The Hitchhiker's Guide to Crystalline Cohomology

Naomi Sweeting

STAGE
February 26, 2021

Motivation: de Rham cohomology of liftings

- Suppose $X /$ Spec k has multiple smooth lifts Z to $W(k)$. Suprisingly, $H_{\mathrm{dR}}^{i}(Z / W)$ is independent of the choice.
- Example: let $f: X \rightarrow S=$ Spf $W \llbracket t \rrbracket$ lift X / k.
- Let \mathcal{H}^{i} be relative de Rham cohomology. In good situations,

$$
H_{\mathrm{dR}}^{i}(Z / W)=\mathcal{H}^{i} \otimes_{W \llbracket t \rrbracket}(W, x)
$$

where $x: W \llbracket t \rrbracket \rightarrow W$ is a specialization.

Independence of liftings

- The Gauss-Manin connection $\nabla: \mathcal{H}^{i} \rightarrow \mathcal{H}^{i} \otimes \Omega_{S / W}^{1}$ identifies these fibers.
- An explicit isomorphism $\mathcal{H}^{i} \otimes_{W \llbracket t \rrbracket}(W, x) \rightarrow \mathcal{H}^{i} \otimes_{W \llbracket t \rrbracket}(W, y)$ can be defined by:

$$
s \mapsto \sum_{n \geq 0} \frac{(x(t)-y(t))^{n}}{n!}\left(\nabla\left(\frac{\partial}{\partial t}\right)^{n} s\right)(y)
$$

- Grothendieck thought that there should be a $W(k)$-valued cohomology intrinsic to X / k.

Divided power structures

Let A be a ring and $I \subset A$ be an ideal. A PD-structure on I is a series of maps $\gamma_{n}: I \rightarrow A$ for $n \geq 0$ so that:

- $\gamma_{0}(x)=1$ and $\gamma_{1}(x)=x$
- $\gamma_{n}(x) \in I$ if $n \geq 1$
- $\gamma_{n}(x+y)=\sum_{i+j=n} \gamma_{i}(x) \gamma_{j}(y)$
- $\gamma_{n}(\lambda x)=\lambda^{n} \gamma_{n}(x)$
- $\gamma_{n}(x) \gamma_{m}(x)=\binom{m+n}{n} \gamma_{n+m}(x)$
- $\gamma_{m}\left(\gamma_{n}(x)\right)=\frac{(m n)!}{m!(n!)^{m}} \gamma_{m n}(x)$

Check: $\gamma_{n}(x)=x^{n} / n$! works if A is a \mathbb{Q}-algebra.

PD-structures, continued

Why divided powers?

- It's exactly what you need to integrate n times.

Observation: $n!\gamma_{n}(x)=x^{n}$

- $\gamma_{0}(x)=1$
- $\gamma_{1}(x) \gamma_{n}(x)=\binom{n+1}{1} \gamma_{n+1}(x)=(n+1) \gamma_{n+1}(x)$

Some consequences:

- If $A=W(\mathbb{F})$, then there is a unique PD-structure on (p) given by $\gamma_{n}(p)=p^{n} / n!$. This induces a canonical PD-structure on W / p^{k}, and on $p A \subset A$ for any W-algebra A.
- If A is killed by n, then I is a nil-ideal: $x^{n}=0$ for all $x \in I$.

PD-structures: example

Let A be any ring. There is a "universal" PD-structure in r variables, $A\left\langle x_{1}, \ldots, x_{r}\right\rangle$.

- Generated as an A-module by symbols $x_{1}^{\left[k_{1}\right]} \cdots x_{r}^{\left[k_{r}\right]}$
- PD-structure will satisfy

$$
\gamma_{n}\left(x_{i}^{[1]}\right)=x_{i}^{[n]}, \text { so that morally: } x_{i}^{[n]}=\frac{x_{i}^{n}}{n!}
$$

- Multiplication defined by:

$$
x_{i}^{[m]} x_{i}^{[n]}=\binom{m+n}{n} x_{i}^{[m+n]}
$$

- Graded ring structure $\oplus \Gamma^{n}$, where Γ^{n} is generated by symbols with $k_{1}+\ldots+k_{r}=n$. The ideal is $I=\oplus_{n \geq 1} \Gamma^{n}$

Crystalline Poincaré lemma (simple version)

Observation: $t_{i}^{[k]} \mapsto t_{i}^{[k-1]} d t_{i}$ is an integrable (square-zero) connection on $A\left\langle t_{1}, \ldots, t_{n}\right\rangle$ as a module over $A\left[t_{1}, \ldots, t_{n}\right]$.

Lemma 1

Let A be any ring. The de Rham complex over $A\left[t_{1}, \ldots, t_{n}\right]$ with values in $A\left\langle t_{1}, \ldots, t_{n}\right\rangle$ is a resolution of A.

Proof.

We will show the case $n=1$. This is the complex $A\langle t\rangle \rightarrow A\langle t\rangle d t$ given by the map

$$
\sum_{k \geq 0} a_{k} t^{[k]} \mapsto \sum_{k \geq 1} a_{k} t^{[k-1]} d t
$$

So, $0 \rightarrow A \rightarrow A\langle t\rangle \rightarrow A\langle t\rangle d t \rightarrow 0$ is exact.

PD-structures, continued

- If (A, I, γ) and (B, J, δ) are PD-rings, then a map $\phi: A \rightarrow B$ is a PD-morphism if:
- $\phi(I) \subset J$
- $\phi\left(\gamma_{n}(x)\right)=\delta_{n}(\phi(x))$

- If $Z \hookrightarrow X$ is a closed immersion of schemes, have a notion of PD-structure on $\mathcal{I}_{Z} \subset \mathcal{O}_{X}$. Sometimes, (Z, X, γ) or $\left(X, \mathcal{I}_{Z}, \gamma\right)$ is called a PD-scheme.

Crystalline site: objects

- $k=$ perfect field of char $p, X / \operatorname{Spec} k$ a fixed scheme.
- $W=W(k)$ and $W_{n}=W / p^{n}$ with canonical PD-structure.
- Objects of $\operatorname{Cris}\left(X / W_{n}\right)$ are PD-schemes (U, T, δ) where $U \subset X$ is a Zariski open and the following diagram is a PD-morphism (but not necessarily a pullback).

- Since $p^{n}=0$ on $\mathcal{O}_{T}, U \hookrightarrow T$ is a homeomorphism.

Crystalline site: morphisms

Morphisms in $\operatorname{Cris}\left(X / W_{n}\right)$ from ($\left.U^{\prime}, T^{\prime}, \delta^{\prime}\right)$ to (U, T, δ) are diagrams:

compatible with PD-structures. Here, $U^{\prime} \rightarrow U$ is an open immersion.

Crystalline site: examples

- Stupid example: $U=X$ and $T=X$, considered as a scheme over Spec W_{n}. The PD-structure on $(0) \subset \mathcal{O}_{X}$ is trivial.

- $U=X=\operatorname{Spec} k$ and $T=\operatorname{Spec} W_{n}\left\langle t_{1}, \ldots, t_{r}\right\rangle$

Crystalline site: examples

Suppose X lifts to a smooth scheme $X^{\prime} / \operatorname{Spec} W_{n}$. Can we find a PD-structure so that

is an object of $\operatorname{Cris}\left(X / W_{n}\right)$? Yes, if this is a pullback.

Crystalline site: sheaves

- The covering families are collections of maps $\left\{\left(U_{i}, T_{i}, \delta_{i}\right)\right\} \rightarrow(U, T, \delta)$ such that $T_{i} \rightarrow T$ is an open immersion, U_{i} and δ_{i} are induced by pullback, and $T=\cup T_{i}$.
- What does it mean to be a sheaf on $\operatorname{Cris}\left(X / W_{n}\right)$?
- Given a sheaf \mathcal{F}, and an object (U, T, δ), produce $\mathcal{F}_{(U, T, \delta)}$ a Zariski sheaf on T by the rule:

$$
\mathcal{F}_{(U, T, \delta)}(W)=\mathcal{F}\left(U \times_{T} W, W, \delta\right)
$$

Crystalline site: sheaves

Proposition

The data of a sheaf \mathcal{F} on $\operatorname{Cris}\left(X / W_{n}\right)$ is equivalent to the data of a Zariski sheaf $\mathcal{F}_{(U, T, \delta)}$ on T for each object (U, T, δ), with maps $g_{\mathcal{F}}^{*}: g^{-1} \mathcal{F}_{\left(U^{\prime}, T^{\prime}, \delta^{\prime}\right)} \rightarrow \mathcal{F}_{(U, T, \delta)}$ for each morphism
$(U, T, \delta) \xrightarrow{g}\left(U^{\prime}, T^{\prime}, \delta^{\prime}\right)$, satisfying:

- Transitivity for $(U, T, \delta) \rightarrow\left(U^{\prime}, T^{\prime}, \delta^{\prime}\right) \rightarrow\left(U^{\prime \prime}, T^{\prime \prime}, \delta^{\prime \prime}\right)$.
- If $T \rightarrow T^{\prime}$ is an open immersion and U, δ are induced by pullback, then $g_{\mathcal{F}}^{*}$ is an isomorphism.

Proof of proposition

- Suppose given the data of $\mathcal{F}_{(U, T, \delta)}$. Define $\mathcal{F}(U, T, \delta)=\mathcal{F}_{(U, T, \delta)}(T)$.
- Transition maps: suppose $g:(U, T, \delta) \rightarrow\left(U^{\prime}, T^{\prime}, \delta^{\prime}\right)$ is a morphism.
- We need a map $\mathcal{F}\left(U^{\prime}, T^{\prime}, \delta^{\prime}\right) \rightarrow \mathcal{F}(U, T, \delta)$.
- Note that $\mathcal{F}\left(U^{\prime}, T^{\prime}, \delta^{\prime}\right)$ has a map to

$$
g^{-1} \mathcal{F}_{\left(U^{\prime}, T^{\prime}, \delta^{\prime}\right)}(T)=\lim _{\operatorname{im}(\vec{T}) \subset W^{\prime}} \mathcal{F}_{\left(U^{\prime}, T^{\prime}, \delta^{\prime}\right)}\left(W^{\prime}\right)
$$

- This maps to $\mathcal{F}_{(U, T, \delta)}(T)$ via $g_{\mathcal{F}}^{*}$.
- Cocycle property of transition maps follows from that of $g_{\mathcal{F}}^{*}$.

Proof of proposition, continued

- Equalizer condition: let $\left\{\left(U_{i}, T_{i}, \delta_{i}\right)\right\} \rightarrow(U, T, \delta)$ be a cover.
- $g_{i}^{-1} \mathcal{F}_{(U, T, \delta)}\left(T_{i}\right)=\mathcal{F}_{(U, T, \delta)}\left(T_{i}\right)$, so $g_{\mathcal{F}}^{*}$ provides an isomorphism $\mathcal{F}_{\left(U_{i}, T_{i}, \delta_{i}\right)}\left(T_{i}\right) \simeq \mathcal{F}_{(U, T, \delta)}\left(T_{i}\right)$.
- Now use equalizer condition for Zariski sheaf $\mathcal{F}_{(U, T, \delta)}$.

Crystalline site: structure sheaf

Proposition

The data of a sheaf \mathcal{F} on $\operatorname{Cris}\left(X / W_{n}\right)$ is equivalent to the data of a Zariski sheaf $\mathcal{F}_{(U, T)}$ on T for each object (U, T), with maps $g_{\mathcal{F}}^{*}: g^{-1} \mathcal{F}_{\left(U^{\prime}, T^{\prime}\right)} \rightarrow \mathcal{F}_{(U, T)}$ for each morphism $(U, T) \rightarrow\left(U^{\prime}, T^{\prime}\right)$, satisfying:

- Transitivity for $(U, T) \rightarrow\left(U^{\prime}, T^{\prime}\right) \rightarrow\left(U^{\prime \prime}, T^{\prime \prime}\right)$.
- If $T \rightarrow T^{\prime}$ is an open immersion and $U=U^{\prime} \times{ }_{T^{\prime}} T$, then $g_{\mathcal{F}}^{*}$ is an isomorphism.

Hence, we can define the structure sheaf $\mathcal{O}_{X / W_{n}}$ by the rule $(U, T, \delta) \mapsto \mathcal{O}_{T}$.

Definition

A sheaf of $\mathcal{O}_{X / W_{n}}$-modules \mathcal{F} is called a crystal if $g_{\mathcal{F}}^{*}$ induces an isomorphism for every morphism g.

Crystalline cohomology: take one

- The global sections of a sheaf \mathcal{F} on $\operatorname{Cris}\left(X / W_{n}\right)$ are systems of compatible sections $s_{(U, T, \delta)} \in \mathcal{F}(U, T, \delta)$.
- $H^{i}\left(X / W_{n}\right)$ is by definition $R^{i} \Gamma\left(\mathcal{O}_{X / W_{n}}\right)$.
- We also set $H^{i}(X / W)=\lim _{\longleftarrow} H^{i}\left(X / W_{n}\right)$.
- Comparison isomorphism: if Z / W_{n} is a smooth lift of X, then

$$
H_{\mathrm{dR}}^{i}\left(Z / W_{n}\right) \cong H^{i}\left(X / W_{n}\right)
$$

The relative crystalline site

- Let (S, \mathcal{I}, γ) be a PD-scheme with associated closed immersion $S_{0} \hookrightarrow S$. We assume \mathcal{O}_{S} is killed by p^{n}, so that all PD-thickenings are homeomorphisms.
- We say γ extends to X / S if the diagram

can be made into a PD-morphism.
- Example: X is an S_{0}-scheme considered over S. Or, $S=W_{n}$ and X is any S-scheme.

The relative crystalline site: objects

- Objects are S-morphisms $U \hookrightarrow T$, equipped with PD-structure δ.
- U is still a Zariski open of X. PD-compatibility condition is now that the following is a PD-morphism:

- Example: $X \rightarrow X$ with trivial PD-structure.
- Morphisms and covers are as before.

Digression: divided power envelopes

Given a PD-scheme (S, \mathcal{I}, γ) and a closed immersion $X \hookrightarrow Y$ of S-schemes, there is a universal PD-scheme $D_{X, \gamma}(Y)$ such that

$$
\begin{gathered}
D_{X, \gamma}(Y)_{0} \longrightarrow D_{X, \gamma}(Y) \\
\quad \downarrow \\
\quad \downarrow \\
X \longrightarrow
\end{gathered}
$$

commutes and

is a PD-morphism.

A rigidity theorem

Theorem
Suppose given a Cartesian PD-square:

There is a natural isomorphism

$$
H^{i}\left((X / S)_{\text {cris }}, \mathcal{O}_{X / S}\right) \xrightarrow{\sim} H^{i}\left(\left(X_{0} / S\right)_{\text {cris }}, \mathcal{O}_{X_{0} / S}\right)
$$

Passage to topos

- Given a morphism $X \rightarrow Y$, it is not true that thickenings of Y pull back to X. E.g. $X \rightarrow Y$ could be a nontrivial family.
- To get functoriality, consider the topos $(X / S)_{\text {cris }}$, the category of sheaves on the site $\operatorname{Cris}(X / S)$.
- Grothendieck philoshopy: an object $T \in \operatorname{Cris}(X / S)$ gives rise to a sheaf $\widetilde{T}:=\operatorname{Hom}(\cdot, T)$.
- Given \mathcal{F}, there is a canonical identification:

$$
\operatorname{Hom}(\widetilde{T}, \mathcal{F})=\mathcal{F}(T)
$$

- This embeds $\operatorname{Cris}(X / S)$ into $(X / S)_{\text {cris }}$.

Morphisms of topoi

Definition

A morphism of topoi $f: \mathcal{T}^{\prime} \rightarrow \mathcal{T}$ is a functor $f_{*}: \mathcal{T}^{\prime} \rightarrow \mathcal{T}$ which has a left adjoint $f^{*}: \mathcal{T} \rightarrow \mathcal{T}^{\prime}$ commuting with finite inverse limits.

- Intuition: $f^{*} \mathcal{F}$ and \mathcal{F} are supposed to have the same stalks.
- $\operatorname{Hom}\left(f^{*}(\mathcal{F}), \mathcal{G}\right)=\operatorname{Hom}\left(\mathcal{F}, f_{*}(\mathcal{G})\right)$
- Recall: adjunction automatically means f_{*} preserves all inverse limits and f^{*} preserves all direct limits.
- f^{*} is exact because cokernels are direct limits and $\operatorname{ker}(A \xrightarrow{\varphi} B)$ is the inverse limit of the diagram:

Functoriality of crystalline topos

- Suppose $S^{\prime} \rightarrow S$ is a PD-morphism. We want a morphism $g_{\text {cris }}:\left(X^{\prime} / S^{\prime}\right)_{\text {cris }} \rightarrow(X / S)_{\text {cris }}$.
- Writing down a formula is easy; checking the details is hard.

Functoriality of crystalline topos

- Given $(U, T, \delta) \in \operatorname{Cris}(X / S), g^{*}(\widetilde{T})$ is the sheaf on $\operatorname{Cris}\left(X^{\prime} / S^{\prime}\right)$ whose value on $\left(U^{\prime}, T^{\prime}, \delta^{\prime}\right)$ is:
- the empty set if $g\left(U^{\prime}\right) \not \subset U$;
- otherwise, the set of PD-morphisms $h: T \rightarrow T^{\prime}$ making the diagram below commute.

- Then by definition,

$$
g_{*}(\mathcal{F})(T)=\operatorname{Hom}\left(\tilde{T}, g_{*} \mathcal{F}\right)=\operatorname{Hom}\left(g^{*}(\widetilde{T}), \mathcal{F}\right)
$$

Leray spectral sequence

Proposition

Suppose $g: \mathcal{T}^{\prime} \rightarrow \mathcal{T}$ is a morphism of topoi. If E^{\prime} is an abelian sheaf in \mathcal{T}^{\prime}, there is a Leray spectral sequence:

$$
E_{2}^{p q}=H^{p}\left(\mathcal{T}, R^{q} g_{*} E^{\prime}\right) \Longrightarrow H^{i}\left(\mathcal{T}^{\prime}, E^{\prime}\right)
$$

- Alternatively, in derived language, $R \Gamma_{\mathcal{T}^{\prime}} \simeq R \Gamma_{\mathcal{T}} \circ R g_{*}$.

Proof.

Because g^{*} preserves finite inverse limits, $g^{*}(e)=e^{\prime}$, where $e \in \mathcal{T}$ and $e^{\prime} \in \mathcal{T}^{\prime}$ are the final objects. So,

$$
\Gamma\left(\mathcal{T}^{\prime}, E^{\prime}\right)=\operatorname{Hom}_{\mathcal{T}^{\prime}}\left(e^{\prime}, E^{\prime}\right)=\operatorname{Hom}_{\mathcal{T}}\left(e, g_{*} E^{\prime}\right)=\Gamma\left(\mathcal{T}, g_{*} E^{\prime}\right)
$$

Also, g_{*} takes injectives to injectives by general nonsense. So we use the composite functor spectral sequence.

"Proof" of rigidity theorem

Theorem

Suppose given a Cartesian PD-square:

There is a natural isomorphism

$$
H^{i}\left((X / S)_{\text {cris }}, \mathcal{O}_{X / S}\right) \xrightarrow{\sim} H^{i}\left(\left(X_{0} / S\right)_{\text {cris }}, \mathcal{O}_{X_{0} / S}\right)
$$

- STS: the functor $i_{\text {cris,* }}$ is exact and takes $\mathcal{O}_{X_{0} / S}$ to $\mathcal{O}_{X / S}$.

Comparison isomorphism

Theorem

Suppose given a Cartesian PD-square where X / S is smooth:

There are natural isomorphisms:

$$
\begin{gathered}
H^{i}\left((X / S)_{\text {cris }}, \mathcal{O}_{X / S}\right) \xrightarrow{\sim} \mathbb{H}^{i}\left(X_{\mathrm{Zar}}, \Omega_{X / S}^{\bullet}\right) \\
H^{i}\left((X / S)_{\text {cris }}, \mathcal{O}_{X / S}\right) \xrightarrow{\sim} H^{i}\left(\left(X_{0} / S\right)_{\text {cris }}, \mathcal{O}_{X_{0} / S}\right) .
\end{gathered}
$$

Proof idea 1: the role of smoothness

- Recall that smoothness of X / S means square-zero (hence, nilpotent) affine thickenings lift:

- So, after shrinking, one can always factor:

- X is not a final object, but it is a "covering object". So we can hope to use Cech techniques.

Proof idea 2: passage to Zariski topos

- There is a morphism of topoi $u_{X / S}:(X / S)_{\text {cris }} \rightarrow X_{\text {Zar }}$ satisfying:

$$
\Gamma\left(X_{\text {Zar }}, u_{X / S, *}(\mathcal{F})\right)=\Gamma\left((X / S)_{\text {cris }}, \mathcal{F}\right)
$$

- The Leray spectral sequence then shows

$$
H^{*}\left((X / S)_{\text {cris }}, \mathcal{O}_{X / S}\right)=\mathbb{H}^{*}\left(X_{\text {Zar }}, R u_{*} \mathcal{O}_{X / S}\right)
$$

- One can now use something called the "Cech-Alexander complex".

Crystals and connections

Theorem

Suppose given a Cartesian PD-square where X / S is smooth:

Then there is an equivalence of categories between

$$
\left\{\text { crystals on } \operatorname{Cris}\left(X_{0} / S\right)\right\} \text { and }
$$

$\{Q C o h$ sheaves on X w/ quasi-nilpotent integrable connection $\nabla\}$

Recall: a sheaf of $\mathcal{O}_{X / W_{n}}$-modules \mathcal{F} is called a crystal if $g_{\mathcal{F}}^{*}$ induces an isomorphism for every morphism g.

Crystals and connections: sketch

- Suppose given a crystal \mathcal{F}. The corresponding sheaf on X will be \mathcal{F}_{X}, which is an \mathcal{O}_{X}-module.
- How to make the connection ∇ ?
- Consider $\mathcal{P} \subset X \times{ }_{s} X$, the closed subscheme defined by \mathcal{I}^{2}. This is a thickened neighborhood of $\Delta(X)$.

- If this were a PD-thickening, crystal property would give an isomorphism $\epsilon: \pi_{1}^{*} \mathcal{F} \xrightarrow{\sim} \pi_{2}^{*} \mathcal{F}$

Crystals and connections: sketch

- We can leverage $\epsilon: \pi_{1}^{*} \mathcal{F} \xrightarrow{\sim} \pi_{2}^{*} \mathcal{F}$ into a connection:

$$
\nabla(f)=\epsilon(1 \otimes f)-f \otimes 1 \in \mathcal{F} \otimes \Omega_{X / S}^{1}
$$

- Compatibility with Δ^{*} means we land in Ω^{1}.
- Integrability $(\nabla \circ \nabla=0)$ will follow from cocycle condition for $X \times_{s} X \times_{s} X$.

Crystals and connections: sketch

- Conversely: given a sheaf \mathcal{F}_{X} of \mathcal{O}_{X}-modules, how do we make a crystal for X_{0} / S ?
- Because X is smooth, after shrinking we can factor:

- We define $\mathcal{F}_{T}:=g^{*} \mathcal{F}_{X}$.
- What if we used a different morphism $g^{\prime}: T \rightarrow X$?

Crystals and connections: sketch

- After passing to a suitable PD-neighborhood, ∇ will give a canonical identification of $g^{*} \mathcal{F}$ and $\left(g^{\prime}\right)^{*} \mathcal{F}$.
- This lets us construct \mathcal{F}.
- Cocycle condition will come from integrability.

Crystals and connections

Theorem

Suppose given a Cartesian PD-square where X / S is smooth:

Then there is an equivalence of categories between

$$
\left\{\text { crystals on } \operatorname{Cris}\left(X_{0} / S\right)\right\} \text { and }
$$

$\{Q C o h$ sheaves on X w/ quasi-nilpotent integrable connection $\nabla\}$

Recall: a sheaf of $\mathcal{O}_{X / W_{n}}$-modules \mathcal{F} is called a crystal if $g_{\mathcal{F}}^{*}$ induces an isomorphism for every morphism g.

