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1 Introduction

This is an attempt to cover some fundamental aspects of étale cohomology in 90 minutes for
STAGE, which is on the Weil conjectures this semester. There are many great references out there,
among which I found Tamme’s Introduction to étale cohomology very friendly as an introduction
(at least compared to any of the original articles) up to de�ning l-adic cohomology. I’ve listed a
couple of other notes and books in the references, which were helpful in learning the material
and writing up these notes.1

1I would also like to thank Prof. Poonen for taking the time to help me prepare my talk and for suggesting lots
of very insightful feedback!
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2 Sites and cohomology

De�nition 1. A site comprises the data of a category C and a collection of families {Ui → U}i∈I of
morphisms in C, denoted Cov(C) (also called theGrothendieck (pre-)topologywhose elements
are covering families), satisfying the following axioms:

(i) (Existence of �ber products) Given Ui → U in some covering family and any morphism
V → U, the �ber product Ui ×U V exists in C.

(ii) (Stability under base change) Given a covering family {Ui → U}i∈I and any morphism
V → U, the collection {Ui ×U V → V }i∈I is a covering family as well.

(iii) (Local character) Given a covering family {Ui → U}i∈I and for each i ∈ I, another covering
family {Uij → Ui}j∈Ji , the family of composites {Uij → U}i∈I,j∈Ji is also a covering family.

(iv) (Isomorphisms) If f ∶ V → U is an isomorphism, then {f} is a covering family.

As we shall below, this construction is, indeed, a generalization of a topology.
Example 2. Let X be a topological space and Op(X) be the category of open sets of X , whose
morphisms are given by inclusions. Covering families are then given by (topological) coverings
{Ui ⊂ U}i∈I (i.e. ⋃Ui = U ); all the conditions of a site are then satis�ed. For instance, �ber
products are given by intersections.
De�nition 3. Given two sites S1 = (C1,Cov(C1)) , S2 = (C2,Cov(C2)) , a morphism of sites2

f ∶ S1 → S2 is a functor f ∶ C1 → C2 such that

(i) {Ui → U}i∈I ∈ Cov(C1) Ô⇒ {f(Ui) → f(U)}i∈I ∈ Cov(C2).

(ii) If V → U is any morphism in C1 and {Ui → U}i∈I ∈ Cov(C1), then for each i ∈ I, then the
induced map f(Ui ×U V ) → f(Ui) ×f(U) f(V ) is an isomorphism.

f is moreover an isomorphism if f induces an equivalence of categories and if g is a quasi-
inverse functor to f, then {Vi → V }i∈I ∈ Cov(C2) Ô⇒ {g(Vi) → g(V )}i∈I ∈ Cov(C1).

We consider the standard de�nition of a topological space again.
Example 4. Suppose X and Y are topological spaces, in the standard sense. If f ∶ X → Y is
a continuous map, then we have the induced functor Op(Y ) → Op(X) given by taking f−1(⋅).
This gives rise to a morphism of the corresponding sites.

We can now extend our standard de�nition of a sheaf on a topological space. To do so, we need
to begin with the notion of a presheaf.
De�nition 5. Suppose S is a site (C,Cov(C)) and suppose D is a category that admits arbitrary
products (including the empty product). A functor F ∶ Cop → D is called a presheaf on the site
S with values in D.3 As usual, a morphism is given by natural transformations.

The sheaf condition for sites is similar to the standard case, except we replace intersections with
�ber products. Noting that �ber products correspond to taking intersections, it’s clear that this

2There are multiple de�nitions of a morphism of a sites; for instance, the Stacks Project calls our de�nition a
continuous morphism instead.

3Note that a presheaf on a site only depends on data of the underlying category C and not its covering families;
the extra data of Cov(C), however, comes up crucially in the de�nition of a sheaf.
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is a generalization of the familiar de�nition.
De�nition 6. A sheaf on the site S with values inD is a presheafF that satis�es the following
criterion:

For each covering family {Ui → U}i∈I , the diagram

F(U) ↪∏
i∈I

F(Ui) ⇉ ∏
(i,j)∈I×I

F(Ui ×U Uj)

is a exact, where the top and bottom maps, on each index, is induced by F applied to the projec-
tions Ui ×U Uj → Ui and Ui ×U Uj → Uj, respectively (in particular, this means that the �rst map
is injective and the kernel of the second map is equal to the image of the �rst map).

More speci�cally, we care about the situation where D is Ab, the category of abelian groups. Let
T be a site and PAb(T ) be the category of abelian presheaves on T . Then,

(i) PAb(T ) is an abelian category.

(ii) Any sequence F → G→H in PAb(T ) is exact i� the sequence F (U) → G(U) →H(U) in
Ab is exact for every U ∈ T .

(iii) PAb(T ) has enough injectives.

Moreover, there is a full subcategory of PAb(T ) called Ab(T ) comprising the abelian sheaves
on T . Let i ∶ Ab(T ) ↪ PAb(T ) denote the inclusion. Then, there is a left adjoint functor of i
called adi. Moreover, for F ∈ PAb(T ), we write F ♯ ∈ Ab(T ) to denote adi(F ) and call it the sheaf
associated to F , or the shea��cation of F .

It turns out that Ab(T ) is an abelian category with enough injectives, so that any left exact
additive functor f ∶ Ab(T ) → C (where C is any abelian category) has right derived functors
Rqf .

In particular, if we �x some U ∈ T , there is a section functor ΓU ∶ Ab(T ) → Ab that sends F to
F (U). The section functor is exact on the level of presheaves and the inclusion Ab(T ) → PAb(T )
is left exact, so it follows that ΓU has right derived functors.
De�nition 7. Let F ∈ Ab(T ). Then, we de�ne the qth cohomology group of U with values
in F by Hq(U,F ) = (RqΓU)(F ).

3 Étale site and operations on étale sheaves

De�nition 8. Let X be a scheme. We let Ét/X denote the category of étale X-schemes, which
has �nite �ber products (including the empty �ber product, namely that X is a �nal object).

A family {ϕi ∶ X ′
i → X ′} in Ét/X is said to be surjective if X ′ is covered by the images of ϕi.

It’s clear the set of all surjective families satis�es the necessary axioms of a site, and so we de�ne
Xét (or the étale site of X) to be the site whose objects are Ét/X and whose coverings are the
surjective families in Ét/X .
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Remark 9. By the Leray spectral sequence, we can compare the Zariski and étale sites. Here, the
Zariski site refers to the topology of open sets of a schemeX (morphisms are given by inclusion).
Note that there is an inclusion i ∶ XZar → Xét, which is a morphism of sites. Then, we have the
spectral sequence

Ep,q
2 =Hp

Zar(X,Rqis(F )) ⇒ Ep+q =Hp+q
ét (X,F ).

Now, let f ∶ X → Y be a morphism of schemes. Then, f induces a covariant functor from Ét/Y
to Ét/X by sending Y ′ ↦ Y ′ ×Y X , which respects �ber products and surjective families of
morphisms, so that we get a morphism of sites fét ∶ Yét →Xét. As a result, we can de�ne

f∗ ∶= (fét)s ∶ Ab(Xét) → Ab(Yét) and f∗ ∶= (fét)s ∶ Ab(Yét) → Ab(Xét).

The former is called the direct image of F and the latter the inverse image of G. Note that
f∗F (Y ′) = F (Y ′ ×Y X). and that f∗G(X ′) is the sheaf associated to the presheaf limÐ→Iop

X′

G,
where IX′ is the category of pairs (Y ′, ϕ) with Y ′ ∈ Ét/Y and ϕ ∶X ′ → Y ′×Y X anX-morphism.
But, note that HomX(X ′, Y ′ ×Y X) = HomY (X ′, Y ′), so we can also view IX′ as the category of
Y -morphisms X ′ → Y ′ to Y ′ ∈ Ét/Y .
Remark 10. Iop

X′ is �ltered, since fét preserves �ber products and �nal objects.
Proposition 11.

(i) f∗ is left adjoint to f∗.

(ii) f∗ is left exact.

(iii) f∗ is exact and commutes with inductive limits.

(iv) (g ○ f)∗ = g∗ ○ f∗ and (g ○ f)∗ = f∗ ○ g∗.
Since f∗ is left exact, we have the usual right derived functors Rqf∗, which correspond to the
sheaves associated to the presheaves Hq(− ×Y X,F ) on Yét. As a result, we have the following
from the Leray spectral sequence.
Proposition 12. Let F ∈ Ab(Xét) and Y ′ ∈ Ét/Y . Then, if f ∶ X → Y is a morphism of schemes,
we have the spectral sequence

Ep,q
2 =Hp(Y ′,Rqf∗(F )) ⇒ Ep+q =Hp+q(Y ′ ×Y X,F ).

More generally, we have
Proposition 13. If f ∶ X → Y and g ∶ Y → Z are morphisms of schemes and F ∈ Ab(Xét), we
have the spectral sequence

Ep,q
2 = Rpg∗(Rqf∗(F )) ⇒ Ep+q = Rp+q(gf)∗(F ).

From this spectral sequence, we obtain the edge morphism Ep,0
2 → Ep, namely

Hp(Y ′, f∗F ) →Hp(Y ′ ×Y X,F ),
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which is functorial inF . Also, we have the unitG→ f∗f∗G inducingHpY ′,G) →Hp(Y ′, f∗f∗G),
along with edge morphismHp(Y ′, f∗f∗G) →Hp(Y ′×YX,f∗G), whose composition gives

Hp(Y ′,G) →Hp(Y ′ ×Y X,f∗G),

which is functorial in G.

We can also construct the base-change morphisms using the Leray spectral sequence.

First, note that we have edge morphisms

Rpg∗(f∗F ) → Rp(gf)∗(F ) and Rp(gf)∗(F ) → g∗(Rpf∗(F )).

Now, suppose we have a Cartesian square

X ′ Y ′

X Y

f ′

v′ v

f

of morphisms of schemes. If F ∈ Ab(Xét), we can consider the unit F → v′∗v
′∗F , which along

with the edge morphisms, induces the maps

Rpf∗(F ) → Rpf∗(v′∗v′∗F )
→ Rp(f ○ v′)∗(v′∗F )
= Rp(v ○ f ′)∗(v′∗F )
→ v∗(Rpf∗(v′∗F )),

which induces a map
v∗(Rpf∗(F )) → Rpf ′∗(v′∗F ))

called the base-change morphism, functorial inF . We will see in the future under what conditions
this is an isomorphism.

At this point, we should at least mention a couple examples of étale sheaves, although we might
not be able to talk about them further.
Remark 14. Xét is subcanonical in the sense that every covering in Xét is a family of universal ef-
fective epimorphism in the category ofX-schemes. In other words, every representable presheaf
of sets (with representing object in the category of X-schemes) is a sheaf on Xét.

Now, given a commutative group scheme over X , we write GX to denote the sheaf on Xét repre-
sented by G—this is doable because of our remark above. GX is a sheaf of abelian groups on Xét
with GX(X ′) = HomX(X ′,G).
De�nition 15. The following four commutative group schemes are important for the study of
Artin-Schreier and Kummer theory. Let X be a scheme and X ′ ∈ Ét/X .

(i) The additive group (Ga)X is de�ned so that Ga = Spec(Z[t]) ×SpecZX . The points of Ga
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are as follows:

(Ga)X (X ′) = HomX (X ′,Spec(Z[t]) ×SpecZX)
= Hom(X ′,Spec(Z[t]))
= Hom(Z[t],Γ(X ′,OX′))
= Γ(X ′,OX′).

(ii) The multiplicative group (Gm)X is de�ned so that Gm = Spec(Z[t, t−1]) ×SpecZ X . The
points of Gm are as follows:

(Gm)X(X ′) = Hom(Z[t, t−1],Γ(X ′,OX′))
= Γ(X ′,OX′)×.

(iii) The nth roots of unity (µn)X is de�ned so that µn = Spec (Z[t]/(tn − 1)) ×SpecZX . The
points of µn are as follows:

(µn)X (X ′) = Hom (Z[t]/(tn − 1),Γ(X ′,OX′))
= {r ∈ Γ(X ′,OX′) ∶ rn = 1} .

(iv) The constant sheaf AX associated to a abelian group A is de�ned so that AX is the
constant sheaf associated to A. In particular, AX(X ′) is the set of continuous functions
from X ′ to A (endowed with the discrete topology), which is the set of locally constant
functions fromX ′ toA, which corresponds to partitions ofX ′ into a disjoint union of open
subsets, indexed by elements of A. So

AX(X ′) = HomX (X ′,∐
A

X) .

Moreover,∐AX is indeed an étale group scheme over X (with group structure induced by
A).

4 Frobenius action

Before discussing the Frobenius endomorphism on a scheme, we recall some general facts about
functoriality. Let f ∶ X ′ → X and F ∈ Ab(Xét). Note that we have a natural map H i(X,F ) →
H i(X ′, f∗F ), de�ned by the composition H i(X,F ) → H i(X,f∗f∗F ) → H i(X ′, f∗F ), induced
by the adjunction and the edge morphism from the Leray spectral sequence for f∗F .
De�nition 16. SupposeX is a scheme over Fq. We de�ne Fr ∶X →X, the absolute Frobenius,
to be the morphism de�ned as the identity on ∣X ∣ and the qth power map on the level of structure
sheaves.
Lemma 17. There is a canonical morphism of sheaves Fr∗/X ∶ F → Fr∗F , which is an isomorphism.
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Proof. Let f ∶ U → X be étale and note that f ○ Fr = Fr ○f . This induces a unique X-morphism
FrU/X ∶ U → X ×X U , where X → X is Fr. Note that the composition U → X ×X U → X is just
U →X , and since both U →X andX ×X U →X are étale (by base change), it follows that FrU/X
is étale. We also see that it is universally bijective, so it follows that it is an isomorphism. The
result follows. ,
Remark 18. By adjunction, we get a corresponding morphism Fr∗F → F .
Lemma 19. The induced homomorphism on cohomologyH i(X,F ) →H i(X,Fr∗F ) →H i(X,F )
is the identity.

One might ask what happens when we base change to the algebraic closure. In this setting, we
actually get many di�erent Frobenii:
De�nition 20. Let X =X ×Fq Fq.

(i) The absolute Frobenius on X is simply FrX (here, we write the base scheme in the sub-
script to avoid ambiguity).

(ii) The relative Frobenius on X is FrX ×Id.

(iii) The arithmetic Frobenius on X is Id × FrFq
.

(iv) The geometric Frobenius on X is Id × Fr−1
Fq

.

A little more concretely, the relative Frobenius corresponds to raising variables to the qth power,
the arithmetic Frobenius corresponds to raising coe�cients to the qth power, the geometric Frobe-
nius corresponds to taking pth roots of coe�cients, and the absolute Frobenius corresponds to
raising everything to the pth power.

We note that (FrX ×Id)○(Id×FrFq
) = FrX ×FrFq

= (Id×FrFq
)○(FrX ×Id) is the absolute Frobenius

FrX , and since the absolute Frobenius induces the identity on the level of cohomology, it follows
that relative Frobenius and geometric Frobenius induce the same action on cohomology.

5 Stalks of étale sheaves

De�nition 21. A geometric point of a scheme X is an X-scheme of the form P = Spec(Ω),
where Ω is a separably closed �eld. In other words, we are specifying a point x ∈X together with
κ(x) ↪ Ω.
Remark 22. F ↦ F (P ) actually gives an equivalence between Ab(Pét) and Ab.
De�nition 23. Let u ∶ P → X be a geometric point of X . Then, if F ∈ Ab(Xét), we say that
Fp ∶= (u∗F )(P ) is the stalk of F in P .
Example 24. Let G be an étale commutative group scheme over X and let GX be the abelian
sheaf on Xét represented by G. Then, note that u∗GX(P ) = HomX(P,G) is just the Ω-valued
points of G. In particular, the stalk of the constant sheaf AX is just A.
Proposition 25.

(i) F ↦ FP is exact and commutes with inductive limits.

(ii) If v ∶ P ′ → P is an X-morphism of geometric points of X , then Fp ≅ FP ′ .
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(iii) Consider f ∶X → Y and P a geometric point of X . Then, P is a geometric point of Y (via f )
and for any F ∈ Ab(Yét), we have (f∗F )P ≅ FP .

Remark 26. For any x ∈ X , consider κ(x) and a separable closure κ(x). Then, let x be the
geometric point corresponding to Spec (κ(x)) → Spec(κ(x)) →X . Then, the proposition above
tells us that every stalk FP where the image of P is x ∈X is the same as Fx (noting that separable
closures are (non-uniquely) isomorphic).
De�nition 27. An étale neighborhood of P in X is a pair (X ′, u′) with X ′ ∈ Ét/X and u′ ∶
P →X ′ and X-morphism.
Remark 28. The dual category of étale neighborhoods of P inX is �ltered and we get a canonical
homomorphism

limÐ→
X′

F (X ′) → FP ,

by noting that the former comes from the description of the presheaf u⋅F (P ) and the latter the
shea��cation. Let the image of s ∈ F (X ′) in FP be written sP .
Lemma 29. Let f ∶ X → Y and G ∈ PAb(Yét). Then, (f ⋅G)# → f∗(G#) (induced by f ⋅G →
f ⋅(G#) → f∗(G#)), is an isomorphism.

Proof. In general, if we have a morphism of topologies f ∶ T → T ′ with G an abelian presheaf on
T , then (fpG)# → fs(G#) is an isomorphism by using the push-pull adjunction twice. ,
Proposition 30. Let G be an abelian presheaf on Xét, where P is a geometric point of X . Then,

limÐ→
X′

G(X ′) → (G#)P

is an isomorphism.

Proof sketch. It su�ces to show thatG(P ) → G#(P ) is an isomorphism. To do this, we note that
{Id ∶ P → P} is always a re�nement of any {Ui → P}. ,
Example 31. Let f ∶X → Y and F ∈ Ab(Xét), with P a geometric point of Y . Then,

Rqf∗(F )P ≅ limÐ→
Y ′

Hq(X ×Y Y ′, F ),

where the inductive limit goes over the étale neighborhoods of P in Y .
Example 32. If k is a �eld and ksep a separable closure, then F ↦ limÐ→k′

F (Spec(k′)) (running
over �nite subextensions) is an equivalence between Ab(Spec(k)ét) and continuous Gal(ksep/k)-
modules.

Spec(ksep) is a geometric point of Spec(k) (induced by the inclusion), and there is a full subcate-
gory of the étale neighborhoods given by �nite subextensions k′ of ksep/k, which is clearly initial,
so that in the dual category we get a �nal subcategory. Then, we have

limÐ→
k′

F (Spec(k′)) ≅ FSpec(ksep).

Theorem 33.
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(i) ThemorphismF ′ → F of abelian sheaves onXét is an isomorphism/monomorphism/epimorphism
i� the morphism F ′

x → Fx is for every x ∈X .

(ii) The morphism v ∶ F ′ → F of abelian sheaves on Xét is 0 i� vx = 0 for all x ∈X . In particular,
for s ∈ F (X), we have s = 0 i� sx = 0 for all x ∈X .

(iii) F ′ → F → F ′′ in Ab(Xét) is exact i� F ′
x → Fx → F ′′

x is for every x ∈X .

Proof. Sketch: Most of these statements follow easily from showing the statement about isomor-
phisms in part 1. To do this, the key point (and in similar vein to the usual proof about stalks)
is noting that the dual category of étale neighborhoods of x is �ltered, so that we can �nd étale
neighborhoods X ′ of x where we can �nd vanishing s on X ′ for every sx = 0. ,
Remark 34. More generally, any �nite (co)limits can be checked at the level of points.

6 Cohomology with compact support

Proposition 35. Let T be a topology and F ∈ Ab(T ). Then, F is a sheaf associated to a presheaf
of abelian torsion groups i� the canonical morphism limÐ→ nF → F is actually an isomorphism. Here,

nF is the kernel of the multiplication-by-n map F
n→ F (with n ∈ N).

If F satis�es either of these conditions, we say that F is a torsion sheaf.
Remark 36. In general, for a torsion sheaf F , it is not the case that F (U) are all torsion groups.
However, if we further ask that U is quasicompact, then F (U) is actually torsion. This follows
from the quasicompactness of U (which allows to work with �nite covers and the fact that the
inductive limit presheaf P is already separated):

F (U) = P ∤(U)
= H̆0(U,P )
= limÐ→
{Ui→U} �nite

H0({Ui → U}, P )

= limÐ→
{Ui→U} �nite

ker(∏
i

P (Ui) ⇉∏
i,j

P (Ui ×U Uj))

is clearly torsion.
Remark 37. The following facts may be useful:

(i) Let F ∈ Ab(Xét). Then, F is torsion i� Fx is torsion for every x ∈X .

(ii) Let X be qcqs and F ∈ Ab(Xét) is torsion. Then, Hq(X,F ) are torsion for every q ≥ 0.

(iii) Let f ∶ X → Y and F ∈ Ab(Yét) is torsion. Then, f∗F ∈ Ab(Xét) is torsion. Also, if f is
qcqs and instead F ∈ Ab(Xét) is torsion. Then, Rqf∗F ∈ Ab(Yét) is torsion for all q.

Example 38. Examples of torsion sheaves include (µn)X and constant sheaves AX with A a
discrete abelian torsion group.
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De�nition 39. F ∈ Ab(Xét) is called locally constant if there is a covering {Xi → X} so that
F ∣Xi

is constant.

F ∈ Ab(Xét) is �nite if every stalk Fx is �nite.

F ∈ Ab(Xét) is called constructible if each a�ne open subset U ⊂ X can be written as a union
of �nitely many constructible reduced subschemes Ui of U so that F ∣Ui

is locally constant and
�nite.

For the rest of this section, suppose X is separated of �nite type over a �eld k.

Given an open immersion j ∶ U ⊂ X , we can de�ne an extension-by-zero functor j! ∶ Ab(Uét) →
Ab(Xét) that satis�es the property that for any geometric point x of X and F ∈ Ab(Xét), we
have

(j!F )x =
⎧⎪⎪⎨⎪⎪⎩

Fx if x ∈ U
0 otherwise.

Remark 40. One way to do this is via the decomposition theorem: suppose we have a closed
immersion Y ↪X with complement U ⊂X . Then, there is an equivalence of categories between
Ab(Xét) and T (X,Y ), the mapping cylinder category associated to X and Y .

We can then de�ne H i
c(U,F ) =H i(X, j!F ), where X is proper over k and contains U as a dense

open subset.
Proposition 41. Let F be a torsion sheaf on X .

(i) H i
c(X,F ) exists and makes sense.

(ii) F ↦H i
c(X,F ) is an exact δ-functor.

(iii) If i ∶ Z ↪ X is a closed immersion and j ∶ U ⊂ X is the open immersion de�ned with
U =X −Z , then we have a long exact sequence

⋯ →H i−1
c (Z, i∗F ) →H i

c(U, j∗F ) →H i
c(X,F ) →H i

c(Z, i∗F ) →H i+1
c (U, j∗F ) → ⋯.

Before we get to the proof, we cite the proper base change, a deep and technical theorem:
Theorem 42 (Proper base change). Let f ∶ X → Y be a proper morphism of schemes and F be a
torsion sheaf.

(i) If F is a constructible sheaf on X , then Rif∗F is constructible for all i ≥ 0.

(ii) For any Cartesian square

X ′ Y ′

X Y

f ′

v′ v

f

the base change morphism g∗(Rif∗F ) → Rif ′∗(g′∗F ) is an isomorphism for every i.

(iii) Let y ∈ Y be a geometric point and π ∶Xy →X . Then, we have canonical isomorphisms

(Rif∗F )y ≅H i(Xy, π
∗F ).
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Proof sketch of proposition. The tricky part is (i); we note that (ii) and (iii) follow easily once one
notes that µ! is exact. By Nagata’s compacti�cation theorem, we know that there exists some
open immersion µ ∶ X ⊂ X1 with X1 a proper k-scheme and X dense in X1. We want to check
that the choice of compati�cation does not matter.

So suppose ν ∶X ⊂X2 is another compacti�cation. We can consider the scheme-theoretic image
ofX inX1×X2 as another compati�cation, so that we can assume WLOG that there is a morphism
h ∶X1 →X2 so that h ○ µ = ν. Now, the Leray spectral sequence tells us that

Hp(X2,R
qh∗µ!F ) ⇒Hp+q(X1, µ!F ).

Then, if we can show that Rqh∗µ!F = ν!F for q = 0 and 0 otherwise, we are done. We can
check this easily on the level of stalks by invoking the proper base change theorem, noting that
(Rqh∗µ!F )x =Hq ((X1)x, (µ!F ∣X1)x) = Fx for q = 0 and x ∈X and 0 otherwise. ,

7 Important theorems and the necessity of torsion coe�cients

Now that we have seen some properties of étale cohomology, it may be tempting to assume that
the scheme-theoretic analogue of singular cohomology (withZ-coe�cients) is simply taking étale
cohomology of the constant sheaf ZX . Unfortunately, this does not work.
Proposition 43. Let X be regular. Then, H1(Xét,ZX) = 0.
Remark 44. The main issue here is that Z does not have any torsion!

As a result, any sensible analogue of singular cohomology will need to consider torsion sheaves.
One way to do this is as follows.4
De�nition 45. Let X be a k-scheme and l a prime di�erent from char(k). Then, de�ne

H i(Xét,Zl) = limÐ→
n

H i(Xét,Z/lnZ),

which is a Zl–module. We can then de�ne

H i(Xét,Ql) =H i(Xét,Zl) ⊗Zl
Ql.

Theorem 46 (Cohomological dimension). If X is a�ne and �nite type over a separably closed
�eld L, then H i(X,Ql) = 0 for i > dimX .
Theorem 47 (Poincaré duality). LetX be smooth and connected of dimension d, and separated over
a separably closed �eld k. Also, let l be coprime to char(k). Then, there is a trace map isomorphism
tr ∶H2d

c (X,Ql)(d) → Ql(−d).5 Also, there is a perfect pairing

H i
c(X,Ql) ×H2d−i(X,Ql)(d) →H2d(X,Ql)(d)

tr→ Ql(−d).

Theorem 48 (Weak Lefschetz). LetX be smooth projective of dimension d over a separably closed
�eld k, and let Y ↪ X be a smooth hyperplane section. Then, the restriction map H i(X,Ql) →
H i(Y,Ql) is bijective for 0 ≤ i ≤ d − 2 and injective for i = d − 1.

4This notation is a bit confusing; these are not the étale cohomology groups of the constant sheaf Zl or Ql!
5I haven’t de�ned what “(d)” means, but they are essentially the same as Tate twists.
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Proof. Let U = X − Y , which we note is a�ne open in X , since X ↪ PN is a�ne and for any
hyperplane H ↪ PN , we have PN − H is a�ne. From the two theorems above, we have that
H i
c(U,Ql) = 0 for i < dimX .

Using the long exact sequence of compact cohomology groups, and noting that for X and Y ,
compact cohomology is the usual cohomology, the result follows. ,
Remark 49. I haven’t stated these in full generality, but I expect the next talk will talk again about
l-adic sheaves anyways, so this is just a glimpse of what’s next.

8 Appendix

This section isn’t very important and is mainly just a reminder for the author on some facts about
abelian categories and spectral sequences.

8.1 Abelian categories

De�nition 50. A category C is additive if it has the following properties.

(i) For anyA,B ∈ C, the set Hom(A,B) has the structure of an abelian group and composition
of morphisms is bilinear.

(ii) Finite products and sums exist.

(iii) There is a zero object.
De�nition 51. A category C is abelian if it has the following properties.

(i) Every morphism has a kernel and a cokernel.

(ii) For every morphism u, the canonical map coim(u) → im(u) is an isomorphism.
Proposition 52. In an abelian category, any bijective morphism is an isomorphism.
Proposition 53. Let C and C′ be categories with C′ abelian. Then, the category of natural trans-
formations Hom(C,C′) is an abelian category. Also, any F → G → H in Hom(C,C′) is exact i�
F (A) → G(A) →H(A) is exact for all A ∈ C.
De�nition 54. Let C be an abelian category. Then, M ∈ C is injective i� Hom(−,M) is exact. C
is said to have enough injectives if for any object A ∈ C, there is a monomorphism A→M for
some injective object M .
De�nition 55. A family (Zi)i∈I of objects is called a family of generators if for any A and B
a proper subobject of A, there is some Zi and a morphism Zi → A that does not factor through
the the inclusion B → A.
Condition 56. There are two important properties for an abelian category C that we call AB 3)
and AB 5).

• If arbitrary direct sums exist, we say that AB 3) is satis�ed.
• If AB 3) is satis�ed and moreover for any increasingly �ltered family of subobjects Ai of
A, and given morphisms ui ∶ Ai → B (for some �xed B), such that the ui are induced by
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restriction, there is a unique morphism u ∶ ∑iAi ∶= im(⊕iAi → A) → B extending all of
the ui, we say AB 5) is satis�ed.

Proposition 57. Let C be an abelian category satisfying AB 3) with (Zi)i∈I a family of objects and
Z the direct sum of the Zi. Then, TFAE:

(i) (Zi)i∈I is a family of generators of C.
(ii) Z is a generator of C.
(iii) There is an epimorphism⊕j∈J Z → A for any A ∈ C.

Proposition 58. Let C be an abelian category satisfying AB 5) that also has a family of generators.
Then, C has enough injectives.
Example 59. The category Ab (of abelian groups) has generator Z and satis�es AB 5). Hence,
Ab has enough injectives. Of course, we can also prove this directly.
Proposition 60. Let C and C′ be categories with C′ abelian. If C ′ satis�es Ab 5), then so does
Hom(C,C′). If C′ has generators and satis�es AB 3), then so does Hom(C,C′).
Lemma 61. SupposeA,B are abelian categories withG ∶ A → B and F ∶ B → A covariant functors
that are adjoint to each other. Suppose F is the right adjoint and that G is exact. Then, F sends
injectives to injectives.

Proof. If I is an injective object, we want to show that Hom(−, F I) is injective. We can then
take short exact sequence, hit it with G to get an exact sequence, and then hit it with Hom(−, I),
which is also exact by de�nition, and then use the adjunction between F andG to get the desired
result. ,

8.2 Spectral sequences

For this section, �x an abelian category C.
De�nition 62. For each r ≥ 0, a spectral sequence consists of objects {Ep,q

r }p,q∈Z and di�er-
entials dp,qr ∶ Ep,q

r → Ep+r,q−r+1
r so that Ep,q

r+1 = ker(Ep,q
r → Ep+r,q−r+1

r )/ im(Ep−r,q+r−1
r → Ep,q

r ). A
spectral sequence is said to live in the �rst quadrant if p < 0 or q < 0 implies Ep,q

r = 0.

IfK ⋅ = F 0K ⋅ ⊃ F 1K ⋅ ⊃ ⋯ is a �ltered complex, we write grpK ⋅ to express the quotientF pK ⋅/F p+1K ⋅.
Moreover, there is a natural �ltration of H(K ⋅).
Theorem 63. SupposeK ⋅ is a nonnegative �ltered complex, i.e. a �ltered complex such thatKn = 0
for negative n). Then, there is an associated spectral sequence Ep,q

r so that Ep,q
0 = grpKp+q, Ep,q

1 =
Hp+q(grpK ⋅), and for su�ciently large r, Ep,q

r = grpHp+q(K ⋅).
We can rephrase the last part of the theorem in terms of convergence.
De�nition 64. Let Ep,q

r be a spectral sequence and suppose that for any pair (p, q), the term
Ep,q
r stabilizes as r becomes su�ciently large. We denote this term by Ep,q

∞ . Moreover, suppose
we have a collection of objects {Hn}n with �nite �ltrations, i.e. the length of the chain of the
�ltration is �nite. Then, we sayEp,q

r converges toH ⋅, written asEp,q
r ⇒Hp+q, ifEp,q

∞ = grpHp+q =
F pHp+q/F p+1Hp+q.
Remark 65. In the theorem above, we are saying that Ep,q

1 =Hp+q(grpK ⋅) ⇒Hp+q(K ⋅).
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Lemma 66. Suppose Ep,q
r ⇒ Hp+q. Then, if Ep,q

∞ = 0 unless q = q′, then Hn = En−q′,q′

∞ . A similar
statement holds for the �rst coordinate.
Lemma 67. Suppose Ep,q

r ⇒ Hp+q. If Ep,q
r is a �rst quarter spectral sequence, then Hn has a

�ltration of the form 0 = F n+1Hn ⊂ F nHn ⊂ ⋯ ⊂ F 0Hn = Hn. A similar claim holds for third
quarter spectral sequences.

The main theorem that makes spectral sequences so useful is the application to double com-
plexes.
De�nition 68. A double complexM comprises the data of a bigraded object M = ⊕p,q∈ZMp,q

and horizontal and vertical di�erentials d ∶ Mp,q → Mp+1,q and δ ∶ Mp,q → Mp,q+1 so that d2 =
δ2 = dδ + δd = 0. We can associate to M a single complex called the total complex, de�ned as
TotnM = ⊕p+q=nMp,q. Its di�erential is given by D = d + δ (noting that (d + δ)2 is indeed 0).

There are two obvious �ltrations we can impose on the total complex, given by horizontal “splic-
ing” and vertical “splicing.”
De�nition 69. Suppose (TotM,D) is a total complex of a double complexM . Then, ′F p TotnM =
⊕r+s=n,r≥pM r,s and ′′F q TotnM = ⊕r+s=n,s≥qM r,s are two �ltrations.
Theorem 70. Suppose (TotM,D) is a total complex of a double complexM . Then, the two spectral
sequences ′Ep,q

r and ′′Ep,q
r associated to the obvious �ltrations satisfy the following properties:

(i) ′Ep,q
0 =Mp,q,′′Ep,q

0 =M q,p.

(ii) ′Ep,q
1 =Hq

δ (Mp,⋅),′′Ep,q
1 =Hq

d(M ⋅,p).
(iii) ′Ep,q

2 =Hp
d(H

q
δ (M)),′′Ep,q

2 =Hp
δ (H

q
d(M)).

Furthermore, if M is either a �rst or third quadrant double complex, then ′Ep,q
r ,′′Ep,q

r converge to
Hp+q(TotM).
Proposition 71. Let Ep,q

2 ⇒Hp+q be a �rst quadrant spectral sequence. Then, there is an injection
En,0
∞ ↪ Hn. For r ≥ 2, the di�erential out of En,0

r is the zero map, and so we have surjections
En,0
r ↠ En,0

r+1 ↠ ⋯ ↠ En,0
∞ , which compose to give us a map En,0

r → Hn. Similarly, we get a
map Hn ↠ E0,n

∞ ↪ E0,n
r . These maps are called the edge maps. Then, the sequence (given by the

edge/obvious maps)
0→ E1,0

2 →H1 → E0,1
2 → E2,0

2 →H2

is exact.

There is also interaction between derived functors and spectral sequences, expressed through the
Grothendieck spectral sequence.
Theorem 72 (Grothendieck spectral sequence). Let A,B,C be abelian categories with enough
injectives and suppose we have functors G ∶ A → B and F ∶ B → C that are left exact and covariant.
Moreover, suppose GI is F -acyclic for every injective objective I of A. Then, for every A ∈ A, there
is a spectral sequence

Ep,q
2 = (RpF )(RqG)(A) ⇒ Rp+q(FG)(A).

Before we get into the proof, we state the following lemma.
Lemma 73. Suppose A is an abelian category with enough injectives. Then, any complex C ⋅ in
A has a fully injective resolution, i.e. an injective resolution I ⋅,⋅ of C ⋅ (�xing the �rst coordinate
gives an injective resolution) so that the induced complexes Zp(C ⋅) → Zp(I ⋅,0) → Zp(I ⋅,1) → ⋯,
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Bp(C ⋅) → Bp(I ⋅,0) → Bp(I ⋅,1) → ⋯, and Hp(C ⋅) → Hp(I ⋅,0) → Hp(I ⋅,1) → ⋯ are also injective
resolutions.

Proof of the Grothendieck spectral sequence. Let A be an object of A and 0 → A → C ⋅ some in-
jective resolution. If we we hit this with G, we get a complex GC ⋅, of which we can �nd a fully
injective resolution I ⋅,⋅, by the previous lemma. Then, note that ′Ep,q

1 =Hq(FIp,⋅) = RqF (GCp),
which is (FG)Cp if q = 0 and 0 otherwise (using the fact that GCp is F -acyclic). Therefore,
′Ep,q

2 is Hp((FG)C ⋅) = Rp(FG)(A) for q = 0 and 0 otherwise. As a result, we have ′′Ep,q
2 ⇒

Rp+q(FG)(A), where we give the latter the obvious �ltration (just itself and 0). So it remains to
show that ′′Ep,q

2 = (RpF )(RqG)(A).

Note that ′′Ep,q
1 =Hq(FI ⋅,p), which one can check easily is justFHq(I ⋅,p), because we have a fully

injective resolution. Then, ′′Ep,q
2 =Hp (FHq(I ⋅,p)), and sinceHq(I ⋅,p) is an injective resolution of

Hq(GC ⋅) = RqG(A) by the de�nition of full injectivity, it follows that ′′Ep,q
2 = (RpF )(RqG)(A)),

as desired. ,

As a corollary, we easily obtain the Leray spectral sequence.
Corollary 74 (Leray spectral sequence). Suppose f ∶ X → Y is a continuous map of topological
spaces. Then, let f∗ ∶ ShX → ShY be the direct image functor from sheaves of abelian groups overX
to sheaves of abelian groups over Y . Also, let Γ(X,−) and Γ(Y,−) be the global sections functor for
ShX and ShY , respectively. Then, for any sheaf F on X , there is a spectral sequence

Ep,q
2 =Hp(Y,Rqf∗F) ⇒Hp+q(X,F).

Proof. Since f∗ is right adjoint to f−1, which is exact, lemma 61 tells us that f∗ sends injectives
to injectives, which are Γ(Y,−)-acyclic, so we can use the Grothendieck spectral sequence. The
result follows. ,
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