The Hitchhiker's Guide to Crystalline Cohomology

Naomi Sweeting

STAGE February 26, 2021

The Hitchhiker's Guide to Crystalline Cohomology

Motivation: de Rham cohomology of liftings

- Suppose X / Spec k has multiple smooth lifts Z to W(k).
 Suprisingly, Hⁱ_{dR}(Z/W) is independent of the choice.
- Example: let $f : \mathcal{X} \to S = \text{Spf } W[\![t]\!]$ lift X/k.
- Let \mathcal{H}^i be relative de Rham cohomology. In good situations,

$$H^i_{\mathsf{dR}}(Z/W) = \mathcal{H}^i \otimes_{W[[t]]} (W, x)$$

where $x : W[t] \to W$ is a specialization.

Independence of liftings

- The Gauss-Manin connection $\nabla : \mathcal{H}^i \to \mathcal{H}^i \otimes \Omega^1_{S/W}$ identifies these fibers.
- An explicit isomorphism *Hⁱ* ⊗_{W[[t]]} (W, x) → *Hⁱ* ⊗_{W[[t]]} (W, y) can be defined by:

$$s \mapsto \sum_{n \ge 0} \frac{(x(t) - y(t))^n}{n!} \left(\nabla \left(\frac{\partial}{\partial t} \right)^n s \right) (y)$$

 Grothendieck thought that there should be a W(k)-valued cohomology intrinsic to X/k.

Divided power structures

Let A be a ring and $I \subset A$ be an ideal. A PD-structure on I is a series of maps $\gamma_n : I \to A$ for $n \ge 0$ so that:

•
$$\gamma_0(x) = 1$$
 and $\gamma_1(x) = x$

•
$$\gamma_n(x) \in I$$
 if $n \geq 1$

•
$$\gamma_n(x+y) = \sum_{i+j=n} \gamma_i(x) \gamma_j(y)$$

•
$$\gamma_n(\lambda x) = \lambda^n \gamma_n(x)$$

•
$$\gamma_n(x)\gamma_m(x) = \binom{m+n}{n}\gamma_{n+m}(x)$$

•
$$\gamma_m(\gamma_n(x)) = \frac{(mn)!}{m!(n!)^m} \gamma_{mn}(x)$$

Check: $\gamma_n(x) = x^n/n!$ works if A is a Q-algebra.

PD-structures, continued

Why divided powers?

• It's exactly what you need to integrate *n* times.

Observation: $n!\gamma_n(x) = x^n$

- $\gamma_0(x) = 1$
- $\gamma_1(x)\gamma_n(x) = \binom{n+1}{1}\gamma_{n+1}(x) = (n+1)\gamma_{n+1}(x)$

Some consequences:

- If A = W(𝔅), then there is a unique PD-structure on (p) given by γ_n(p) = pⁿ/n!. This induces a canonical PD-structure on W/p^k, and on pA ⊂ A for any W-algebra A.
- If A is killed by n, then I is a nil-ideal: $x^n = 0$ for all $x \in I$.

PD-structures: example

Let A be any ring. There is a "universal" PD-structure in r variables, $A\langle x_1, \ldots, x_r \rangle$.

- Generated as an A-module by symbols $x_1^{[k_1]} \cdots x_r^{[k_r]}$
- PD-structure will satisfy

$$\gamma_n(x_i^{[1]}) = x_i^{[n]}$$
, so that morally: $x_i^{[n]} = \frac{x_i^n}{n!}$

Multiplication defined by:

$$x_i^{[m]}x_i^{[n]} = \binom{m+n}{n} x_i^{[m+n]}$$

Graded ring structure ⊕Γⁿ, where Γⁿ is generated by symbols with k₁ + ... + k_r = n. The ideal is I = ⊕_{n≥1}Γⁿ

Crystalline Poincaré lemma (simple version)

Observation: $t_i^{[k]} \mapsto t_i^{[k-1]} dt_i$ is an integrable (square-zero) connection on $A\langle t_1, \ldots, t_n \rangle$ as a module over $A[t_1, \ldots, t_n]$.

Lemma 1

Let A be any ring. The de Rham complex over $A[t_1, \ldots, t_n]$ with values in $A\langle t_1, \ldots, t_n \rangle$ is a resolution of A.

Proof.

We will show the case n=1. This is the complex $A\langle t
angle o A\langle t
angle dt$ given by the map

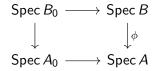
$$\sum_{k\geq 0}a_kt^{[k]}\mapsto \sum_{k\geq 1}a_kt^{[k-1]}dt.$$

So,
$$0
ightarrow A
ightarrow A \langle t
angle
ightarrow A \langle t
angle dt
ightarrow 0$$
 is exact.

PD-structures, continued

- If (A, I, γ) and (B, J, δ) are PD-rings, then a map φ : A → B is a PD-morphism if:
 - $\phi(I) \subset J$

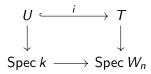
•
$$\phi(\gamma_n(x)) = \delta_n(\phi(x))$$



If Z → X is a closed immersion of schemes, have a notion of PD-structure on I_Z ⊂ O_X. Sometimes, (Z, X, γ) or (X, I_Z, γ) is called a PD-scheme.

Crystalline site: objects

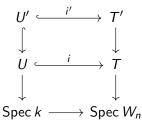
- k = perfect field of char p, X / Spec k a fixed scheme.
- W = W(k) and $W_n = W/p^n$ with canonical PD-structure.
- Objects of Cris(X/W_n) are PD-schemes (U, T, δ) where U ⊂ X is a Zariski open and the following diagram is a PD-morphism (but not necessarily a pullback).



• Since $p^n = 0$ on \mathcal{O}_T , $U \hookrightarrow T$ is a homeomorphism.

Crystalline site: morphisms

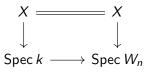
Morphisms in $Cris(X/W_n)$ from (U', T', δ') to (U, T, δ) are diagrams:

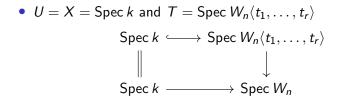


compatible with PD-structures. Here, $U^\prime \rightarrow U$ is an open immersion.

Crystalline site: examples

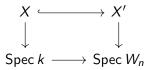
 Stupid example: U = X and T = X, considered as a scheme over Spec W_n. The PD-structure on (0) ⊂ O_X is trivial.





Crystalline site: examples

Suppose X lifts to a smooth scheme X'/ Spec W_n . Can we find a PD-structure so that



is an object of $Cris(X/W_n)$? Yes, if this is a pullback.

Crystalline site: sheaves

- The covering families are collections of maps
 {(U_i, T_i, δ_i)} → (U, T, δ) such that T_i → T is an open
 immersion, U_i and δ_i are induced by pullback, and T = ∪T_i.
- What does it mean to be a sheaf on $Cris(X/W_n)$?
- Given a sheaf \mathcal{F} , and an object (U, T, δ) , produce $\mathcal{F}_{(U,T,\delta)}$ a Zariski sheaf on T by the rule:

$$\mathcal{F}_{(U,T,\delta)}(W) = \mathcal{F}(U \times_T W, W, \delta)$$

Crystalline site: sheaves

Proposition

The data of a sheaf \mathcal{F} on $\operatorname{Cris}(X/W_n)$ is equivalent to the data of a Zariski sheaf $\mathcal{F}_{(U,T,\delta)}$ on T for each object (U, T, δ) , with maps $g_{\mathcal{F}}^* : g^{-1}\mathcal{F}_{(U',T',\delta')} \to \mathcal{F}_{(U,T,\delta)}$ for each morphism $(U, T, \delta) \xrightarrow{g} (U', T', \delta')$, satisfying:

- Transitivity for $(U, T, \delta) \rightarrow (U', T', \delta') \rightarrow (U'', T'', \delta'')$.
- If T → T' is an open immersion and U, δ are induced by pullback, then g^{*}_F is an isomorphism.

Proof of proposition

- Suppose given the data of $\mathcal{F}_{(U,T,\delta)}$. Define $\mathcal{F}(U,T,\delta) = \mathcal{F}_{(U,T,\delta)}(T)$.
- Transition maps: suppose $g: (U, T, \delta) \rightarrow (U', T', \delta')$ is a morphism.
 - We need a map $\mathcal{F}(U', T', \delta') \rightarrow \mathcal{F}(U, T, \delta)$.
 - Note that *F*(U', T', δ') has a map to

$$g^{-1}\mathcal{F}_{(U',T',\delta')}(T) = \lim_{\mathrm{im}(T)\subset W'} \mathcal{F}_{(U',T',\delta')}(W').$$

- This maps to *F*_(U,T,δ)(T) via g^{*}_F.
- Cocycle property of transition maps follows from that of g^{*}_F.

Proof of proposition, continued

- Equalizer condition: let $\{(U_i, T_i, \delta_i)\} \rightarrow (U, T, \delta)$ be a cover.
- $g_i^{-1}\mathcal{F}_{(U,T,\delta)}(T_i) = \mathcal{F}_{(U,T,\delta)}(T_i)$, so $g_{\mathcal{F}}^*$ provides an isomorphism $\mathcal{F}_{(U_i,T_i,\delta_i)}(T_i) \simeq \mathcal{F}_{(U,T,\delta)}(T_i)$.
- Now use equalizer condition for Zariski sheaf $\mathcal{F}_{(U,T,\delta)}$.

Crystalline site: structure sheaf

Proposition

The data of a sheaf \mathcal{F} on $\operatorname{Cris}(X/W_n)$ is equivalent to the data of a Zariski sheaf $\mathcal{F}_{(U,T)}$ on T for each object (U, T), with maps $g_{\mathcal{F}}^*: g^{-1}\mathcal{F}_{(U',T')} \to \mathcal{F}_{(U,T)}$ for each morphism $(U, T) \to (U', T')$, satisfying:

- Transitivity for $(U, T) \rightarrow (U', T') \rightarrow (U'', T'')$.
- If $T \to T'$ is an open immersion and $U = U' \times_{T'} T$, then $g_{\mathcal{F}}^*$ is an isomorphism.

Hence, we can define the structure sheaf \mathcal{O}_{X/W_n} by the rule $(U, \mathcal{T}, \delta) \mapsto \mathcal{O}_{\mathcal{T}}$.

Definition

A sheaf of \mathcal{O}_{X/W_n} -modules \mathcal{F} is called a crystal if $g_{\mathcal{F}}^*$ induces an isomorphism for **every** morphism g.

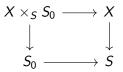
Crystalline cohomology: take one

- The global sections of a sheaf *F* on Cris(X/W_n) are systems of compatible sections s_(U,T,δ) ∈ F(U, T, δ).
- $H^i(X/W_n)$ is by definition $R^i\Gamma(\mathcal{O}_{X/W_n})$.
- We also set $H^i(X/W) = \varprojlim H^i(X/W_n)$.
- Comparison isomorphism: if Z/W_n is a smooth lift of X, then

$$H^i_{\mathrm{dR}}(Z/W_n)\cong H^i(X/W_n).$$

The relative crystalline site

- Let (S, I, γ) be a PD-scheme with associated closed immersion S₀ → S. We assume O_S is killed by pⁿ, so that all PD-thickenings are homeomorphisms.
- We say γ extends to X/S if the diagram

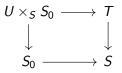


can be made into a PD-morphism.

• Example: X is an S₀-scheme considered over S. Or, $S = W_n$ and X is any S-scheme.

The relative crystalline site: objects

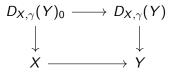
- Objects are S-morphisms $U \hookrightarrow T$, equipped with PD-structure δ .
- *U* is still a Zariski open of *X*. PD-compatibility condition is now that the following is a PD-morphism:



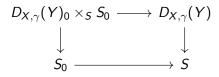
- Example: $X \rightarrow X$ with trivial PD-structure.
- Morphisms and covers are as before.

Digression: divided power envelopes

Given a PD-scheme (S, \mathcal{I}, γ) and a closed immersion $X \hookrightarrow Y$ of *S*-schemes, there is a universal PD-scheme $D_{X,\gamma}(Y)$ such that



commutes and



is a PD-morphism.

A rigidity theorem

Theorem

Suppose given a Cartesian PD-square:

There is a natural isomorphism

 $H^{i}((X/S)_{\operatorname{cris}}, \mathcal{O}_{X/S}) \xrightarrow{\sim} H^{i}((X_{0}/S)_{\operatorname{cris}}, \mathcal{O}_{X_{0}/S}).$

Passage to topos

- Given a morphism X → Y, it is not true that thickenings of Y pull back to X. E.g. X → Y could be a nontrivial family.
- To get functoriality, consider the topos (X/S)_{cris}, the category of sheaves on the site Cris(X/S).
- Grothendieck philoshopy: an object T ∈ Cris(X/S) gives rise to a sheaf T̃ := Hom(·, T).
- Given \mathcal{F} , there is a canonical identification:

$$\mathsf{Hom}(\widetilde{T},\mathcal{F})=\mathcal{F}(T).$$

• This embeds Cris(X/S) into $(X/S)_{cris}$.

Morphisms of topoi

Definition

A morphism of topoi $f : \mathcal{T}' \to \mathcal{T}$ is a functor $f_* : \mathcal{T}' \to \mathcal{T}$ which has a left adjoint $f^* : \mathcal{T} \to \mathcal{T}'$ commuting with finite inverse limits.

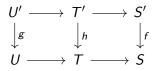
- Intuition: $f^*\mathcal{F}$ and \mathcal{F} are supposed to have the same stalks.
- $\operatorname{Hom}(f^*(\mathcal{F}), \mathcal{G}) = \operatorname{Hom}(\mathcal{F}, f_*(\mathcal{G}))$
- Recall: adjunction automatically means f_* preserves all inverse limits and f^* preserves all direct limits.
- f^{*} is exact because cokernels are direct limits and ker(A → B) is the inverse limit of the diagram:

Functoriality of crystalline topos

- Suppose $S' \to S$ is a PD-morphism. We want a morphism $g_{cris} : (X'/S')_{cris} \to (X/S)_{cris}$.
- Writing down a formula is easy; checking the details is hard.

Functoriality of crystalline topos

- Given $(U, T, \delta) \in Cris(X/S)$, $g^*(\widetilde{T})$ is the sheaf on Cris(X'/S') whose value on (U', T', δ') is:
 - the empty set if $g(U') \not\subset U$;
 - otherwise, the set of PD-morphisms h : T → T' making the diagram below commute.



• Then by definition,

$$g_*(\mathcal{F})(\mathcal{T}) = \mathsf{Hom}(\widetilde{\mathcal{T}}, g_*\mathcal{F}) = \mathsf{Hom}(g^*(\widetilde{\mathcal{T}}), \mathcal{F})$$

Leray spectral sequence

Proposition

Suppose $g : \mathcal{T}' \to \mathcal{T}$ is a morphism of topoi. If E' is an abelian sheaf in \mathcal{T}' , there is a Leray spectral sequence:

$$E_2^{pq} = H^p(\mathcal{T}, R^q g_* E') \implies H^i(\mathcal{T}', E').$$

Alternatively, in derived language, RΓ_{T'} ≃ RΓ_T ∘ Rg_{*}.

Proof.

Because g^* preserves finite inverse limits, $g^*(e) = e'$, where $e \in \mathcal{T}$ and $e' \in \mathcal{T}'$ are the final objects. So,

$$\Gamma(\mathcal{T}', E') = \operatorname{Hom}_{\mathcal{T}'}(e', E') = \operatorname{Hom}_{\mathcal{T}}(e, g_*E') = \Gamma(\mathcal{T}, g_*E').$$

Also, g_* takes injectives to injectives by general nonsense. So we use the composite functor spectral sequence.

The Hitchhiker's Guide to Crystalline Cohomology

"Proof" of rigidity theorem

Theorem

Suppose given a Cartesian PD-square:

$$\begin{array}{ccc} X_0 & \stackrel{i}{\longrightarrow} & X \\ \downarrow & & \downarrow \\ S_0 & \longrightarrow & S \end{array}$$

There is a natural isomorphism

$$H^{i}((X/S)_{\operatorname{cris}}, \mathcal{O}_{X/S}) \xrightarrow{\sim} H^{i}((X_{0}/S)_{\operatorname{cris}}, \mathcal{O}_{X_{0}/S}).$$

• STS: the functor $i_{cris,*}$ is exact and takes $\mathcal{O}_{X_0/S}$ to $\mathcal{O}_{X/S}$.

Comparison isomorphism

Theorem

Suppose given a Cartesian PD-square where X/S is smooth:

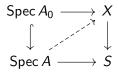
There are natural isomorphisms:

$$H^{i}((X/S)_{\operatorname{cris}}, \mathcal{O}_{X/S}) \xrightarrow{\sim} \mathbb{H}^{i}(X_{\operatorname{Zar}}, \Omega^{\bullet}_{X/S})$$

 $H^{i}((X/S)_{\operatorname{cris}}, \mathcal{O}_{X/S}) \xrightarrow{\sim} H^{i}((X_{0}/S)_{\operatorname{cris}}, \mathcal{O}_{X_{0}/S}).$

Proof idea 1: the role of smoothness

• Recall that smoothness of X/S means square-zero (hence, nilpotent) affine thickenings lift:



• So, after shrinking, one can always factor:

• X is not a final object, but it is a "covering object". So we can hope to use Cech techniques.

Proof idea 2: passage to Zariski topos

• There is a morphism of topoi $u_{X/S} : (X/S)_{cris} \to X_{Zar}$ satisfying:

$$\Gamma(X_{\mathsf{Zar}}, u_{X/S,*}(\mathcal{F})) = \Gamma((X/S)_{\mathsf{cris}}, \mathcal{F})$$

The Leray spectral sequence then shows

$$H^*((X/S)_{cris}, \mathcal{O}_{X/S}) = \mathbb{H}^*(X_{Zar}, Ru_*\mathcal{O}_{X/S}).$$

One can now use something called the "Cech-Alexander complex".

Crystals and connections

Theorem

Suppose given a Cartesian PD-square where X/S is smooth:

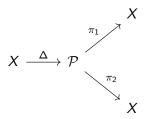
Then there is an equivalence of categories between

 $\{crystals on Cris(X_0/S)\}$ and

{*QCoh sheaves on X w/ quasi-nilpotent integrable connection* ∇ }

Recall: a sheaf of \mathcal{O}_{X/W_n} -modules \mathcal{F} is called a crystal if $g_{\mathcal{F}}^*$ induces an isomorphism for **every** morphism g.

- Suppose given a crystal \mathcal{F} . The corresponding sheaf on X will be \mathcal{F}_X , which is an \mathcal{O}_X -module.
- How to make the connection ∇ ?
- Consider *P* ⊂ X ×_S X, the closed subscheme defined by *I*². This is a thickened neighborhood of Δ(X).

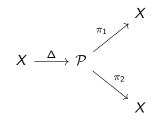


• If this were a PD-thickening, crystal property would give an isomorphism $\epsilon: \pi_1^* \mathcal{F} \xrightarrow{\sim} \pi_2^* \mathcal{F}$

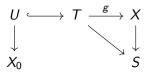
• We can leverage $\epsilon: \pi_1^* \mathcal{F} \xrightarrow{\sim} \pi_2^* \mathcal{F}$ into a connection:

$$abla(f)=\epsilon(1\otimes f)-f\otimes 1\in \mathcal{F}\otimes \Omega^1_{X/S}$$

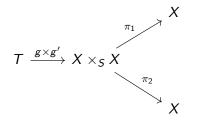
- Compatibility with Δ^* means we land in Ω^1 .
- Integrability (∇ ∘ ∇ = 0) will follow from cocycle condition for X ×_S X ×_S X.



- Conversely: given a sheaf *F_X* of *O_X*-modules, how do we make a crystal for *X*₀/*S*?
- Because X is smooth, after shrinking we can factor:



- We define $\mathcal{F}_{\mathcal{T}} := g^* \mathcal{F}_X$.
- What if we used a different morphism $g': T \to X$?



- After passing to a suitable PD-neighborhood, ∇ will give a canonical identification of g*F and (g')*F.
- This lets us construct \mathcal{F} .
- Cocycle condition will come from integrability.

Crystals and connections

Theorem

Suppose given a Cartesian PD-square where X/S is smooth:

Then there is an equivalence of categories between

 $\{crystals on Cris(X_0/S)\}$ and

{*QCoh sheaves on X w/ quasi-nilpotent integrable connection* ∇ }

Recall: a sheaf of \mathcal{O}_{X/W_n} -modules \mathcal{F} is called a crystal if $g_{\mathcal{F}}^*$ induces an isomorphism for **every** morphism g.