The Riemann Hypothesis for Hypersurfaces

Ziquan Yang

Harvard University

October 26, 2020

Ziquan Yang (Harvard University)

RH for Hypersurfaces

October 26, 2020 1 / 25

э

< □ > < 同 > < 回 > < 回 > < 回 >

• Let \mathbb{F}_q be our base field. Let X_0 be a smooth projective variety over \mathbb{F}_q and set $X := X_0 \otimes \overline{\mathbb{F}}_q$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- Let \mathbb{F}_q be our base field. Let X_0 be a smooth projective variety over \mathbb{F}_q and set $X := X_0 \otimes \overline{\mathbb{F}}_q$.
- Recall that the RH for X_0 states that every eigenvalue α_i of the Frobenius action on $\operatorname{H}^i_{\operatorname{\acute{e}t}}(X, \mathbb{Q}_\ell)$ has $|\iota(\alpha_i)| = q^{i/2}$ for every embedding $\iota: \overline{\mathbb{Q}}_\ell \hookrightarrow \mathbb{C}$.

イロト 不得 トイヨト イヨト 二日

- Let \mathbb{F}_q be our base field. Let X_0 be a smooth projective variety over \mathbb{F}_q and set $X := X_0 \otimes \overline{\mathbb{F}}_q$.
- Recall that the RH for X_0 states that every eigenvalue α_i of the Frobenius action on $\operatorname{H}^i_{\operatorname{\acute{e}t}}(X, \mathbb{Q}_\ell)$ has $|\iota(\alpha_i)| = q^{i/2}$ for every embedding $\iota: \overline{\mathbb{Q}}_\ell \hookrightarrow \mathbb{C}$.
- Today we prove the RH for $X_0 \subset \mathbb{P}^{n+1}$ a smooth hypersurface of degree *d*. As usual we start with understanding the cohomology.

イロト 不得 トイラト イラト 一日

- Let \mathbb{F}_q be our base field. Let X_0 be a smooth projective variety over \mathbb{F}_q and set $X := X_0 \otimes \overline{\mathbb{F}}_q$.
- Recall that the RH for X_0 states that every eigenvalue α_i of the Frobenius action on $\operatorname{H}^i_{\operatorname{\acute{e}t}}(X, \mathbb{Q}_\ell)$ has $|\iota(\alpha_i)| = q^{i/2}$ for every embedding $\iota: \overline{\mathbb{Q}}_\ell \hookrightarrow \mathbb{C}$.
- Today we prove the RH for $X_0 \subset \mathbb{P}^{n+1}$ a smooth hypersurface of degree *d*. As usual we start with understanding the cohomology.
- First of all, we recall the cohomology of Pⁿ: H^{*}(Pⁿ) ≃ Z[h]/hⁿ⁺¹ where H is the class of a hyperplane H.

イロト 不得 トイヨト イヨト 二日

Let X be a smooth ample divisor of a smooth projective variety Y with dim Y = n + 1. Suppose the base field k is algebraically closed. Write $H^{j}(-)$ for $H^{j}_{\acute{e}t}((-), \mathbb{Q}_{\ell})$, $\ell \neq \operatorname{char} k$.

- $H^{j}(Y) \to H^{j}(X)$ is bijective for j < n and injective for j = n.
- **2** $H_j(X) \to H_j(Y)$ is bijective for j < n and surjective for j = n.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let X be a smooth ample divisor of a smooth projective variety Y with dim Y = n + 1. Suppose the base field k is algebraically closed. Write $H^{j}(-)$ for $H^{j}_{\acute{e}t}((-), \mathbb{Q}_{\ell})$, $\ell \neq \operatorname{char} k$.

- $H^{j}(Y) \to H^{j}(X)$ is bijective for j < n and injective for j = n.
- **2** $H_j(X) \to H_j(Y)$ is bijective for j < n and surjective for j = n.

• Let's view $H_j(X)$ simply as $H^j(X)^{\vee}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let X be a smooth ample divisor of a smooth projective variety Y with dim Y = n + 1. Suppose the base field k is algebraically closed. Write $H^{j}(-)$ for $H^{j}_{\acute{e}t}((-), \mathbb{Q}_{\ell})$, $\ell \neq \operatorname{char} k$.

- $H^{j}(Y) \to H^{j}(X)$ is bijective for j < n and injective for j = n.
- **2** $H_j(X) \to H_j(Y)$ is bijective for j < n and surjective for j = n.
 - Let's view $H_j(X)$ simply as $H^j(X)^{\vee}$.
 - Apply the above to $Y := \mathbb{P}^{n+1}$. Again let h denote the class of a hyperplane. For all $j \neq n$, we have $\mathrm{H}^{j}(X) \cong \mathbb{Q}_{\ell}(h^{j}) \cong \mathbb{Q}_{\ell}(j)$.

イロト 不得 トイヨト イヨト 二日

Let X be a smooth ample divisor of a smooth projective variety Y with dim Y = n + 1. Suppose the base field k is algebraically closed. Write $H^{j}(-)$ for $H^{j}_{\acute{e}t}((-), \mathbb{Q}_{\ell})$, $\ell \neq \operatorname{char} k$.

- $H^{j}(Y) \to H^{j}(X)$ is bijective for j < n and injective for j = n.
- **2** $H_j(X) \to H_j(Y)$ is bijective for j < n and surjective for j = n.
 - Let's view $H_j(X)$ simply as $H^j(X)^{\vee}$.
 - Apply the above to $Y := \mathbb{P}^{n+1}$. Again let h denote the class of a hyperplane. For all $j \neq n$, we have $\mathrm{H}^{j}(X) \cong \mathbb{Q}_{\ell}(h^{j}) \cong \mathbb{Q}_{\ell}(j)$.
 - The only interesting part of the cohomology of X is $H^n(X)$.

イロト 不得 トイラト イラト 一日

• Back to our situation when $X_0 \subset \mathbb{P}^{n+1}$ is a hypersurface of degree d, and $X := X_0 \otimes \overline{\mathbb{F}}_q$.

イロト 不得下 イヨト イヨト

- Back to our situation when X₀ ⊂ Pⁿ⁺¹ is a hypersurface of degree d, and X := X₀⊗ F
 _q.
- Let $h \in \mathrm{H}^2(X)$ be the hyperplane section. Consider the primitive cohomology

 $P^n(X) = H^n(X)$ if *n* is odd, and $P^n(X) = H^n(X)/\langle h^{n/2} \rangle$ if *n* is even.

Then we have $H^*(X) \cong H^*(\mathbb{P}^n) \oplus \mathbb{P}^n(X)$.

イロト イポト イヨト イヨト 二日

- Back to our situation when X₀ ⊂ Pⁿ⁺¹ is a hypersurface of degree d, and X := X₀⊗ F
 _q.
- Let $h \in \mathrm{H}^2(X)$ be the hyperplane section. Consider the primitive cohomology

 $P^n(X) = H^n(X)$ if *n* is odd, and $P^n(X) = H^n(X)/\langle h^{n/2} \rangle$ if *n* is even.

Then we have $H^*(X) \cong H^*(\mathbb{P}^n) \oplus \mathrm{P}^n(X)$.

• The Zeta function $Z(X_0, T)$ is given by

$$\begin{aligned} &\frac{P(T)}{\prod_{i=0}^{n}(1-q^{i}T)}(n \text{ odd}), \text{ or } \frac{1}{P(T)\prod_{i=0}^{n}(1-q^{i}T)}(n \text{ even}) \\ &\text{with } P(T) := \det(1-T \text{Frob}_{q}|_{\text{P}^{n}(X_{0})}). \end{aligned}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Back to our situation when X₀ ⊂ Pⁿ⁺¹ is a hypersurface of degree d, and X := X₀⊗ F
 _q.
- Let $h \in \mathrm{H}^2(X)$ be the hyperplane section. Consider the primitive cohomology

 $P^n(X) = H^n(X)$ if *n* is odd, and $P^n(X) = H^n(X)/\langle h^{n/2} \rangle$ if *n* is even.

Then we have $H^*(X) \cong H^*(\mathbb{P}^n) \oplus \mathrm{P}^n(X)$.

• The Zeta function $Z(X_0, T)$ is given by

$$\frac{P(T)}{\prod_{i=0}^{n}(1-q^{i}T)}(n \text{ odd}), \text{ or } \frac{1}{P(T)\prod_{i=0}^{n}(1-q^{i}T)}(n \text{ even})$$

with $P(T) := \det(1 - T \operatorname{Frob}_q|_{\operatorname{P}^n(X_0)}).$

• In either case, we see that P(T) has integer coefficients. In particular, the coefficients are totally real.

イロト 不得 トイヨト イヨト 二日

• Since $\alpha \mapsto q^n/\alpha$ defines an involution on the eigenvalues of Frob_q , it suffices to show that every eigenvalue of Frob_q on $\operatorname{P}^n(X)$ has ι -norm $\leq q^{n/2}$, for any $\iota : \overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}$.

(日)

- Since $\alpha \mapsto q^n/\alpha$ defines an involution on the eigenvalues of Frob_q , it suffices to show that every eigenvalue of Frob_q on $\operatorname{P}^n(X)$ has ι -norm $\leq q^{n/2}$, for any $\iota : \overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}$.
- Recall that $H^*(X) \cong H^*(\mathbb{P}^n) \oplus \mathrm{P}^n(X)$, so that

$$\#X_0(\mathbb{F}_{q^r}) = \#\mathbb{P}^n(\mathbb{F}_{q^r}) + (-1)^r \operatorname{tr}((\operatorname{Frob}_q)^r|_{\mathbb{P}^n(X)})$$

by the point counting formula.

- Since $\alpha \mapsto q^n/\alpha$ defines an involution on the eigenvalues of Frob_q , it suffices to show that every eigenvalue of Frob_q on $\operatorname{P}^n(X)$ has ι -norm $\leq q^{n/2}$, for any $\iota : \overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}$.
- Recall that $H^*(X) \cong H^*(\mathbb{P}^n) \oplus \mathrm{P}^n(X)$, so that

$$\#X_0(\mathbb{F}_{q^r}) = \#\mathbb{P}^n(\mathbb{F}_{q^r}) + (-1)^r \operatorname{tr}((\operatorname{Frob}_q)^r|_{\mathbb{P}^n(X)})$$

by the point counting formula.

It suffices to show that

$$\#X_0(\mathbb{F}_{q^r}) = \#\mathbb{P}^n(\mathbb{F}_{q^r}) + O(q^{rn/2})$$

as $r \ge 1$ varies.

• Just as what we did last time, we first reduce to treating one hypersurface via deformation.

< □ > < 同 > < 回 > < 回 > < 回 >

- Just as what we did last time, we first reduce to treating one hypersurface via deformation.
- Let U_0 be an affine, smooth, and geometrically connected curve over \mathbb{F}_q and \mathcal{F} be an ℓ -adic local system (lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf) on U_0 .

< □ > < □ > < □ > < □ > < □ > < □ >

- Just as what we did last time, we first reduce to treating one hypersurface via deformation.
- Let U_0 be an affine, smooth, and geometrically connected curve over \mathbb{F}_q and \mathcal{F} be an ℓ -adic local system (lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf) on U_0 .
- For each closed point $u \in U_0$, we have a pullback $\mathcal{F}|_u$, which is an ℓ -adic local system on $\operatorname{Spec} k(u)$.

< □ > < □ > < □ > < □ > < □ > < □ >

- Just as what we did last time, we first reduce to treating one hypersurface via deformation.
- Let U_0 be an affine, smooth, and geometrically connected curve over \mathbb{F}_q and \mathcal{F} be an ℓ -adic local system (lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf) on U_0 .
- For each closed point $u \in U_0$, we have a pullback $\mathcal{F}|_u$, which is an ℓ -adic local system on $\operatorname{Spec} k(u)$.
- Recall that to giving such a local system amounts to giving a represention $\operatorname{Gal}_{k(u)} \to \operatorname{GL}(\mathcal{F}_{\bar{u}})$ for the geometric point \bar{u} over u.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Just as what we did last time, we first reduce to treating one hypersurface via deformation.
- Let U_0 be an affine, smooth, and geometrically connected curve over \mathbb{F}_q and \mathcal{F} be an ℓ -adic local system (lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf) on U_0 .
- For each closed point $u \in U_0$, we have a pullback $\mathcal{F}|_u$, which is an ℓ -adic local system on $\operatorname{Spec} k(u)$.
- Recall that to giving such a local system amounts to giving a represention $\operatorname{Gal}_{k(u)} \to \operatorname{GL}(\mathcal{F}_{\bar{u}})$ for the geometric point \bar{u} over u.
- Let Frob_u be the generator of $\operatorname{Gal}_{\mathsf{k}(u)}$ given by $\lambda \mapsto \lambda^{\#\mathsf{k}(u)}$. Set

$$P_{\mathcal{F},u}(T) := \det(1 - T^{[\mathsf{k}(u):k]} \operatorname{Frob}_{u}|_{\mathcal{F}_{\bar{u}}})$$

and

$$L_{\mathcal{F}}(T) := \prod_{u \in U} P_{\mathcal{F},u}(T)^{-1}.$$

イロト 不得 トイラト イラト 一日

• Recall that last time we proved

Theorem

Let \mathcal{F} be an ℓ -adic local system on U_0 which is ι -real. Suppose that for some closed point $u \in U_0$, every eigenvalue $\alpha_{i,u}$ of $\operatorname{Frob}_u|_{\mathcal{F}_{\bar{u}}}$ satisfies $|\iota(\alpha_{i,u})| \leq 1$. Then the same is true for any other closed point $u' \in U_0$.

イロト 不得下 イヨト イヨト

• Recall that last time we proved

Theorem

Let \mathcal{F} be an ℓ -adic local system on U_0 which is ι -real. Suppose that for some closed point $u \in U_0$, every eigenvalue $\alpha_{i,u}$ of $\operatorname{Frob}_u|_{\mathcal{F}_{\bar{u}}}$ satisfies $|\iota(\alpha_{i,u})| \leq 1$. Then the same is true for any other closed point $u' \in U_0$.

• We also showed that the above theorem holds with $|\iota(\alpha_{i,u})| \le 1$ replaced by $|\iota(\alpha_{i,u})| = 1$ (persistence of purity).

< □ > < □ > < □ > < □ > < □ > < □ >

• Recall that last time we proved

Theorem

Let \mathcal{F} be an ℓ -adic local system on U_0 which is ι -real. Suppose that for some closed point $u \in U_0$, every eigenvalue $\alpha_{i,u}$ of $\operatorname{Frob}_u|_{\mathcal{F}_{\bar{u}}}$ satisfies $|\iota(\alpha_{i,u})| \leq 1$. Then the same is true for any other closed point $u' \in U_0$.

- We also showed that the above theorem holds with $|\iota(\alpha_{i,u})| \le 1$ replaced by $|\iota(\alpha_{i,u})| = 1$ (persistence of purity).
- We first argue that given this, we can complete the reduction step.

< □ > < □ > < □ > < □ > < □ > < □ >

• Recall that last time we proved

Theorem

Let \mathcal{F} be an ℓ -adic local system on U_0 which is ι -real. Suppose that for some closed point $u \in U_0$, every eigenvalue $\alpha_{i,u}$ of $\operatorname{Frob}_u|_{\mathcal{F}_{\bar{u}}}$ satisfies $|\iota(\alpha_{i,u})| \leq 1$. Then the same is true for any other closed point $u' \in U_0$.

- We also showed that the above theorem holds with $|\iota(\alpha_{i,u})| \le 1$ replaced by $|\iota(\alpha_{i,u})| = 1$ (persistence of purity).
- We first argue that given this, we can complete the reduction step.
- Given two homogenous polynomials F_0, F_1 , we can consider the pencil $tF_0 + (1-t)F_1$, thereby obtaining a family over \mathbb{A}^1 . If F_0, F_1 are smooth, by removing singular fibers, we obtain a family $f : \mathfrak{X} \to U$ containing F_0, F_1 .

イロト 不得 トイラト イラト 一日

• Recall that last time we proved

Theorem

Let \mathcal{F} be an ℓ -adic local system on U_0 which is ι -real. Suppose that for some closed point $u \in U_0$, every eigenvalue $\alpha_{i,u}$ of $\operatorname{Frob}_u|_{\mathcal{F}_{\bar{u}}}$ satisfies $|\iota(\alpha_{i,u})| \leq 1$. Then the same is true for any other closed point $u' \in U_0$.

- We also showed that the above theorem holds with $|\iota(\alpha_{i,u})| \le 1$ replaced by $|\iota(\alpha_{i,u})| = 1$ (persistence of purity).
- We first argue that given this, we can complete the reduction step.
- Given two homogenous polynomials F_0, F_1 , we can consider the pencil $tF_0 + (1-t)F_1$, thereby obtaining a family over \mathbb{A}^1 . If F_0, F_1 are smooth, by removing singular fibers, we obtain a family $f : \mathfrak{X} \to U$ containing F_0, F_1 .
- Apply the proposition to 𝔅 := ℝⁿf_{*}Q
 _ℓ(n/2). (Recall that the Zeta function ensures that our 𝔅 is in fact integral.)

Interlude : Algebraic Groups

 Let k be a field and G be a k-variety. Let m: G × G → G be a morphism and e: Spec k → G be a k-point.

3

< □ > < 同 > < 回 > < 回 > < 回 >

Interlude : Algebraic Groups

- Let k be a field and G be a k-variety. Let $m: G \times G \rightarrow G$ be a morphism and $e: \operatorname{Spec} k \rightarrow G$ be a k-point.
- We say that (G, m, e) gives an algebraic group if m satisfies the group axioms with e being the identity.

イロト 不得下 イヨト イヨト

Interlude : Algebraic Groups

- Let k be a field and G be a k-variety. Let $m: G \times G \rightarrow G$ be a morphism and $e: \operatorname{Spec} k \rightarrow G$ be a k-point.
- We say that (G, m, e) gives an algebraic group if m satisfies the group axioms with e being the identity.
- We say that G is a linear algebraic group it is isomorphic to a subgroup of GL_n for some n. An algebraic group is linear if and only if it is affine.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- Let k be a field and G be a k-variety. Let $m: G \times G \rightarrow G$ be a morphism and $e: \operatorname{Spec} k \rightarrow G$ be a k-point.
- We say that (G, m, e) gives an algebraic group if m satisfies the group axioms with e being the identity.
- We say that G is a linear algebraic group it is isomorphic to a subgroup of GL_n for some n. An algebraic group is linear if and only if it is affine.
- If Spec \mathcal{O}_G is equipped with the structure of an algebraic group, then \mathcal{O}_G is equipped with a distinguished $\mathcal{O}_G \to k$ and a co-multiplication structure $\Delta : \mathcal{O}_G \to \mathcal{O}_G \otimes \mathcal{O}_G$.

イロト イポト イヨト イヨト 二日

- Let k be a field and G be a k-variety. Let $m: G \times G \rightarrow G$ be a morphism and $e: \operatorname{Spec} k \rightarrow G$ be a k-point.
- We say that (G, m, e) gives an algebraic group if m satisfies the group axioms with e being the identity.
- We say that G is a linear algebraic group it is isomorphic to a subgroup of GL_n for some n. An algebraic group is linear if and only if it is affine.
- If Spec \mathcal{O}_G is equipped with the structure of an algebraic group, then \mathcal{O}_G is equipped with a distinguished $\mathcal{O}_G \to k$ and a co-multiplication structure $\Delta : \mathcal{O}_G \to \mathcal{O}_G \otimes \mathcal{O}_G$.
- For example, \mathbb{G}_m is given by $\mathcal{O}_G := k[T^{\pm}]$ and $\Delta(T) = T \otimes T$.

イロト イポト イヨト イヨト 二日

- Let k be a field and G be a k-variety. Let $m: G \times G \rightarrow G$ be a morphism and $e: \operatorname{Spec} k \rightarrow G$ be a k-point.
- We say that (G, m, e) gives an algebraic group if m satisfies the group axioms with e being the identity.
- We say that G is a linear algebraic group it is isomorphic to a subgroup of GL_n for some n. An algebraic group is linear if and only if it is affine.
- If Spec \mathcal{O}_G is equipped with the structure of an algebraic group, then \mathcal{O}_G is equipped with a distinguished $\mathcal{O}_G \to k$ and a co-multiplication structure $\Delta : \mathcal{O}_G \to \mathcal{O}_G \otimes \mathcal{O}_G$.
- For example, \mathbb{G}_m is given by $\mathcal{O}_G := k[T^{\pm}]$ and $\Delta(T) = T \otimes T$.
- A character of a group G is a morphism $G \to \mathbb{G}_m$. The group of characters is denoted by $X^*(G)$.

イロト イヨト イヨト 一日

• Given a finitely generated abelian group M. Consider the functor $\operatorname{Hom}(M, \mathbb{G}_m) : \operatorname{Alg}/k \to \operatorname{Grp}$ defined by $R \mapsto \operatorname{Hom}(M, R^{\times})$.

イロト 不得下 イヨト イヨト

- Given a finitely generated abelian group M. Consider the functor $\operatorname{Hom}(M, \mathbb{G}_m) : \operatorname{Alg}/k \to \operatorname{Grp}$ defined by $R \mapsto \operatorname{Hom}(M, R^{\times})$.
- This functor is represented by a commutative algebraic group. When $M = \mathbb{Z}$, $\operatorname{Hom}(M, \mathbb{G}_m) = \mathbb{G}_m$.

イロト 不得 トイヨト イヨト

- Given a finitely generated abelian group M. Consider the functor $\operatorname{Hom}(M, \mathbb{G}_m) : \operatorname{Alg}/k \to \operatorname{Grp}$ defined by $R \mapsto \operatorname{Hom}(M, R^{\times})$.
- This functor is represented by a commutative algebraic group. When $M = \mathbb{Z}$, $\operatorname{Hom}(M, \mathbb{G}_m) = \mathbb{G}_m$.
- Groups obtained this way are said to be of *multiplicative type*.

- Given a finitely generated abelian group M. Consider the functor $\operatorname{Hom}(M, \mathbb{G}_m) : \operatorname{Alg}/k \to \operatorname{Grp}$ defined by $R \mapsto \operatorname{Hom}(M, R^{\times})$.
- This functor is represented by a commutative algebraic group. When $M = \mathbb{Z}$, $\operatorname{Hom}(M, \mathbb{G}_m) = \mathbb{G}_m$.
- Groups obtained this way are said to be of *multiplicative type*.
- Hom(−, 𝔅_m) and X*(−) are quasi-inverses to each other and defines an equivalence between the category groups of multiplicative type and the category of finitely generated abelian groups.

イロト 不得 トイラト イラト 一日
Interlude : Groups of Multiplicative Type

- Given a finitely generated abelian group M. Consider the functor $\operatorname{Hom}(M, \mathbb{G}_m) : \operatorname{Alg}/k \to \operatorname{Grp}$ defined by $R \mapsto \operatorname{Hom}(M, R^{\times})$.
- This functor is represented by a commutative algebraic group. When $M = \mathbb{Z}$, $\operatorname{Hom}(M, \mathbb{G}_m) = \mathbb{G}_m$.
- Groups obtained this way are said to be of *multiplicative type*.
- Hom(−, 𝔅_m) and X*(−) are quasi-inverses to each other and defines an equivalence between the category groups of multiplicative type and the category of finitely generated abelian groups.
- A morphism $G \rightarrow Q$ of algebraic groups is called a quotient map if it is *faithfully flat*.

イロト 不得 トイラト イラト 一日

Interlude : Groups of Multiplicative Type

- Given a finitely generated abelian group M. Consider the functor $\operatorname{Hom}(M, \mathbb{G}_m) : \operatorname{Alg}/k \to \operatorname{Grp}$ defined by $R \mapsto \operatorname{Hom}(M, R^{\times})$.
- This functor is represented by a commutative algebraic group. When $M = \mathbb{Z}$, $\operatorname{Hom}(M, \mathbb{G}_m) = \mathbb{G}_m$.
- Groups obtained this way are said to be of *multiplicative type*.
- Hom(−, 𝔅_m) and X*(−) are quasi-inverses to each other and defines an equivalence between the category groups of multiplicative type and the category of finitely generated abelian groups.
- A morphism $G \rightarrow Q$ of algebraic groups is called a quotient map if it is *faithfully flat*.
- Fact: Every normal algebraic group N of G arises the kernel of a quotient map $G \rightarrow Q$.

イロト 不得 トイヨト イヨト 二日

• If $0 \to N \to G \to Q \to 0$ is an exact sequence, then the induced sequence $0 \to N(\bar{k}) \to G(\bar{k}) \to Q(\bar{k}) \to 0$ is exact.

イロト イポト イヨト イヨト 二日

- If $0 \to N \to G \to Q \to 0$ is an exact sequence, then the induced sequence $0 \to N(\bar{k}) \to G(\bar{k}) \to Q(\bar{k}) \to 0$ is exact.
- To obtain information on k-points, we need to apply Galois cohomology Hⁱ(Gal_k, -), i = 0, 1,

$$0 \to N(k) \to G(k) \to Q(k) \to \mathrm{H}^{1}(k, N(\bar{k})) \to \cdots$$

- If $0 \to N \to G \to Q \to 0$ is an exact sequence, then the induced sequence $0 \to N(\bar{k}) \to G(\bar{k}) \to Q(\bar{k}) \to 0$ is exact.
- To obtain information on k-points, we need to apply Galois cohomology Hⁱ(Gal_k, -), i = 0, 1,

$$0 \to N(k) \to G(k) \to Q(k) \to \mathrm{H}^{1}(k, N(\bar{k})) \to \cdots$$

• Hilbert theorem 90: $\mathrm{H}^{1}(k, \mathbb{G}_{m}(\bar{k})) = 0$ for any field k.

イロト 不得下 イヨト イヨト 二日

- If $0 \to N \to G \to Q \to 0$ is an exact sequence, then the induced sequence $0 \to N(\bar{k}) \to G(\bar{k}) \to Q(\bar{k}) \to 0$ is exact.
- To obtain information on k-points, we need to apply Galois cohomology Hⁱ(Gal_k, -), i = 0, 1,

$$0 \to \mathcal{N}(k) \to \mathcal{G}(k) \to \mathcal{Q}(k) \to \mathrm{H}^{1}(k, \mathcal{N}(\bar{k})) \to \cdots$$

- Hilbert theorem 90: $\mathrm{H}^{1}(k, \mathbb{G}_{m}(\bar{k})) = 0$ for any field k.
- Example: $\mathrm{H}^{1}(k,\mu_{n}(\bar{k})) = k^{\times}/(k^{\times})^{n}$, for $\mu_{n} := \mathrm{Hom}(\mathbb{Z}/n\mathbb{Z},\mathbb{G}_{m})$.

Interlude : Gauss Sums

• Let \mathbb{F}_q be a finite field. $\chi: \mathbb{F}_q^{\times} \to \mathbb{C}^{\times}$ be a mutliplicative character and $\psi: \mathbb{F}_q \to \mathbb{C}^{\times}$ be an additive character.

イロト 不得 トイヨト イヨト 二日

Interlude : Gauss Sums

- Let 𝔽_q be a finite field. χ : 𝔽[×]_q → ℂ[×] be a mutliplicative character and ψ : 𝔽_q → ℂ[×] be an additive character.
- Set $\mu(\chi, \psi) := \sum_{x \in \mathbb{F}_q^{\times}} \chi(x) \psi(x)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Interlude : Gauss Sums

 Let 𝔽_q be a finite field. χ : 𝔽[×]_q → ℂ[×] be a mutliplicative character and ψ : 𝔽_q → ℂ[×] be an additive character.

• Set
$$\mu(\chi, \psi) := \sum_{x \in \mathbb{F}_q^{\times}} \chi(x) \psi(x)$$
.

 \bullet It is hard to compute $\mu(\chi,\psi)$ in general, but we know its norm:

Theorem

If χ and ψ are both nontrivial, then $|\mu(\chi, \psi)| = \sqrt{q}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Let \mathbb{F}_q be a finite field. $\chi : \mathbb{F}_q^{\times} \to \mathbb{C}^{\times}$ be a mutliplicative character and $\psi : \mathbb{F}_q \to \mathbb{C}^{\times}$ be an additive character.

• Set
$$\mu(\chi, \psi) := \sum_{x \in \mathbb{F}_q^{\times}} \chi(x) \psi(x)$$
.

• It is hard to compute $\mu(\chi,\psi)$ in general, but we know its norm:

Theorem

If χ and ψ are both nontrivial, then $|\mu(\chi,\psi)|=\sqrt{q}.$

• The proof uses orthogonality relaitions in the character theory of finite groups, as well as some elementary tricks of rearranging the order of summations.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Let \mathbb{F}_q be a finite field. $\chi : \mathbb{F}_q^{\times} \to \mathbb{C}^{\times}$ be a mutliplicative character and $\psi : \mathbb{F}_q \to \mathbb{C}^{\times}$ be an additive character.

• Set
$$\mu(\chi, \psi) := \sum_{x \in \mathbb{F}_q^{\times}} \chi(x) \psi(x)$$
.

 \bullet It is hard to compute $\mu(\chi,\psi)$ in general, but we know its norm:

Theorem

If χ and ψ are both nontrivial, then $|\mu(\chi,\psi)|=\sqrt{q}.$

- The proof uses orthogonality relaitions in the character theory of finite groups, as well as some elementary tricks of rearranging the order of summations.
- Reference: Kowalski's notes https://people.math.ethz.ch/~kowalski/exp-sums.pdf.

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

Recall that it suffices to show that for some smooth hypersurface X₀ of degree d in ℙⁿ⁺¹, we have the point-count estimate:

$$\#X_0(\mathbb{F}_{q^r}) = \#\mathbb{P}^n(\mathbb{F}_{q^r}) + O(q^{rn/2})$$

as $r \to \infty$.

イロト イポト イヨト イヨト 二日

Recall that it suffices to show that for some smooth hypersurface X₀ of degree d in ℙⁿ⁺¹, we have the point-count estimate:

$$\#X_0(\mathbb{F}_{q^r}) = \#\mathbb{P}^n(\mathbb{F}_{q^r}) + O(q^{rn/2})$$

as $r \to \infty$.

 If p ∤ d, we can just use the Fermat hypersurface x₀^d + · · · + x_{n+1}^d = 0. Weil provided a formula for the number of solutions ∑_{i=0}^r a_ix_iⁿ = b in A^{r+1}, so the bound can be checked by hand.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recall that it suffices to show that for some smooth hypersurface X₀ of degree d in ℙⁿ⁺¹, we have the point-count estimate:

$$\#X_0(\mathbb{F}_{q^r}) = \#\mathbb{P}^n(\mathbb{F}_{q^r}) + O(q^{rn/2})$$

as $r \to \infty$.

- If p ∤ d, we can just use the Fermat hypersurface x₀^d + · · · + x_{n+1}^d = 0. Weil provided a formula for the number of solutions ∑_{i=0}^r a_ix_iⁿ = b in A^{r+1}, so the bound can be checked by hand.
- We treat the case d = 2 separately (this only matters when p = 2).

$$\mathrm{H}^{n}(X) = \begin{cases} \mathbb{Q}_{\ell} \oplus \mathbb{Q}_{\ell}, & \text{ if } n \text{ is even,} \\ 0, & \text{ if } n \text{ is odd.} \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recall that it suffices to show that for some smooth hypersurface X₀ of degree d in Pⁿ⁺¹, we have the point-count estimate:

$$\#X_0(\mathbb{F}_{q^r}) = \#\mathbb{P}^n(\mathbb{F}_{q^r}) + O(q^{rn/2})$$

as $r \to \infty$.

- If p ∤ d, we can just use the Fermat hypersurface x₀^d + · · · + x_{n+1}^d = 0. Weil provided a formula for the number of solutions ∑_{i=0}^r a_ix_iⁿ = b in A^{r+1}, so the bound can be checked by hand.
- We treat the case d = 2 separately (this only matters when p = 2).

$$\mathrm{H}^{n}(X) = \begin{cases} \mathbb{Q}_{\ell} \oplus \mathbb{Q}_{\ell}, & \text{ if } n \text{ is even,} \\ 0, & \text{ if } n \text{ is odd.} \end{cases}$$

To compute dim Hⁿ(X), it suffices to compute the Euler characteristic. Moreover, when n is even, Hⁿ(X) is spanned by algebraic classes. (e.g., X ≅ P¹ × P¹ when n = 2.)

Gabber's Hypersurface

• If $d \ge 3$ and $p \mid d$, use Gabber's hypersurface

$$X_0^d + \sum_{i=0}^n X_i X_{i+1}^{d-1} = 0.$$

イロト 不得 トイヨト イヨト 二日

Gabber's Hypersurface

• If $d \ge 3$ and $p \mid d$, use Gabber's hypersurface

$$X_0^d + \sum_{i=0}^n X_i X_{i+1}^{d-1} = 0.$$

• We consider the affine cone $H_0^{\rm aff}\subset \mathbb{A}^{n+2}$ defined by the same equation. It suffices to show that

$$\#H_0^{\mathrm{aff}}(\mathbb{F}_{q^r}) = q^{r(n+1)} + O(q^{r(n+2)/2})$$

イロト 不得下 イヨト イヨト 二日

Gabber's Hypersurface

• If $d \ge 3$ and $p \mid d$, use Gabber's hypersurface

$$X_0^d + \sum_{i=0}^n X_i X_{i+1}^{d-1} = 0.$$

• We consider the affine cone $H_0^{\mathrm{aff}}\subset \mathbb{A}^{n+2}$ defined by the same equation. It suffices to show that

$$\#H_0^{\mathrm{aff}}(\mathbb{F}_{q^r}) = q^{r(n+1)} + O(q^{r(n+2)/2})$$

• For an *N*-tuple $W = (w_1, \dots, w_N)$ of nonnegative integers, we write X^W for the monomial $X_1^{w_1} \cdots X_N^{w_N}$.

Theorem

Let $N \ge 1$, and X^{W_1}, \dots, X^{W_N} be N monomials in N variables with W_i 's linearly independent over \mathbb{Q} . Suppose that each variable X_i occurs in at most two of these monomials. Then for $V := \sum_i X^{W_i} = 0$ in \mathbb{A}^N , we have $\#V(\mathbb{F}_q) = q^{N-1} + O(q^{N/2})$.

Let $N > k \ge 0$ and suppose given N - k linearly independent monomials $X^{W_1}, \dots, X_N^{W_N}$ in N variables. Let $V := \{\sum_i X_i^{W_i} = 0\}$ and $V^* := V \cap (\mathbb{G}_m^N \cap \mathbb{A}_m^N)$. Then $\#V^*(\mathbb{F}_q) = q^{-1}(q-1)^N + O(q^{(N+k)/2})$.

Let $N > k \ge 0$ and suppose given N - k linearly independent monomials $X^{W_1}, \dots, X_N^{W_N}$ in N variables. Let $V := \{\sum_i X_i^{W_i} = 0\}$ and $V^* := V \cap (\mathbb{G}_m^N \cap \mathbb{A}_m^N)$. Then $\#V^*(\mathbb{F}_q) = q^{-1}(q-1)^N + O(q^{(N+k)/2})$.

• We omit the reduction step to Delsarte's theorem (This step uses that each variable X_i occurs in at most two of the variables.)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $N > k \ge 0$ and suppose given N - k linearly independent monomials $X^{W_1}, \cdots, X_N^{W_N}$ in N variables. Let $V := \{\sum_i X_i^{W_i} = 0\}$ and $V^* := V \cap (\mathbb{G}_m^N \cap \mathbb{A}_m^N)$. Then $\#V^*(\mathbb{F}_q) = q^{-1}(q-1)^N + O(q^{(N+k)/2})$.

- We omit the reduction step to Delsarte's theorem (This step uses that each variable X_i occurs in at most two of the variables.)
- We view the N k linearly independent vectors W_i as giving rise to an surjection $\phi : \mathbb{G}_m^N \to \mathbb{G}_m^{N-k}$ of split tori over \mathbb{F}_q : $(X_1, \cdots, X_N) \mapsto (X^{W_1}, \cdots, X^{W_{N-k}})$. Then we only need to show:

Let $N > k \ge 0$ and suppose given N - k linearly independent monomials $X^{W_1}, \cdots, X_N^{W_N}$ in N variables. Let $V := \{\sum_i X_i^{W_i} = 0\}$ and $V^* := V \cap (\mathbb{G}_m^N \cap \mathbb{A}_m^N)$. Then $\#V^*(\mathbb{F}_q) = q^{-1}(q-1)^N + O(q^{(N+k)/2})$.

- We omit the reduction step to Delsarte's theorem (This step uses that each variable X_i occurs in at most two of the variables.)
- We view the N k linearly independent vectors W_i as giving rise to an surjection $\phi : \mathbb{G}_m^N \to \mathbb{G}_m^{N-k}$ of split tori over \mathbb{F}_q : $(X_1, \dots, X_N) \mapsto (X^{W_1}, \dots, X^{W_{N-k}})$. Then we only need to show:

Theorem

Let $N > k \ge 0$, and suppose given a surjection $\phi : \mathbb{G}_m^N \to \mathbb{G}_m^{N-k}$ of split tori over \mathbb{F}_q . Denote by $\Sigma : \mathbb{G}_m^{N-k} \to \mathbb{A}^1$ the sum of coordinates. Then $\#\{x \in \mathbb{G}_m^N(\mathbb{F}_q) : \Sigma(\phi(x)) = 0\} = \frac{(q-1)^N}{q} + O(q^{(N+k)/2}).$

Theorem

Let $N > k \ge 0$, and suppose given a surjection $\phi : \mathbb{G}_m^N \to \mathbb{G}_m^{N-k}$ of split tori over \mathbb{Z} . Denote by $\Sigma : \mathbb{G}_m^{N-k} \to \mathbb{A}^1$ the sum of coordinates. Then $\#\{x \in \mathbb{G}_m^N(\mathbb{F}_q) : \Sigma(\phi(x)) = 0\} = \frac{(q-1)^N}{q} + O(q^{(N+k)/2}).$

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < 0 < 0

Let $N > k \ge 0$, and suppose given a surjection $\phi : \mathbb{G}_m^N \to \mathbb{G}_m^{N-k}$ of split tori over \mathbb{Z} . Denote by $\Sigma : \mathbb{G}_m^{N-k} \to \mathbb{A}^1$ the sum of coordinates. Then $\#\{x \in \mathbb{G}_m^N(\mathbb{F}_q) : \Sigma(\phi(x)) = 0\} = \frac{(q-1)^N}{q} + O(q^{(N+k)/2}).$

• By taking characters, ϕ is given by an injective group homomorphism $\phi^{\vee} : \mathbb{Z}^{N-k} \hookrightarrow \mathbb{Z}^N$ which sends e_i to W_i .

Let $N > k \ge 0$, and suppose given a surjection $\phi : \mathbb{G}_m^N \to \mathbb{G}_m^{N-k}$ of split tori over \mathbb{Z} . Denote by $\Sigma : \mathbb{G}_m^{N-k} \to \mathbb{A}^1$ the sum of coordinates. Then $\#\{x \in \mathbb{G}_m^N(\mathbb{F}_q) : \Sigma(\phi(x)) = 0\} = \frac{(q-1)^N}{q} + O(q^{(N+k)/2}).$

- By taking characters, ϕ is given by an injective group homomorphism $\phi^{\vee} : \mathbb{Z}^{N-k} \hookrightarrow \mathbb{Z}^N$ which sends e_i to W_i .
- We have that $T^*(\ker(\phi)) = \operatorname{coker}(\phi^{\vee})$. Denote it by M.

Let $N > k \ge 0$, and suppose given a surjection $\phi : \mathbb{G}_m^N \to \mathbb{G}_m^{N-k}$ of split tori over \mathbb{Z} . Denote by $\Sigma : \mathbb{G}_m^{N-k} \to \mathbb{A}^1$ the sum of coordinates. Then $\#\{x \in \mathbb{G}_m^N(\mathbb{F}_q) : \Sigma(\phi(x)) = 0\} = \frac{(q-1)^N}{q} + O(q^{(N+k)/2}).$

- By taking characters, ϕ is given by an injective group homomorphism $\phi^{\vee} : \mathbb{Z}^{N-k} \hookrightarrow \mathbb{Z}^N$ which sends e_i to W_i .
- We have that $T^*(\ker(\phi)) = \operatorname{coker}(\phi^{\vee})$. Denote it by M.
- dim $M \otimes \mathbb{Q} = k$ and consider $0 \to M_{tor} \to M \to M/M_{tor} \cong \mathbb{Z}^k \to 0$.

Let $N > k \ge 0$, and suppose given a surjection $\phi : \mathbb{G}_m^N \to \mathbb{G}_m^{N-k}$ of split tori over \mathbb{Z} . Denote by $\Sigma : \mathbb{G}_m^{N-k} \to \mathbb{A}^1$ the sum of coordinates. Then $\#\{x \in \mathbb{G}_m^N(\mathbb{F}_q) : \Sigma(\phi(x)) = 0\} = \frac{(q-1)^N}{q} + O(q^{(N+k)/2}).$

- By taking characters, ϕ is given by an injective group homomorphism $\phi^{\vee} : \mathbb{Z}^{N-k} \hookrightarrow \mathbb{Z}^N$ which sends e_i to W_i .
- We have that $T^*(\ker(\phi)) = \operatorname{coker}(\phi^{\vee})$. Denote it by M.
- dim $M \otimes \mathbb{Q} = k$ and consider $0 \to M_{tor} \to M \to M/M_{tor} \cong \mathbb{Z}^k \to 0$.
- Taking $\operatorname{Hom}(-, \mathbb{G}_m)$, we obtain $0 \to \mathbb{G}_m^k \to \ker(\Phi) \to \mu_{M_{\operatorname{tor}}} \to 0$.

Let $N > k \ge 0$, and suppose given a surjection $\phi : \mathbb{G}_m^N \to \mathbb{G}_m^{N-k}$ of split tori over \mathbb{Z} . Denote by $\Sigma : \mathbb{G}_m^{N-k} \to \mathbb{A}^1$ the sum of coordinates. Then $\#\{x \in \mathbb{G}_m^N(\mathbb{F}_q) : \Sigma(\phi(x)) = 0\} = \frac{(q-1)^N}{q} + O(q^{(N+k)/2}).$

- By taking characters, ϕ is given by an injective group homomorphism $\phi^{\vee} : \mathbb{Z}^{N-k} \hookrightarrow \mathbb{Z}^N$ which sends e_i to W_i .
- We have that $T^*(\ker(\phi)) = \operatorname{coker}(\phi^{\vee})$. Denote it by M.
- dim $M \otimes \mathbb{Q} = k$ and consider $0 \to M_{tor} \to M \to M/M_{tor} \cong \mathbb{Z}^k \to 0$.
- Taking $\operatorname{Hom}(-, \mathbb{G}_m)$, we obtain $0 \to \mathbb{G}_m^k \to \ker(\Phi) \to \mu_{M_{\operatorname{tor}}} \to 0$.
- We first treat the free part.

Recall the sequence $0 \to \mathbb{G}_{\it m}^{\it k} \to \ker(\varphi) \to \mu_{M_{\rm tor}} \to 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall the sequence $0 \to \mathbb{G}_m^k \to \ker(\Phi) \to \mu_{M_{\mathrm{tor}}} \to 0$

• The composite inclusion $\mathbb{G}_m^k \to \ker(\varphi) \subset \mathbb{G}^N$ sits inside an exact sequence

$$0 \oplus \mathbb{G}_m^k \oplus \mathbb{G}_m^N \stackrel{\pi}{ \to} \mathbb{G}_m^{N-k} \to 0.$$

イロト イポト イヨト イヨト 二日

Recall the sequence $0 \to \mathbb{G}_m^k \to \ker(\Phi) \to \mu_{M_{\mathrm{tor}}} \to 0$

• The composite inclusion $\mathbb{G}_m^k \to \ker(\varphi) \subset \mathbb{G}^N$ sits inside an exact sequence

$$0 \to \mathbb{G}_m^k \to \mathbb{G}_m^N \xrightarrow{\pi} \mathbb{G}_m^{N-k} \to 0.$$

• By Hilbert theorem 90 ($\mathrm{H}^{1}(\mathsf{k},\mathbb{G}_{m})=0$ for any field k),

$$0 \to \mathbb{G}_m^k(\mathbb{F}_q) \to \mathbb{G}_m^N(\mathbb{F}_q) \xrightarrow{\pi} \mathbb{G}_m^{N-k}(\mathbb{F}_q) \to 0.$$

イロト イポト イヨト イヨト 二日

Recall the sequence $0 \to \mathbb{G}_m^k \to \ker(\Phi) \to \mu_{M_{\mathrm{tor}}} \to 0$

The composite inclusion G^k_m → ker(φ) ⊂ G^N sits inside an exact sequence

$$0 \to \mathbb{G}_m^k \to \mathbb{G}_m^N \xrightarrow{\pi} \mathbb{G}_m^{N-k} \to 0.$$

• By Hilbert theorem 90 ($H^1(k, \mathbb{G}_m) = 0$ for any field k),

$$0 \to \mathbb{G}_m^k(\mathbb{F}_q) \to \mathbb{G}_m^N(\mathbb{F}_q) \xrightarrow{\pi} \mathbb{G}_m^{N-k}(\mathbb{F}_q) \to 0.$$

• By construction, ϕ factors as $\mathbb{G}_m^N \xrightarrow{\pi} \mathbb{G}_m^{N-k} \xrightarrow{\overline{\Phi}} \mathbb{G}_m^{N-k}$. Hence

 $|\{x \in \mathbb{G}_m^N(\mathbb{F}_q) : \Sigma(\phi(x)) = 0\}| = (q-1)^k |\{x \in \mathbb{G}_m^{N-k}(\mathbb{F}_q) : \Sigma(\bar{\phi}(x)) = 0\}|.$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のQ@

Recall the sequence $0 \to \mathbb{G}_m^k \to \ker(\Phi) \to \mu_{M_{\mathrm{tor}}} \to 0$

• The composite inclusion $\mathbb{G}_m^k \to \ker(\varphi) \subset \mathbb{G}^N$ sits inside an exact sequence

$$0 \to \mathbb{G}_m^k \to \mathbb{G}_m^N \xrightarrow{\pi} \mathbb{G}_m^{N-k} \to 0.$$

• By Hilbert theorem 90 ($\mathrm{H}^{1}(\mathsf{k},\mathbb{G}_{m})=0$ for any field k),

$$0 \to \mathbb{G}_m^k(\mathbb{F}_q) \to \mathbb{G}_m^N(\mathbb{F}_q) \xrightarrow{\pi} \mathbb{G}_m^{N-k}(\mathbb{F}_q) \to 0.$$

• By construction, ϕ factors as $\mathbb{G}_m^N \xrightarrow{\pi} \mathbb{G}_m^{N-k} \xrightarrow{\overline{\Phi}} \mathbb{G}_m^{N-k}$. Hence

 $|\{x \in \mathbb{G}_m^N(\mathbb{F}_q) : \Sigma(\Phi(x)) = 0\}| = (q-1)^k |\{x \in \mathbb{G}_m^{N-k}(\mathbb{F}_q) : \Sigma(\bar{\Phi}(x)) = 0\}|.$

• Recall that we want a big O estimate of the LHS, now we reduce to considering the RHS. Hence we reduce to the case k = 0.

Ziquan Yang (Harvard University)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Our new goal: Given $0 \to \mu_{M_{tor}} \to \mathbb{G}_m^N \xrightarrow{\Phi} \mathbb{G}_m^N \to 0$, estimate $\mathcal{T} := \#\{x \in \mathbb{G}_m^N(\mathbb{F}_q)(\mathbb{F}_q) : \Sigma(\varphi(x)) = 0\}$. Let's write $\mu_{M_{tor}}$ simply as μ .

イロト イポト イヨト イヨト 二日

- Our new goal: Given $0 \to \mu_{M_{tor}} \to \mathbb{G}_m^N \xrightarrow{\Phi} \mathbb{G}_m^N \to 0$, estimate $\mathcal{T} := \#\{x \in \mathbb{G}_m^N(\mathbb{F}_q) : \Sigma(\varphi(x)) = 0\}$. Let's write $\mu_{M_{tor}}$ simply as μ .
- Hilbert theorem 90 gives a four term SES

 $0 \to \mu(\mathbb{F}_q) \to \mathbb{G}_m^{N}(\mathbb{F}_q) \xrightarrow{\Phi} \mathbb{G}_m^{N}(\mathbb{F}_q) \to \mathrm{H}^1(\mathbb{F}_q, \mu(\bar{\mathbb{F}}_q)) \to 0.$ Note that $\#\mu(\mathbb{F}_q) = \#\mathrm{H}^1(\mathbb{F}_q, \mu(\bar{\mathbb{F}}_q))$

- Our new goal: Given $0 \to \mu_{M_{tor}} \to \mathbb{G}_m^N \xrightarrow{\Phi} \mathbb{G}_m^N \to 0$, estimate $T := \#\{x \in \mathbb{G}_m^N(\mathbb{F}_q) : \Sigma(\phi(x)) = 0\}$. Let's write $\mu_{M_{tor}}$ simply as μ .
- Hilbert theorem 90 gives a four term SES

$$\begin{split} 0 &\to \mu(\mathbb{F}_q) \to \mathbb{G}_m^N(\mathbb{F}_q) \xrightarrow{\Phi} \mathbb{G}_m^N(\mathbb{F}_q) \to \mathrm{H}^1(\mathbb{F}_q, \mu(\bar{\mathbb{F}}_q)) \to 0.\\ \text{Note that } \#\mu(\mathbb{F}_q) &= \#\mathrm{H}^1(\mathbb{F}_q, \mu(\bar{\mathbb{F}}_q))\\ \bullet \ \mathcal{T} &= (\#\mu(\mathbb{F}_q)) \cdot (\#\{t \in \mathbb{G}_m^N(\mathbb{F}_q) : \sum_i t_i = 0, t \in \mathrm{im}(\Phi)\}) \end{split}$$

イロト (個) (日) (日) 日 の()
Counting Points on Tori

- Our new goal: Given $0 \to \mu_{M_{tor}} \to \mathbb{G}_m^N \xrightarrow{\Phi} \mathbb{G}_m^N \to 0$, estimate $T := \#\{x \in \mathbb{G}_m^N(\mathbb{F}_q) : \Sigma(\phi(x)) = 0\}$. Let's write $\mu_{M_{tor}}$ simply as μ .
- Hilbert theorem 90 gives a four term SES

 $0 \to \mu(\mathbb{F}_q) \to \mathbb{G}_m^N(\mathbb{F}_q) \xrightarrow{\Phi} \mathbb{G}_m^N(\mathbb{F}_q) \to \mathrm{H}^1(\mathbb{F}_q, \mu(\bar{\mathbb{F}}_q)) \to 0.$

Note that $\#\mu(\mathbb{F}_q) = \#\mathrm{H}^1(\mathbb{F}_q, \mu(\bar{\mathbb{F}}_q))$ • $T = (\#\mu(\mathbb{F}_q)) \cdot (\#\{t \in \mathbb{G}_m^N(\mathbb{F}_q) : \sum_i t_i = 0, t \in \mathrm{im}(\Phi)\})$

• Consider $\mathcal{K} := \ker(\operatorname{Hom}(\mathbb{G}_m^N(\mathbb{F}_q), \mathbb{C}^{\times}) \to \operatorname{Hom}(\mathbb{G}_m^N(\mathbb{F}_q), \mathbb{C}^{\times})).$ Then

$$\sum_{\chi\in\mathfrak{K}}\chi(t)=\#\mu(\mathbb{F}_q)$$
 if $t\in\mathrm{im}(\varphi),$ and 0 otherwise.

イロト (個) (日) (日) 日 の()

Counting Points on Tori

- Our new goal: Given $0 \to \mu_{M_{tor}} \to \mathbb{G}_m^N \xrightarrow{\Phi} \mathbb{G}_m^N \to 0$, estimate $T := \#\{x \in \mathbb{G}_m^N(\mathbb{F}_q) : \Sigma(\phi(x)) = 0\}$. Let's write $\mu_{M_{tor}}$ simply as μ .
- Hilbert theorem 90 gives a four term SES

 $0 \to \mu(\mathbb{F}_q) \to \mathbb{G}_m^{N}(\mathbb{F}_q) \xrightarrow{\Phi} \mathbb{G}_m^{N}(\mathbb{F}_q) \to \mathrm{H}^1(\mathbb{F}_q, \mu(\bar{\mathbb{F}}_q)) \to 0.$

Note that $\#\mu(\mathbb{F}_q) = \#\mathrm{H}^1(\mathbb{F}_q, \mu(\bar{\mathbb{F}}_q))$ • $T = (\#\mu(\mathbb{F}_q)) \cdot (\#\{t \in \mathbb{G}_m^N(\mathbb{F}_q) : \sum_i t_i = 0, t \in \mathrm{im}(\Phi)\})$

• Consider $\mathcal{K} := \ker(\operatorname{Hom}(\mathbb{G}_m^N(\mathbb{F}_q), \mathbb{C}^{\times}) \to \operatorname{Hom}(\mathbb{G}_m^N(\mathbb{F}_q), \mathbb{C}^{\times})).$ Then

$$\sum_{\chi\in\mathfrak{K}}\chi(t)=\#\mu(\mathbb{F}_{m{q}})$$
 if $t\in\mathrm{im}(\Phi)$, and 0 otherwise.

Therefore, we get

$$\mathcal{T} = \sum_{t \in \mathbb{G}_m^N(\mathbb{F}_q), \sum_i t_i = 0} \sum_{\chi \in \mathcal{K}} \chi(t).$$

• Take a nontrivial additive character $\psi : \mathbb{G}_a(\mathbb{F}_q) = \mathbb{F}_q \to \mathbb{C}^{\times}$. We have

$$\sum_{a\in \mathbb{F}_q} \psi(ax) = q$$
 if $x=0$ and 0 otherwise.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Take a nontrivial additive character $\psi : \mathbb{G}_a(\mathbb{F}_q) = \mathbb{F}_q \to \mathbb{C}^{\times}$. We have

$$\sum_{a \in \mathbb{F}_q} \psi(ax) = q \text{ if } x = 0 \text{ and } 0 \text{ otherwise.}$$

Now we rewrite the sum as

$$T = \frac{1}{q} \sum_{a \in \mathbb{F}_q} \sum_{\chi \in \mathcal{K}} \sum_{t \in \mathbb{G}_m^N(\mathbb{F}_q)} \chi(t) \psi(a \sum_i t_i).$$

イロト イポト イヨト イヨト 二日

• Take a nontrivial additive character $\psi : \mathbb{G}_a(\mathbb{F}_q) = \mathbb{F}_q \to \mathbb{C}^{\times}$. We have

$$\sum_{{m a}\in \mathbb{F}_q} \psi({m a} x) = q$$
 if $x=0$ and 0 otherwise.

Now we rewrite the sum as

$$T = \frac{1}{q} \sum_{a \in \mathbb{F}_q} \sum_{\chi \in \mathcal{K}} \sum_{t \in \mathbb{G}_m^N(\mathbb{F}_q)} \chi(t) \psi(a \sum_i t_i).$$

Recall that we have

Theorem (Modulus of Gauss sums)

For any nontrivial additive character ψ and nontrivial multiplicative character χ on \mathbb{F}_q , $|\sum_{t \in \mathbb{F}_q^{\times}} \chi(t)\psi(t)| = \sqrt{q}$.

A D F A B F A B F A B

 $T = \frac{1}{q} \sum_{a \in \mathbb{F}_q} \sum_{\chi \in \mathcal{K}} \sum_{t \in \mathbb{G}_m^N(\mathbb{F}_q)} \chi(t) \psi(a \sum_i t_i)$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

$$T = \frac{1}{q} \sum_{\mathbf{a} \in \mathbb{F}_q} \sum_{\chi \in \mathcal{K}} \sum_{t \in \mathbb{G}_m^N(\mathbb{F}_q)} \chi(t) \psi(\mathbf{a} \sum_i t_i)$$

• The a = 0 term is $q^{-1} \sum_{\chi \in \mathcal{K}} \sum_{t \in \mathbb{G}_m^N(\mathbb{F}_q)} \chi(t) = q^{-1}(q-1)^N$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

$$T = \frac{1}{q} \sum_{a \in \mathbb{F}_q} \sum_{\chi \in \mathcal{K}} \sum_{t \in \mathbb{G}_m^N(\mathbb{F}_q)} \chi(t) \psi(a \sum_i t_i)$$

- The a = 0 term is $q^{-1} \sum_{\chi \in \mathcal{K}} \sum_{t \in \mathbb{G}_m^N(\mathbb{F}_q)} \chi(t) = q^{-1}(q-1)^N$.
- For the other *a*'s, the term has norm $q^{N/2}$ (a product of *N* Gauss sums). There are $\#\mathcal{K} = \#\mathrm{H}^1(\mathbb{F}_q, \mu(\bar{\mathbb{F}}_q)) \leq \#M_{\mathrm{tor}}$ of them.

イロト 不得 トイヨト イヨト 二日

$$T = \frac{1}{q} \sum_{a \in \mathbb{F}_q} \sum_{\chi \in \mathcal{K}} \sum_{t \in \mathbb{G}_m^N(\mathbb{F}_q)} \chi(t) \psi(a \sum_i t_i)$$

- The a = 0 term is $q^{-1} \sum_{\chi \in \mathcal{K}} \sum_{t \in \mathbb{G}_m^N(\mathbb{F}_q)} \chi(t) = q^{-1}(q-1)^N$.
- For the other *a*'s, the term has norm $q^{N/2}$ (a product of *N* Gauss sums). There are $\#\mathcal{K} = \#\mathrm{H}^1(\mathbb{F}_q, \mu(\bar{\mathbb{F}}_q)) \leq \#M_{\mathrm{tor}}$ of them.
- To sum up, we have

$$|T - \frac{(q-1)^N}{q}| \le \frac{q-1}{q} \# M_{\mathrm{tor}} q^{N/2}.$$

イロト 不得下 イヨト イヨト 二日

$$T = \frac{1}{q} \sum_{a \in \mathbb{F}_q} \sum_{\chi \in \mathcal{K}} \sum_{t \in \mathbb{G}_m^N(\mathbb{F}_q)} \chi(t) \psi(a \sum_i t_i)$$

- The a = 0 term is $q^{-1} \sum_{\chi \in \mathcal{K}} \sum_{t \in \mathbb{G}_m^N(\mathbb{F}_q)} \chi(t) = q^{-1}(q-1)^N$.
- For the other *a*'s, the term has norm $q^{N/2}$ (a product of *N* Gauss sums). There are $\#\mathcal{K} = \#\mathrm{H}^1(\mathbb{F}_q, \mu(\bar{\mathbb{F}}_q)) \leq \#M_{\mathrm{tor}}$ of them.
- To sum up, we have

$$|T - \frac{(q-1)^N}{q}| \le \frac{q-1}{q} \# M_{\text{tor}} q^{N/2}$$

Now we are done!

Let G be a group and S be a set on which G acts on the right. We say that S is a G-torsor if for every s ∈ S, the map G → S defined by g → sg is a bijection.

イロト イポト イヨト イヨト 二日

- Let G be a group and S be a set on which G acts on the right. We say that S is a G-torsor if for every s ∈ S, the map G → S defined by g → sg is a bijection.
- Now suppose X is a scheme, G is a sheaf of groups on X_{ét} and S is a sheaf of sets on X_{ét}. We say that S is a G-torsor if
 - for some covering $\{U_i\} \rightarrow X$, $S(U_i) \neq \emptyset$ for each U_i ;
 - ▶ for every $U \to X$ étale and $s \in \Gamma(U, S)$, the map $g \mapsto sg : G|_U \to S|_U$ is an isomorphism of sheaves.

イロト 不得 トイヨト イヨト 二日

- Let G be a group and S be a set on which G acts on the right. We say that S is a G-torsor if for every s ∈ S, the map G → S defined by g → sg is a bijection.
- Now suppose X is a scheme, G is a sheaf of groups on X_{ét} and S is a sheaf of sets on X_{ét}. We say that S is a G-torsor if
 - for some covering $\{U_i\} \rightarrow X$, $\mathcal{S}(U_i) \neq \emptyset$ for each U_i ;
 - ▶ for every $U \to X$ étale and $s \in \Gamma(U, S)$, the map $g \mapsto sg : G|_U \to S|_U$ is an isomorphism of sheaves.
- Assume that every finite subset of X is contained in an open affine and X is quasi-compact (e.g., X is a quasi-projective variety). Then for any sheaf of abelian groups \mathcal{F} , Čech cohomology agrees with derived functor cohomology, so that elements $\mathrm{H}^1(X_{\mathrm{\acute{e}t}}, \mathcal{F})$ correspond bijectively to isomorphism classes of \mathcal{F} -torsors.

イロト 不得下 イヨト イヨト 二日

- Let G be a group and S be a set on which G acts on the right. We say that S is a G-torsor if for every s ∈ S, the map G → S defined by g → sg is a bijection.
- Now suppose X is a scheme, G is a sheaf of groups on X_{ét} and S is a sheaf of sets on X_{ét}. We say that S is a G-torsor if
 - for some covering $\{U_i\} \rightarrow X$, $\mathcal{S}(U_i) \neq \emptyset$ for each U_i ;
 - ▶ for every $U \to X$ étale and $s \in \Gamma(U, S)$, the map $g \mapsto sg : G|_U \to S|_U$ is an isomorphism of sheaves.
- Assume that every finite subset of X is contained in an open affine and X is quasi-compact (e.g., X is a quasi-projective variety). Then for any sheaf of abelian groups \mathcal{F} , Čech cohomology agrees with derived functor cohomology, so that elements $\mathrm{H}^1(X_{\mathrm{\acute{e}t}}, \mathcal{F})$ correspond bijectively to isomorphism classes of \mathcal{F} -torsors.
- Torsors of a finite group G over X are representable by a Galois cover of X (not necessarily connected).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Let G be a group and S be a set on which G acts on the right. We say that S is a G-torsor if for every s ∈ S, the map G → S defined by g → sg is a bijection.
- Now suppose X is a scheme, G is a sheaf of groups on X_{ét} and S is a sheaf of sets on X_{ét}. We say that S is a G-torsor if
 - for some covering $\{U_i\} \rightarrow X$, $S(U_i) \neq \emptyset$ for each U_i ;
 - ▶ for every $U \to X$ étale and $s \in \Gamma(U, S)$, the map $g \mapsto sg : G|_U \to S|_U$ is an isomorphism of sheaves.
- Assume that every finite subset of X is contained in an open affine and X is quasi-compact (e.g., X is a quasi-projective variety). Then for any sheaf of abelian groups \mathcal{F} , Čech cohomology agrees with derived functor cohomology, so that elements $\mathrm{H}^1(X_{\mathrm{\acute{e}t}}, \mathcal{F})$ correspond bijectively to isomorphism classes of \mathcal{F} -torsors.
- Torsors of a finite group G over X are representable by a Galois cover of X (not necessarily connected).
- If G is a profinite abelian group, then there is a canonical identification $\mathrm{H}^{1}(X_{\mathrm{\acute{e}t}},G) = \mathrm{Hom}_{\mathrm{cts}}(\pi_{1}^{\mathrm{\acute{e}t}}(X),G)$.

Ziquan Yang (Harvard University)

20 / 25

• We go over the persistence of purity theorem with a bit more detail.

Theorem (Persistence of Purity)

Let \mathcal{F} be an ℓ -adic local system on U_0 which is ι -real. Suppose that for some closed point $u_0 \in U_0$, every eigenvalue α_{i,u_0} of $\operatorname{Frob}_{u_0}|_{\mathcal{F}_{\overline{u}_0}}$ satisfies $|\iota(\alpha_{i,u_0})| = 1$. Then the same is true for any other closed point $u \in U_0$.

• We go over the persistence of purity theorem with a bit more detail.

Theorem (Persistence of Purity)

Let \mathcal{F} be an ℓ -adic local system on U_0 which is ι -real. Suppose that for some closed point $u_0 \in U_0$, every eigenvalue α_{i,u_0} of $\operatorname{Frob}_{u_0}|_{\mathcal{F}_{\overline{u}_0}}$ satisfies $|\iota(\alpha_{i,u_0})| = 1$. Then the same is true for any other closed point $u \in U_0$.

• We already know that $|\iota(\alpha_{i,u'})| \leq 1$ for every *i*. Therefore, it suffices to prove that $|\iota(\det(\operatorname{Frob}_{u}|_{\mathcal{F}_{\overline{u}}}))| = 1$.

• We go over the persistence of purity theorem with a bit more detail.

Theorem (Persistence of Purity)

Let \mathcal{F} be an ℓ -adic local system on U_0 which is ι -real. Suppose that for some closed point $u_0 \in U_0$, every eigenvalue α_{i,u_0} of $\operatorname{Frob}_{u_0}|_{\mathcal{F}_{\overline{u}_0}}$ satisfies $|\iota(\alpha_{i,u_0})| = 1$. Then the same is true for any other closed point $u \in U_0$.

- We already know that $|\iota(\alpha_{i,u'})| \leq 1$ for every *i*. Therefore, it suffices to prove that $|\iota(\det(\operatorname{Frob}_{u}|_{\mathcal{F}_{\overline{u}}}))| = 1$.
- We reduce to proving that $det(\mathfrak{F})$ is ι -pure of weight 0 if $det(\mathfrak{F}|_{u_0})$ is.

• We go over the persistence of purity theorem with a bit more detail.

Theorem (Persistence of Purity)

Let \mathcal{F} be an ℓ -adic local system on U_0 which is ι -real. Suppose that for some closed point $u_0 \in U_0$, every eigenvalue α_{i,u_0} of $\operatorname{Frob}_{u_0}|_{\mathcal{F}_{\overline{u}_0}}$ satisfies $|\iota(\alpha_{i,u_0})| = 1$. Then the same is true for any other closed point $u \in U_0$.

- We already know that $|\iota(\alpha_{i,u'})| \leq 1$ for every *i*. Therefore, it suffices to prove that $|\iota(\det(\operatorname{Frob}_{u}|_{\mathcal{F}_{u}}))| = 1$.
- We reduce to proving that $det(\mathcal{F})$ is ι -pure of weight 0 if $det(\mathcal{F}|_{u_0})$ is.
- In order to do this, we may of course replace det(𝔅) by any power det(𝔅)^{⊗m} for any m ≥ 1. Therefore, it suffices to prove the following:

イロト 不得 トイヨト イヨト 二日

• We go over the persistence of purity theorem with a bit more detail.

Theorem (Persistence of Purity)

Let \mathcal{F} be an ℓ -adic local system on U_0 which is ι -real. Suppose that for some closed point $u_0 \in U_0$, every eigenvalue α_{i,u_0} of $\operatorname{Frob}_{u_0}|_{\mathcal{F}_{\overline{u}_0}}$ satisfies $|\iota(\alpha_{i,u_0})| = 1$. Then the same is true for any other closed point $u \in U_0$.

- We already know that $|\iota(\alpha_{i,u'})| \leq 1$ for every *i*. Therefore, it suffices to prove that $|\iota(\det(\operatorname{Frob}_{u}|_{\mathcal{F}_{u}}))| = 1$.
- We reduce to proving that $det(\mathfrak{F})$ is ι -pure of weight 0 if $det(\mathfrak{F}|_{u_0})$ is.
- In order to do this, we may of course replace det(𝔅) by any power det(𝔅)^{⊗m} for any m ≥ 1. Therefore, it suffices to prove the following:

Lemma

Let \mathcal{L} be an ℓ -adic local system on U_0 of rank 1. Then for some power $\mathcal{L}^{\otimes m}$, there exists $\alpha \in \bar{\mathbb{Q}}_{\ell}^{\times}$ such that $\operatorname{Frob}_{u}|_{\mathcal{L}^{\otimes m}} = \alpha^{\deg u}$.

Ziquan Yang (Harvard University)

イロト イ部ト イヨト イヨト 一日

• Put $k = \mathbb{F}_q$ and choose an algebraic closure \overline{k}/k . The sequence $U \to U_0 \to \operatorname{Spec} k$ induces a short exact sequence

$$1 \to \pi_1^{\text{\'et}}(U, \bar{u}_0) \to \pi_1^{\text{\'et}}(U_0, \bar{u}_0) \to \pi_1^{\text{\'et}}(\operatorname{Spec} \mathsf{k}, \bar{u}_0) \to 1.$$

イロト イポト イヨト イヨト 二日

• Put $k = \mathbb{F}_q$ and choose an algebraic closure \overline{k}/k . The sequence $U \to U_0 \to \operatorname{Spec} k$ induces a short exact sequence

$$1 \to \pi_1^{\text{\'et}}(U, \bar{u}_0) \to \pi_1^{\text{\'et}}(U_0, \bar{u}_0) \to \pi_1^{\text{\'et}}(\operatorname{Spec} \mathsf{k}, \bar{u}_0) \to 1.$$

• Assume that u_0 is defined over k. Then $(u_0, \bar{u}_0) \rightarrow (U, \bar{u}_0)$ induces a splitting

$$\pi_1^{\text{\'et}}(\operatorname{Spec} \mathsf{k}, \bar{u}_0) = \operatorname{Gal}_{\mathsf{k}} \to \pi_1^{\text{\'et}}(\mathit{U}_0, \bar{u}_0).$$

イロト イポト イヨト イヨト 二日

• Put $k = \mathbb{F}_q$ and choose an algebraic closure \overline{k}/k . The sequence $U \to U_0 \to \operatorname{Spec} k$ induces a short exact sequence

$$1 \to \pi_1^{\text{\'et}}(U, \bar{u}_0) \to \pi_1^{\text{\'et}}(U_0, \bar{u}_0) \to \pi_1^{\text{\'et}}(\operatorname{Spec} \mathsf{k}, \bar{u}_0) \to 1.$$

• Assume that u_0 is defined over k. Then $(u_0, \bar{u}_0) \rightarrow (U, \bar{u}_0)$ induces a splitting

$$\pi_1^{\text{\'et}}(\operatorname{Spec} \mathsf{k}, \bar{u}_0) = \operatorname{Gal}_{\mathsf{k}} \to \pi_1^{\text{\'et}}(U_0, \bar{u}_0).$$

• We now have a picture

$$egin{aligned} 1 \longrightarrow \pi_1^{ ext{\'et}}(U) \longrightarrow \pi_1^{ ext{\'et}}(U_0) \longrightarrow \operatorname{Gal}_k \longrightarrow 1 \ & & \downarrow_{\mathcal{L}} & \swarrow_u & & \downarrow_{\mathcal{L}_u} \ & & \bar{\mathbb{Q}}_\ell^{ imes} & \equiv \bar{\mathbb{Q}}_\ell^{ imes} \end{aligned}$$

• Put $k = \mathbb{F}_q$ and choose an algebraic closure \overline{k}/k . The sequence $U \to U_0 \to \operatorname{Spec} k$ induces a short exact sequence

$$1 \to \pi_1^{\text{\'et}}(U, \bar{u}_0) \to \pi_1^{\text{\'et}}(U_0, \bar{u}_0) \to \pi_1^{\text{\'et}}(\operatorname{Spec} \mathsf{k}, \bar{u}_0) \to 1.$$

• Assume that u_0 is defined over k. Then $(u_0, \bar{u}_0) \rightarrow (U, \bar{u}_0)$ induces a splitting

$$\pi_1^{\text{\'et}}(\operatorname{Spec} \mathsf{k}, \bar{u}_0) = \operatorname{Gal}_{\mathsf{k}} \to \pi_1^{\text{\'et}}(U_0, \bar{u}_0).$$

• We now have a picture

• Via the splitting, Gal_k acts by conjugation on $\pi_1^{\text{\'et}}(U)$, and hence on $\pi_1^{\text{\'et}}(U)$ -representations. This action fixes $\mathcal{L}|_{\pi_1^{\text{\'et}}(U)}$.

• Since $\pi_1^{\text{\'et}}(U_0)$ is compact, $\mathcal{L} : \pi_1^{\text{\'et}}(U_0) \to \overline{\mathbb{Q}}_{\ell}^{\times}$ lands in $\mathcal{O}_{E_{\lambda}}^{\times}$ for some finite extension $E_{\lambda}/\mathbb{Q}_{\ell}$. Let \mathbb{F}_{λ} be the residue field, where $\lambda \in \ell^{\infty}$.

(日)

- Since $\pi_1^{\text{\'et}}(U_0)$ is compact, $\mathcal{L} : \pi_1^{\text{\'et}}(U_0) \to \overline{\mathbb{Q}}_{\ell}^{\times}$ lands in $\mathcal{O}_{E_{\lambda}}^{\times}$ for some finite extension $E_{\lambda}/\mathbb{Q}_{\ell}$. Let \mathbb{F}_{λ} be the residue field, where $\lambda \in \ell^{\infty}$.
- Up to replacing \mathcal{L} by its $\#\mathbb{F}_{\lambda}^{\times}$ -power, $\mathcal{L}(\pi_{1}^{\text{ét}}(U_{0})) \subseteq 1 + \mathfrak{m}_{\lambda}$, where $\mathfrak{m}_{\lambda} \subset \mathfrak{O}_{E_{\lambda}}$ is the maximal ideal.

- Since $\pi_1^{\text{\'et}}(U_0)$ is compact, $\mathcal{L} : \pi_1^{\text{\'et}}(U_0) \to \overline{\mathbb{Q}}_{\ell}^{\times}$ lands in $\mathcal{O}_{E_{\lambda}}^{\times}$ for some finite extension $E_{\lambda}/\mathbb{Q}_{\ell}$. Let \mathbb{F}_{λ} be the residue field, where $\lambda \in \ell^{\infty}$.
- Up to replacing \mathcal{L} by its $\#\mathbb{F}_{\lambda}^{\times}$ -power, $\mathcal{L}(\pi_{1}^{\text{ét}}(U_{0})) \subseteq 1 + \mathfrak{m}_{\lambda}$, where $\mathfrak{m}_{\lambda} \subset \mathfrak{O}_{E_{\lambda}}$ is the maximal ideal.
- Up to replacing \mathcal{L} again by its ℓ -th power, we may assume $\mathcal{L}(\pi_1^{\text{ét}}(U_0)) \subseteq 1 + \ell \mathfrak{m}_{\lambda}$, which is isomorphic to $\ell \mathfrak{m}_{\lambda} \subset \overline{\mathbb{Q}}_{\ell}$ via the logarithm. Hence \mathcal{L} gives rise to an element in $\operatorname{Hom}_{\operatorname{cts}}(U_0, \overline{\mathbb{Q}}_{\ell})$.

- Since $\pi_1^{\text{\'et}}(U_0)$ is compact, $\mathcal{L} : \pi_1^{\text{\'et}}(U_0) \to \overline{\mathbb{Q}}_{\ell}^{\times}$ lands in $\mathcal{O}_{E_{\lambda}}^{\times}$ for some finite extension $E_{\lambda}/\mathbb{Q}_{\ell}$. Let \mathbb{F}_{λ} be the residue field, where $\lambda \in \ell^{\infty}$.
- Up to replacing \mathcal{L} by its $\#\mathbb{F}_{\lambda}^{\times}$ -power, $\mathcal{L}(\pi_{1}^{\text{ét}}(U_{0})) \subseteq 1 + \mathfrak{m}_{\lambda}$, where $\mathfrak{m}_{\lambda} \subset \mathfrak{O}_{E_{\lambda}}$ is the maximal ideal.
- Up to replacing \mathcal{L} again by its ℓ -th power, we may assume $\mathcal{L}(\pi_1^{\text{ét}}(U_0)) \subseteq 1 + \ell \mathfrak{m}_{\lambda}$, which is isomorphic to $\ell \mathfrak{m}_{\lambda} \subset \overline{\mathbb{Q}}_{\ell}$ via the logarithm. Hence \mathcal{L} gives rise to an element in $\operatorname{Hom}_{\operatorname{cts}}(U_0, \overline{\mathbb{Q}}_{\ell})$.
- Recall that Hom_{cts}(U₀, Q
 _ℓ) is identified with H¹(U₀, Q
 _ℓ), so we may view L as an element of H¹(U₀, Q
 ℓ). Similarly, L|{π^{ét}(U)} ∈ H¹(U, Q
 _ℓ).

- Since $\pi_1^{\text{\'et}}(U_0)$ is compact, $\mathcal{L} : \pi_1^{\text{\'et}}(U_0) \to \overline{\mathbb{Q}}_{\ell}^{\times}$ lands in $\mathcal{O}_{E_{\lambda}}^{\times}$ for some finite extension $E_{\lambda}/\mathbb{Q}_{\ell}$. Let \mathbb{F}_{λ} be the residue field, where $\lambda \in \ell^{\infty}$.
- Up to replacing \mathcal{L} by its $\#\mathbb{F}_{\lambda}^{\times}$ -power, $\mathcal{L}(\pi_{1}^{\text{ét}}(U_{0})) \subseteq 1 + \mathfrak{m}_{\lambda}$, where $\mathfrak{m}_{\lambda} \subset \mathfrak{O}_{E_{\lambda}}$ is the maximal ideal.
- Up to replacing \mathcal{L} again by its ℓ -th power, we may assume $\mathcal{L}(\pi_1^{\text{ét}}(U_0)) \subseteq 1 + \ell \mathfrak{m}_{\lambda}$, which is isomorphic to $\ell \mathfrak{m}_{\lambda} \subset \overline{\mathbb{Q}}_{\ell}$ via the logarithm. Hence \mathcal{L} gives rise to an element in $\operatorname{Hom}_{\operatorname{cts}}(U_0, \overline{\mathbb{Q}}_{\ell})$.
- Recall that Hom_{cts}(U₀, Q
 _ℓ) is identified with H¹(U₀, Q
 _ℓ), so we may view L as an element of H¹(U₀, Q
 ℓ). Similarly, L|{π^{ft}(U)} ∈ H¹(U, Q
 _ℓ).
- We have argued that $\mathcal{L}|_{\pi_1^{\text{\'et}}(U)}$ is Frob_q -invariant. However, the RH for curves implies that eigenvalues of Frob_q on $H^1(U, \overline{\mathbb{Q}}_\ell) \cong H^1_c(U, \overline{\mathbb{Q}}_\ell)^{\vee}$ have absolute value $\geq q^{1/2} > 1$.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

- Since $\pi_1^{\text{\'et}}(U_0)$ is compact, $\mathcal{L} : \pi_1^{\text{\'et}}(U_0) \to \overline{\mathbb{Q}}_{\ell}^{\times}$ lands in $\mathcal{O}_{E_{\lambda}}^{\times}$ for some finite extension $E_{\lambda}/\mathbb{Q}_{\ell}$. Let \mathbb{F}_{λ} be the residue field, where $\lambda \in \ell^{\infty}$.
- Up to replacing \mathcal{L} by its $\#\mathbb{F}_{\lambda}^{\times}$ -power, $\mathcal{L}(\pi_{1}^{\text{ét}}(U_{0})) \subseteq 1 + \mathfrak{m}_{\lambda}$, where $\mathfrak{m}_{\lambda} \subset \mathfrak{O}_{E_{\lambda}}$ is the maximal ideal.
- Up to replacing \mathcal{L} again by its ℓ -th power, we may assume $\mathcal{L}(\pi_1^{\text{ét}}(U_0)) \subseteq 1 + \ell \mathfrak{m}_{\lambda}$, which is isomorphic to $\ell \mathfrak{m}_{\lambda} \subset \overline{\mathbb{Q}}_{\ell}$ via the logarithm. Hence \mathcal{L} gives rise to an element in $\operatorname{Hom}_{\operatorname{cts}}(U_0, \overline{\mathbb{Q}}_{\ell})$.
- Recall that $\operatorname{Hom}_{\operatorname{cts}}(U_0, \overline{\mathbb{Q}}_{\ell})$ is identified with $\operatorname{H}^1(U_0, \overline{\mathbb{Q}}_{\ell})$, so we may view \mathcal{L} as an element of $\operatorname{H}^1(U_0, \overline{\mathbb{Q}}_{\ell})$. Similarly, $\mathcal{L}|_{\pi^{\operatorname{\acute{e}t}}(U)} \in \operatorname{H}^1(U, \overline{\mathbb{Q}}_{\ell})$.
- We have argued that $\mathcal{L}|_{\pi_1^{\text{\'et}}(U)}$ is Frob_q -invariant. However, the RH for curves implies that eigenvalues of Frob_q on $H^1(U, \overline{\mathbb{Q}}_\ell) \cong H^1_c(U, \overline{\mathbb{Q}}_\ell)^{\vee}$ have absolute value $\geq q^{1/2} > 1$.
- Therefore, $\mathcal{L}|_{\pi_1^{\text{\'et}}(U)}$ is trivial.

 Recall that our goal is to show that for every closed point u ∈ U₀, Frob_u|_{L_u} = (α)^{degu} for some α ∈ Q[×]. The the point is that α is uniform over all points. (L has already been replaced by a power.)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- Recall that our goal is to show that for every closed point u ∈ U₀, Frob_u|_{L_ū} = (α)^{degu} for some α ∈ Q[×]. The the point is that α is uniform over all points. (L has already been replaced by a power.)
- This is a consequence of $\mathcal{L}|_{\pi_1^{\text{\'et}}(U)} = 0$ and α is just $\operatorname{Frob}_{u_0}|_{\mathcal{L}_{\bar{u}_0}}$.

- Recall that our goal is to show that for every closed point u ∈ U₀, Frob_u|_{L_ū} = (α)^{degu} for some α ∈ Q[×]. The the point is that α is uniform over all points. (L has already been replaced by a power.)
- This is a consequence of $\mathcal{L}|_{\pi_1^{\text{\'et}}(U)} = 0$ and α is just $\operatorname{Frob}_{u_0}|_{\mathcal{L}_{\bar{u}_0}}$.
- Up to replacing U by $U \otimes k(u)$, we reduce to the case $\deg u = 1$.

- Recall that our goal is to show that for every closed point u ∈ U₀, Frob_u|_{L_ū} = (α)^{degu} for some α ∈ Q[×]. The the point is that α is uniform over all points. (L has already been replaced by a power.)
- This is a consequence of $\mathcal{L}|_{\pi_1^{\text{\'et}}(U)} = 0$ and α is just $\operatorname{Frob}_{u_0}|_{\mathcal{L}_{\bar{u}_0}}$.
- Up to replacing U by $U \otimes k(u)$, we reduce to the case $\deg u = 1$.
- Consider the abelianization $\pi_1^{\text{\'et}}(U_0)^{\operatorname{ab}} := \pi_1^{\text{\'et}}(U_0, \bar{u}_0)^{\operatorname{ab}}.$

- Recall that our goal is to show that for every closed point u ∈ U₀, Frob_u|_{L_ū} = (α)^{degu} for some α ∈ Q[×]. The the point is that α is uniform over all points. (L has already been replaced by a power.)
- This is a consequence of $\mathcal{L}|_{\pi_1^{\text{\'et}}(U)} = 0$ and α is just $\operatorname{Frob}_{u_0}|_{\mathcal{L}_{\bar{u}_0}}$.
- Up to replacing U by $U \otimes k(u)$, we reduce to the case $\deg u = 1$.
- Consider the abelianization $\pi_1^{\text{\'et}}(U_0)^{\operatorname{ab}} := \pi_1^{\operatorname{\'et}}(U_0, \bar{u}_0)^{\operatorname{ab}}.$
- If we choose another geometric point \bar{u} on U, and étale path $\bar{u}_0 \rightsquigarrow \bar{u}$, then we have an isomorphism $\pi_1^{\text{ét}}(U_0, \bar{u}_0) \xrightarrow{\sim} \pi_1^{\text{ét}}(U_0, \bar{u})$, which descends to $\pi_1^{\text{ét}}(U_0, \bar{u}_0)^{\text{ab}} \xrightarrow{\sim} \pi_1^{\text{ét}}(U_0, \bar{u})^{\text{ab}}$.
- Recall that our goal is to show that for every closed point u ∈ U₀, Frob_u|_{L_ū} = (α)^{degu} for some α ∈ Q[×]. The the point is that α is uniform over all points. (L has already been replaced by a power.)
- This is a consequence of $\mathcal{L}|_{\pi_1^{\text{\'et}}(U)} = 0$ and α is just $\operatorname{Frob}_{u_0}|_{\mathcal{L}_{\bar{u}_0}}$.
- Up to replacing U by $U \otimes k(u)$, we reduce to the case $\deg u = 1$.
- Consider the abelianization $\pi_1^{\text{\'et}}(U_0)^{\operatorname{ab}} := \pi_1^{\text{\'et}}(U_0, \bar{u}_0)^{\operatorname{ab}}.$
- If we choose another geometric point \bar{u} on U, and étale path $\bar{u}_0 \rightsquigarrow \bar{u}$, then we have an isomorphism $\pi_1^{\text{ét}}(U_0, \bar{u}_0) \xrightarrow{\sim} \pi_1^{\text{ét}}(U_0, \bar{u})$, which descends to $\pi_1^{\text{ét}}(U_0, \bar{u}_0)^{\text{ab}} \xrightarrow{\sim} \pi_1^{\text{ét}}(U_0, \bar{u})^{\text{ab}}$.
- The point is that the second isomorphism does not depend on the choice of the path $\bar{u}_0 \rightsquigarrow \bar{u}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Proof of Persistence of Purity

• Suppose we have another k-point $u \in U$. Then we have two sections.

$$1 \longrightarrow \pi_{1}^{\text{\'et}}(U)^{\text{ab}}/? \longrightarrow \pi_{1}^{\text{\'et}}(U_{0})^{\text{ab}} \xrightarrow{\checkmark u_{0}} \operatorname{Gal}_{k} \longrightarrow 1$$
$$\downarrow^{\mathcal{L}} \underbrace{\swarrow^{\mathcal{L}_{u_{0}}}}_{U_{0}} (\mathcal{L}_{u_{0}})^{\mathcal{L}_{u_{0}}} \xrightarrow{\mathbb{Q}_{\ell}^{\times}} \overline{\mathbb{Q}_{\ell}^{\times}}$$

3

(日) (四) (日) (日) (日)

Proof of Persistence of Purity

• Suppose we have another k-point $u \in U$. Then we have two sections.

$$1 \longrightarrow \pi_{1}^{\text{ét}}(U)^{\text{ab}}/? \longrightarrow \pi_{1}^{\text{ét}}(U_{0})^{\text{ab}} \xrightarrow{\swarrow U} \operatorname{Gal}_{k} \longrightarrow 1$$
$$\downarrow_{\mathcal{L}} \xrightarrow{\swarrow U_{0}} (\int_{\mathcal{L}_{u}})^{\mathcal{L}_{u_{0}}}$$
$$\bar{\mathbb{Q}}_{\ell}^{\times} = \bar{\mathbb{Q}}_{\ell}^{\times}$$

• Now the representation $\mathcal{L}_{u_0} - \mathcal{L}_u : \operatorname{Gal}_k \to \bar{\mathbb{Q}}_{\ell}^{\times}$ is induced by

$$\operatorname{Gal}_{\mathsf{k}} \stackrel{u_0-u}{\to} \pi_1^{\operatorname{\acute{e}t}}(U_0)^{\operatorname{ab}} \to \bar{\mathbb{Q}}_{\ell}^{\times}.$$

イロト イポト イヨト イヨト 二日

Proof of Persistence of Purity

• Suppose we have another k-point $u \in U$. Then we have two sections.

$$1 \longrightarrow \pi_{1}^{\text{\'et}}(U)^{\text{ab}}/? \longrightarrow \pi_{1}^{\text{\'et}}(U_{0})^{\text{ab}} \xrightarrow{\swarrow U} \operatorname{Gal}_{k} \longrightarrow 1$$
$$\downarrow_{\mathcal{L}} \xrightarrow{\swarrow U_{0}} (\int_{\mathcal{L}_{u}})^{\mathcal{L}_{u_{0}}}$$
$$\bar{\mathbb{Q}}_{\ell}^{\times} = \bar{\mathbb{Q}}_{\ell}^{\times}$$

• Now the representation $\mathcal{L}_{u_0} - \mathcal{L}_u : \operatorname{Gal}_k \to \bar{\mathbb{Q}}_\ell^{\times}$ is induced by

$$\operatorname{Gal}_{\mathsf{k}} \stackrel{u_0-u}{\to} \pi_1^{\operatorname{\acute{e}t}}(U_0)^{\operatorname{ab}} \to \bar{\mathbb{Q}}_{\ell}^{\times}.$$

• Since $u_0 - u$ lands in $\pi_1^{\text{ét}}(U)^{\text{ab}}/?$, the above composition vanishes.

イロト イポト イヨト イヨト 二日