text {ét }}\left(U_{0}, \bar{u}_{0}\right)^{\mathrm{ab}}$.
- If we choose another geometric point \bar{u} on U, and étale path $\bar{u}_{0} \rightsquigarrow \bar{u}$, then we have an isomorphism $\pi_{1}^{\text {et }}\left(U_{0}, \bar{u}_{0}\right) \xrightarrow{\sim} \pi_{1}^{e t}\left(U_{0}, \bar{u}\right)$, which descends to $\pi_{1}^{\text {ét }}\left(U_{0}, \bar{u}_{0}\right)^{\mathrm{ab}} \xrightarrow{\sim} \pi_{1}^{e \mathrm{et}}\left(U_{0}, \bar{u}\right)^{\mathrm{ab}}$.
- The point is that the second isomorphism does not depend on the choice of the path $\bar{u}_{0} \rightsquigarrow \bar{u}$.

Proof of Persistence of Purity

- Suppose we have another k-point $u \in U$. Then we have two sections.

Proof of Persistence of Purity

- Suppose we have another k-point $u \in U$. Then we have two sections.

- Now the representation $\mathcal{L}_{u_{0}}-\mathcal{L}_{u}: \mathrm{Gal}_{\mathrm{k}} \rightarrow \overline{\mathbb{Q}}_{\ell}^{\times}$is induced by

$$
\operatorname{Gal}_{\mathrm{k}} \xrightarrow{\mu_{0}-u} \pi_{1}^{\mathrm{et}}\left(U_{0}\right)^{\mathrm{ab}} \rightarrow \overline{\mathbb{Q}}_{\ell}^{\times} .
$$

Proof of Persistence of Purity

- Suppose we have another k-point $u \in U$. Then we have two sections.

- Now the representation $\mathcal{L}_{u_{0}}-\mathcal{L}_{u}: \mathrm{Gal}_{k} \rightarrow \overline{\mathbb{Q}}_{\ell}^{\times}$is induced by

$$
\mathrm{Gal}_{\mathrm{k}} \xrightarrow{\mathrm{~L}_{0}-u} \pi_{1}^{\mathrm{et}}\left(U_{0}\right)^{\mathrm{ab}} \rightarrow \overline{\mathbb{Q}}_{\ell}^{\times} .
$$

- Since $u_{0}-u$ lands in $\pi_{1}^{\text {et }}(U)^{\mathrm{ab}} /$?, the above composition vanishes.

