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RH for Hypersurfaces

Let Fq be our base field. Let X0 be a smooth projective variety over
Fq and set X := X0⊗F̄q.

Recall that the RH for X0 states that every eigenvalue αi of the
Frobenius action on Hi

ét(X ,Q`) has |ι(αi )| = qi/2 for every embedding
ι : Q̄` ↪→ C.

Today we prove the RH for X0 ⊂ Pn+1 a smooth hypersurface of
degree d . As usual we start with understanding the cohomology.

First of all, we recall the cohomology of Pn: H∗(Pn) ∼=Z[h]/hn+1

where H is the class of a hyperplane H.
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Lefschetz Hyperplane Theorem

Theorem (Lefschetz Hyperplane Theorem)

Let X be a smooth ample divisor of a smooth projective variety Y with
dimY = n + 1. Suppose the base field k is algebraically closed. Write
Hj(−) for Hj

ét((−),Q`), ` 6= char k.

1 Hj(Y )→ Hj(X ) is bijective for j < n and injective for j = n.

2 Hj(X )→ Hj(Y ) is bijective for j < n and surjective for j = n.

Let’s view Hj(X ) simply as H j(X )∨.

Apply the above to Y := Pn+1. Again let h denote the class of a
hyperplane. For all j 6= n, we have Hj(X ) ∼=Q`(hj) ∼=Q`(j).
The only interesting part of the cohomology of X is Hn(X ).
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Zeta Function of Hypersurfaces

Back to our situation when X0 ⊂ Pn+1 is a hypersurface of degree d ,
and X := X0⊗F̄q.

Let h ∈ H2(X ) be the hyperplane section. Consider the primitive
cohomology

Pn(X ) = Hn(X ) if n is odd, and Pn(X ) = Hn(X )/〈hn/2〉 if n is even.

Then we have H∗(X ) ∼=H∗(Pn)⊕ Pn(X ).

The Zeta function Z (X0,T ) is given by

P(T )∏n
i=0(1 − qiT )

(n odd), or
1

P(T )
∏n

i=0(1 − qiT )
(n even)

with P(T ) := det(1 − TFrobq |Pn(X0)).

In either case, we see that P(T ) has integer coefficients. In
particular, the coefficients are totally real.
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Reduction to Point Counting

Since α 7→ qn/α defines an involution on the eigenvalues of Frobq, it
suffices to show that every eigenvalue of Frobq on Pn(X ) has ι-norm
≤ qn/2, for any ι : Q̄` ↪→ C.

Recall that H∗(X ) ∼=H∗(Pn)⊕ Pn(X ), so that

#X0(Fqr ) = #Pn(Fqr ) + (−1)r tr((Frobq)
r |Pn(X ))

by the point counting formula.

It suffices to show that

#X0(Fqr ) = #Pn(Fqr ) + O(qrn/2)

as r ≥ 1 varies.
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Reduction to a Single Hypersurface

Just as what we did last time, we first reduce to treating one
hypersurface via deformation.

Let U0 be an affine, smooth, and geometrically connected curve over
Fq and F be an `-adic local system (lisse Q̄`-sheaf) on U0.

For each closed point u ∈ U0, we have a pullback F|u, which is an
`-adic local system on Spec k(u).

Recall that to giving such a local system amounts to giving a
represention Galk(u) → GL(Fū) for the geometric point ū over u.

Let Frobu be the generator of Galk(u) given by λ 7→ λ#k(u). Set

PF,u(T ) := det(1 − T [k(u):k]Frobu |Fū)

and
LF(T ) :=

∏
u∈U

PF,u(T )−1.
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Reduction to a Single Hypersurface

Recall that last time we proved

Theorem

Let F be an `-adic local system on U0 which is ι-real. Suppose that for
some closed point u ∈ U0, every eigenvalue αi ,u of Frobu |Fū satisfies
|ι(αi ,u)| ≤ 1. Then the same is true for any other closed point u ′ ∈ U0.

We also showed that the above theorem holds with |ι(αi ,u)| ≤ 1
replaced by |ι(αi ,u)| = 1 (persistence of purity).

We first argue that given this, we can complete the reduction step.

Given two homogenous polynomials F0,F1, we can consider the pencil
tF0 + (1 − t)F1, thereby obtaining a family over A1. If F0,F1 are
smooth, by removing singular fibers, we obtain a family f : X→ U
containing F0,F1.

Apply the proposition to F := Rnf∗Q̄`(n/2). (Recall that the Zeta
function ensures that our F is in fact integral.)
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Interlude : Algebraic Groups

Let k be a field and G be a k-variety. Let m : G × G → G be a
morphism and e : Spec k → G be a k-point.

We say that (G ,m, e) gives an algebraic group if m satisfies the group
axioms with e being the identity.

We say that G is a linear algebraic group it is isomorphic to a
subgroup of GLn for some n. An algebraic group is linear if and only
if it is affine.

If SpecOG is equipped with the structure of an algebraic group, then
OG is equipped with a distinguished OG → k and a co-multiplication
structure ∆ : OG → OG⊗OG .

For example, Gm is given by OG := k [T±] and ∆(T ) = T⊗T .

A character of a group G is a morphism G → Gm. The group of
characters is denoted by X ∗(G ).
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Interlude : Groups of Multiplicative Type

Given a finitely generated abelian group M. Consider the functor
Hom(M,Gm) : Alg/k → Grp defined by R 7→ Hom(M,R×).

This functor is represented by a commutative algebraic group. When
M = Z, Hom(M,Gm) = Gm.

Groups obtained this way are said to be of multiplicative type.

Hom(−,Gm) and X ∗(−) are quasi-inverses to each other and defines
an equivalence between the category groups of multiplicative type and
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Interlude: Galois cohomology

If 0→ N → G → Q → 0 is an exact sequence, then the induced
sequence 0→ N(k̄)→ G (k̄)→ Q(k̄)→ 0 is exact.

To obtain information on k-points, we need to apply Galois
cohomology H i (Galk ,−), i = 0, 1,

0→ N(k)→ G (k)→ Q(k)→ H1(k ,N(k̄))→ · · ·
Hilbert theorem 90: H1(k ,Gm(k̄)) = 0 for any field k .

Example: H1(k , µn(k̄)) = k×/(k×)n, for µn := Hom(Z/nZ,Gm).
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Interlude : Gauss Sums

Let Fq be a finite field. χ : F×q → C× be a mutliplicative character
and ψ : Fq → C× be an additive character.

Set µ(χ,ψ) :=
∑

x∈F×q χ(x)ψ(x).

It is hard to compute µ(χ,ψ) in general, but we know its norm:

Theorem

If χ and ψ are both nontrivial, then |µ(χ,ψ)| =
√
q.

The proof uses orthogonality relaitions in the character theory of
finite groups, as well as some elementary tricks of rearranging the
order of summations.

Reference: Kowalski’s notes
https://people.math.ethz.ch/~kowalski/exp-sums.pdf.
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Point Counting

Recall that it suffices to show that for some smooth hypersurface X0

of degree d in Pn+1, we have the point-count estimate:

#X0(Fqr ) = #Pn(Fqr ) + O(qrn/2)

as r →∞.

If p - d , we can just use the Fermat hypersurface xd0 + · · ·+ xdn+1 = 0.
Weil provided a formula for the number of solutions

∑r
i=0 aix

ni
i = b

in Ar+1, so the bound can be checked by hand.

We treat the case d = 2 separately (this only matters when p = 2).

Hn(X ) =

{
Q` ⊕Q`, if n is even,

0, if n is odd.

To compute dim Hn(X ), it suffices to compute the Euler
characteristic. Moreover, when n is even, Hn(X ) is spanned by
algebraic classes. (e.g., X ∼=P1 × P1 when n = 2.)
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Gabber’s Hypersurface

If d ≥ 3 and p | d , use Gabber’s hypersurface

X d
0 +

n∑
i=0

XiX
d−1
i+1 = 0.

We consider the affine cone Haff
0 ⊂ An+2 defined by the same

equation. It suffices to show that

#Haff
0 (Fqr ) = qr(n+1) + O(qr(n+2)/2)

For an N-tuple W = (w1, · · · ,wN) of nonnegative integers, we write
XW for the monomial Xw1

1 · · ·X
wN
N .

Theorem

Let N ≥ 1, and XW1 , · · · ,XWN be N monomials in N variables with Wi ’s
linearly independent over Q. Suppose that each variable Xi occurs in at
most two of these monomials. Then for V :=

∑
i X

Wi = 0 in AN , we have
#V (Fq) = qN−1 + O(qN/2).
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Delsarte’s Theorem

Theorem (Delsarte)

Let N > k ≥ 0 and suppose given N − k linearly independent monomials
XW1 , · · · ,XWN

N in N variables. Let V := {
∑

i X
Wi
i = 0} and

V ∗ := V ∩ (GN
m ∩ AN

m). Then #V ∗(Fq) = q−1(q − 1)N + O(q(N+k)/2).

We omit the reduction step to Delsarte’s theorem (This step uses
that each variable Xi occurs in at most two of the variables.)
We view the N − k linearly independent vectors Wi as giving rise to
an surjection φ : GN

m → GN−k
m of split tori over Fq:

(X1, · · · ,XN) 7→ (XW1 , · · · ,XWN−k ). Then we only need to show:

Theorem

Let N > k ≥ 0, and suppose given a surjection φ : GN
m → GN−k

m of split
tori over Fq. Denote by Σ : GN−k

m → A1 the sum of coordinates. Then

#{x ∈ GN
m(Fq) : Σ(φ(x)) = 0} =

(q − 1)N

q
+ O(q(N+k)/2).
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Count Points on Tori

Theorem

Let N > k ≥ 0, and suppose given a surjection φ : GN
m → GN−k

m of split
tori over Z. Denote by Σ : GN−k

m → A1 the sum of coordinates. Then

#{x ∈ GN
m(Fq) : Σ(φ(x)) = 0} =

(q − 1)N

q
+ O(q(N+k)/2).

By taking characters, φ is given by an injective group homomorphism
φ∨ : ZN−k ↪→ ZN which sends ei to Wi .

We have that T ∗(ker(φ)) = coker(φ∨). Denote it by M.

dimM⊗Q = k and consider 0→ Mtor → M → M/Mtor
∼=Zk → 0.

Taking Hom(−,Gm), we obtain 0→ Gk
m → ker(φ)→ µMtor → 0.

We first treat the free part.
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We first treat the free part.
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Counting Points on Tori
Recall the sequence 0 → Gk

m → ker(φ) → µMtor → 0

The composite inclusion Gk
m → ker(φ) ⊂ GN sits inside an exact

sequence
0→ Gk

m → GN
m

π→ GN−k
m → 0.

By Hilbert theorem 90 (H1(k,Gm) = 0 for any field k),

0→ Gk
m(Fq)→ GN

m(Fq)
π→ GN−k

m (Fq)→ 0.

By construction, φ factors as GN
m

π→ GN−k
m

φ̄→ GN−k
m . Hence

|{x ∈ GN
m(Fq) : Σ(φ(x)) = 0}| = (q−1)k |{x ∈ GN−k

m (Fq) : Σ(φ̄(x)) = 0}|.

Recall that we want a big O estimate of the LHS, now we reduce to
considering the RHS. Hence we reduce to the case k = 0.
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Counting Points on Tori

Our new goal: Given 0→ µMtor → GN
m

φ→ GN
m → 0, estimate

T := #{x ∈ GN
m(Fq)(Fq) : Σ(φ(x)) = 0}. Let’s write µMtor simply as

µ.

Hilbert theorem 90 gives a four term SES

0→ µ(Fq)→ GN
m(Fq)

φ→ GN
m(Fq)→ H1(Fq, µ(F̄q))→ 0.

Note that #µ(Fq) = #H1(Fq, µ(F̄q))

T = (#µ(Fq)) · (#{t ∈ GN
m(Fq) :

∑
i ti = 0, t ∈ im(φ)})

Consider K := ker(Hom(GN
m(Fq),C×)→ Hom(GN

m(Fq),C×)). Then∑
χ∈K

χ(t) = #µ(Fq) if t ∈ im(φ), and 0 otherwise.

Therefore, we get

T =
∑

t∈GN
m(Fq),

∑
i ti=0

∑
χ∈K

χ(t).
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Gauss Sums

Take a nontrivial additive character ψ : Ga(Fq) = Fq → C×. We have∑
a∈Fq

ψ(ax) = q if x = 0 and 0 otherwise.

Now we rewrite the sum as

T =
1

q

∑
a∈Fq

∑
χ∈K

∑
t∈GN

m(Fq)

χ(t)ψ(a
∑
i

ti ).

Recall that we have

Theorem (Modulus of Gauss sums)

For any nontrivial additive character ψ and nontrivial multiplicative
character χ on Fq, |

∑
t∈F×q χ(t)ψ(t)| =

√
q.
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Gauss Sums

T =
1

q

∑
a∈Fq

∑
χ∈K

∑
t∈GN

m(Fq)

χ(t)ψ(a
∑
i

ti )

The a = 0 term is q−1
∑
χ∈K
∑

t∈GN
m(Fq)

χ(t) = q−1(q − 1)N .

For the other a’s, the term has norm qN/2 (a product of N Gauss
sums). There are #K = #H1(Fq, µ(F̄q)) ≤ #Mtor of them.

To sum up, we have

|T −
(q − 1)N

q
| ≤ q − 1

q
#Mtorq

N/2.

Now we are done!
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(From now on optional) Torsors

Let G be a group and S be a set on which G acts on the right. We
say that S is a G -torsor if for every s ∈ S , the map G → S defined by
g 7→ sg is a bijection.

Now suppose X is a scheme, G is a sheaf of groups on Xét and S is a
sheaf of sets on Xét. We say that S is a G-torsor if

I for some covering {Ui }→ X , S(Ui ) 6= ∅ for each Ui ;
I for every U → X étale and s ∈ Γ(U, S), the map g 7→ sg : G|U → S|U is

an isomorphism of sheaves.

Assume that every finite subset of X is contained in an open affine
and X is quasi-compact (e.g., X is a quasi-projective variety). Then
for any sheaf of abelian groups F, Čech cohomology agrees with
derived functor cohomology, so that elements H1(Xét,F) correspond
bijectively to isomorphism classes of F-torsors.

Torsors of a finite group G over X are representable by a Galois cover
of X (not necessarily connected).

If G is a profinite abelian group, then there is a canonical
identification H1(Xét,G ) = Homcts(π

ét
1 (X ),G ).
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Persistence of purity

We go over the persistence of purity theorem with a bit more detail.

Theorem (Persistence of Purity)

Let F be an `-adic local system on U0 which is ι-real. Suppose that for
some closed point u0 ∈ U0, every eigenvalue αi ,u0 of Frobu0 |Fū0

satisfies
|ι(αi ,u0)| = 1. Then the same is true for any other closed point u ∈ U0.

We already know that |ι(αi ,u ′)| ≤ 1 for every i . Therefore, it suffices
to prove that |ι(det(Frobu |Fū))| = 1.

We reduce to proving that det(F) is ι-pure of weight 0 if det(F|u0) is.

In order to do this, we may of course replace det(F) by any power
det(F)⊗m for any m ≥ 1. Therefore, it suffices to prove the following:

Lemma

Let L be an `-adic local system on U0 of rank 1. Then for some power
L⊗m, there exists α ∈ Q̄×` such that Frobu |L⊗m = αdegu.
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We reduce to proving that det(F) is ι-pure of weight 0 if det(F|u0) is.

In order to do this, we may of course replace det(F) by any power
det(F)⊗m for any m ≥ 1. Therefore, it suffices to prove the following:

Lemma

Let L be an `-adic local system on U0 of rank 1. Then for some power
L⊗m, there exists α ∈ Q̄×` such that Frobu |L⊗m = αdegu.

Ziquan Yang (Harvard University) RH for Hypersurfaces October 26, 2020 21 / 25



Persistence of purity

We go over the persistence of purity theorem with a bit more detail.

Theorem (Persistence of Purity)

Let F be an `-adic local system on U0 which is ι-real. Suppose that for
some closed point u0 ∈ U0, every eigenvalue αi ,u0 of Frobu0 |Fū0
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Generalities

Put k = Fq and choose an algebraic closure k̄/k. The sequence
U → U0 → Spec k induces a short exact sequence

1→ πét
1 (U, ū0)→ πét

1 (U0, ū0)→ πét
1 (Spec k, ū0)→ 1.

Assume that u0 is defined over k. Then (u0, ū0)→ (U, ū0) induces a
splitting

πét
1 (Spec k, ū0) = Galk → πét

1 (U0, ū0).

We now have a picture

Via the splitting, Galk acts by conjugation on πét
1 (U), and hence on

πét
1 (U)-representations. This action fixes L|πét

1 (U).
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1 (U0, ū0)→ πét
1 (Spec k, ū0)→ 1.
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Proof of Persistence of Purity

Since πét
1 (U0) is compact, L : πét

1 (U0)→ Q̄×` lands in O×Eλ
for some

finite extension Eλ/Q`. Let Fλ be the residue field, where λ ∈ `∞.

Up to replacing L by its #F×λ -power, L(πét
1 (U0)) ⊆ 1 +mλ, where

mλ ⊂ OEλ
is the maximal ideal.

Up to replacing L again by its `-th power, we may assume
L(πét

1 (U0)) ⊆ 1 + `mλ, which is isomorphic to `mλ ⊂ Q̄` via the
logarithm. Hence L gives rise to an element in Homcts(U0, Q̄`).
Recall that Homcts(U0, Q̄`) is identified with H1(U0, Q̄`), so we may
view L as an element of H1(U0, Q̄`). Similarly, L|πét

1 (U) ∈ H1(U, Q̄`).
We have argued that L|πét

1 (U) is Frobq-invariant. However, the RH for

curves implies that eigenvalues of Frobq on H1(U, Q̄`) ∼=H1
c (U, Q̄`)∨

have absolute value ≥ q1/2 > 1.

Therefore, L|πét
1 (U) is trivial.
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Proof of Persistence of Purity

Recall that our goal is to show that for every closed point u ∈ U0,
Frobu |Lū = (α)degu for some α ∈ Q̄×. The the point is that α is
uniform over all points. (L has already been replaced by a power.)

This is a consequence of L|πét
1 (U) = 0 and α is just Frobu0 |Lū0

.

Up to replacing U by U⊗k(u), we reduce to the case degu = 1.

Consider the abelianization πét
1 (U0)

ab := πét
1 (U0, ū0)

ab.

If we choose another geometric point ū on U, and étale path ū0  ū,
then we have an isomorphism πét

1 (U0, ū0)
∼→ πét

1 (U0, ū), which

descends to πét
1 (U0, ū0)

ab ∼→ πét
1 (U0, ū)

ab.

The point is that the second isomorphism does not depend on the
choice of the path ū0  ū.

Ziquan Yang (Harvard University) RH for Hypersurfaces October 26, 2020 24 / 25



Proof of Persistence of Purity

Recall that our goal is to show that for every closed point u ∈ U0,
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Frobu |Lū = (α)degu for some α ∈ Q̄×. The the point is that α is
uniform over all points. (L has already been replaced by a power.)

This is a consequence of L|πét
1 (U) = 0 and α is just Frobu0 |Lū0
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Proof of Persistence of Purity

Suppose we have another k-point u ∈ U. Then we have two sections.

1 πét
1 (U)ab/? πét

1 (U0)
ab Galk 1

Q̄×` Q̄×`

L
Lu0

Lu
u0

u

Now the representation Lu0 − Lu : Galk → Q̄×` is induced by

Galk
u0−u→ πét

1 (U0)
ab → Q̄×` .

Since u0 − u lands in πét
1 (U)ab/?, the above composition vanishes.
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