
ÉTALE FUNDAMENTAL GROUPS

The goal of this talk is to give an introduction to the étale fundamental group. We begin with
some motivation from topology, and then proceed to study the appropriate algebraic analogue
of the fundamental group.

1. The classical fundamental group

Let X be a topological space which is path-connected, locally path-connected, and locally
simply-connected, and fix a basepoint x ∈X. The datum of the basepoint will be crucial.

Definition 1.1. The universal cover X̃ of X is the initial path-connected and simply-connected
pointed space (Y, y) equipped with a covering map π ∶ Y → X which is pointed (in the sense
that π(y) = x).

Example 1.2. Let X = C× be the punctured plane (and pick any point to be the basepoint).

Then the universal cover X̃ can be chosen to be C, and the covering π ∶ X̃ →X is given by the
exponential. Note that the map π is not finite: the fiber over any point z ∈ C× is Z.

Remark 1.3. Under the above assumptions on X, the universal cover X̃ exists: one explicit
model is as the space of homotopy classes of paths γ ∶ [0,1] → X such that γ(0) = x. The

covering map π ∶ X̃ →X sends γ to γ(1).

The universal cover, being defined as the initial object in a certain category, admits nice
categorical properties (even though the topological space might be quite large).

Definition 1.4. Let CX denote the category of covering spaces π ∶ Y → X with finitely many
connected components, and let Cfin

X denote the category of finite covering spaces π ∶ Y →X (i.e.,
the fibers are finite). Note that the universal cover is generally not in Cfin

X , as illustrated by
Example 1.2.

Construction 1.5. There is a functor F ∶ CX → Set, sending a covering space π ∶ Y → X to
π−1(x). Note that Cfin

X ≃ CX ×Set Fin, where Fin ⊆ Set is the full subcategory spanned by the
finite sets.

We leave the following proposition as an exercise to the reader; the key point is to observe
that it is equivalent to the universal property of the universal cover.

Proposition 1.6. The functor F ∶ CX → Set is representable by X̃.

Corollary 1.7. Let π ∶ Y → X be an object of CX . Then there is an action of AutX(X̃) on
π−1(x) ⊆ Y .

Exercise 1.8. There is an isomorphism AutX(X̃) ≅ Aut(F ) (where the latter group consists
of invertible natural transformations from F to itself).

The following is sometimes regarded as a theorem in point-set topology.

Definition 1.9. The fundamental group π1(X,x) is the automorphism group AutX(X̃) in CX .
By Remark 1.3, the fundamental group π1(X,x) may also be regarded as the group of homotopy
classes of loops based at x.
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Exercise 1.10. It is perhaps enlightening to understand how the above definition of the fun-
damental group relates to the classical result (called the Galois correspondence) that there is
an order-reversing equivalence (i.e., a contravariant equivalence of posets) between conjugacy
classes of subgroups of π1(X,x) and path-connected (pointed) covering spaces of X. More
precisely:

Theorem 1.11. The functor F ∶ CX → Set refines to a functor F ′ ∶ CX → RepSet(π1(X,x))
(which means the category of π1(X,x)-sets). The Galois correspondence states that the functor
F ′ is an equivalence.

We can also consider a variation of the fundamental group where we only consider finite
covering spaces of X (i.e., where we work with Cfin

X instead of CX).

Definition 1.12. Let F fin ∶ Cfin
X → Set denote the restriction of F to the inclusion Cfin

X ⊆ CX .
The profinite fundamental group π̂1(X,x) of the pointed space X is the automorphism group
Aut(F fin).
Remark 1.13. The profinite fundamental group acquires its name for a good reason: if G ≤
π1(X,x) is a subgroup of finite index, then the Galois correspondence associates to G a finite
pointed covering space Y → X. If G is normal, then the group of pointed automorphisms of Y
over X is π1(X,x)/G, and there are canonical maps π1(X,x)→ π1(X,x)/G. Taking the inverse
limit over the poset of all normal subgroups G of finite index defines the profinite completion of
π1(X,x). The resulting group is isomorphic to the profinite fundamental group.

Notation 1.14. Let G be a profinite group. We will denote by RepFinSet(G) the category of
finite G-sets, i.e., finite sets equipped with a continuous action of G. This condition translates to
asking that the action of G on the open set factors through the quotient by some open subgroup
of finite index.

Theorem 1.15. The functor F ∶ Cfin
X → Fin refines to a functor F ′ ∶ Cfin

X → RepFinSet(π1(X,x)) ≃
RepFinSet(π̂1(X,x)). The Galois correspondence states that the functor F ′ is an equivalence.

2. Abstract Galois theory

Motivated by the examples of §1, we now embark on a quest to answer the following question.

Question 2.1. Let C be a category. Under what conditions is C equivalent to the category
RepFinSet(G) of finite G-sets for some profinite group G?

Question 2.1 is not very good as stated: the category RepFinSet(G), being defined by the
relationship between G and sets, is canonically equipped with a forgetful functor RepFinSet(G)→
Fin. We can therefore refine Question 2.1 to the following:

Question 2.2. Let C be a category equipped with a functor F ∶ C→ Fin. Under what conditions
on C and F is there an equivalence C ≃ RepFinSet(G) of categories over Fin?

To answer Question 2.2, it is useful to understand properties of the category RepFinSet(G).
Example 2.3. Every finite G-set is isomorphic to a finite coproduct ∐ni=1G/Hi where Hi ≤
G is a subgroup of finite index. The action of G on each G/Hi is transitive. The functor
F ∶ RepFinSet(G) → Set is also conservative, meaning that a map x → y in RepFinSet(G) is an
equivalence of G-sets if and only if F (x) → F (y) is an equivalence. The category RepFinSet(G)
also has limits and colimits, and the forgetful functor preserves these finite limits and colimits.

Definition 2.4. A category C equipped with a functor F ∶ C → Fin is said to be Galois if it
satisfies the following conditions.

(a) C has finite limits and finite colimits.
2



(b) The functor F preserves finite limits and finite colimits, and is conservative (i.e., detects
equivalences).

(c) Say that an object x ∈ C is connected if x is not initial, and x is irreducible (meaning
that if x = y ⊔ z, then one of the maps y → x or z → x is an equivalence). Then every
object c ∈ C can be written as a finite coproduct of connected objects of C.

The main result is the following.

Theorem 2.5. A category C equipped with a functor F ∶ C → Fin is Galois if and only if there
is a profinite group G and an equivalence C ≃ RepFinSet(G) of categories over Fin. Moreover,
G ≅ Aut(F ).

We will defer a sketch of a proof and further discussion of Theorem 2.5 to the end, and discuss
the example that we will be interested in.

Definition 2.6. Let X be a connected scheme over a field k. Fix a geometric point x ∶ Spec(k)→
X. Let FEtX denote the category of finite étale covers π ∶ Y → X, and let F ∶ FEtX → Set
denote the functor sending π ∶ Y → X to the set Yx ∶= MapX(x,Y ) (i.e., the set of geometric
points of Y over x with residue field k(x)). In other words, consider the fiber product

Yx //

��

Y

π

��
Spec(k) x

// X;

the scheme Yx is finite étale over Spec(k), and hence is a disjoint union of finitely many copies

of Spec(k).

Exercise 2.7. The notion of a finite étale cover is a good algebraic generalization of the notion
of a finite covering: the geometric fiber over each geometric point of X has the same number of
points. Moreover, for each point x ∈ X, there is an étale neighborhood over which π is trivial
(i.e., a disjoint union of varieties isomorphic to the neighborhood).

Proposition 2.8. The category FEtX and the functor F ∶ FEtX → Set is Galois.

Proof sketch. We will check that each of the conditions for being Galois is satisfied.

(a) The category FEtX has finite limits if it has products and equalizers, or, equivalently,
pullbacks and a terminal object. The terminal object is the identity X → X, and
pullbacks are given by fiber products (note that fiber products of finite étale morphisms
are finite étale).

Next, FEtX has finite colimits if it has coproducts and coequalizers. Coproducts
certainly exist: they are given by the disjoint union (which remain finite étale over
X). For coequalizers, we give the following sketch: if π ∶ Y → X and π′ ∶ Z → X
are finite étale covers, and f, g ∶ Y → Z are maps over X, let F denote the equalizer
of f, g ∶ π′∗OZ → π∗OY . By passing to a finite étale cover of X, we may assume that
π′∗OZ and π∗OY are finite products of OX , so π′∗OZ = ∏J OX and π∗OY = ∏I OX . The
morphisms f and g are determined by maps f, g ∶ J → I. The equalizer of f, g defines a
finite set I ′, and F ≅∏I′ OX .

(b) The functor F ∶ FEtX → Fin preserves finite limits and colimits, and is conservative.
We first argue that F is conservative. Let Y → Z be a map in FEtX which induces a

bijection F (Y ) ∼Ð→ F (Z); we need to show that Y
∼Ð→ Z. Using (c) below, we can assume

that Z is connected. The map Y → Z is finite étale and therefore finite locally free. It
therefore suffices to show that the map Y → Z is of degree 1, i.e., the preimage of any
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geometric point of Z is a singleton. Since the map F (Y ) ∼Ð→ F (Z) is a bijection, this is
true in a neighborhood of any point of Z over x ∈ X. The degree is locally constant,
so by connectedness of Z we see that the fiber of Y → Z over any geometric point of Z
must be a singleton, as desired.

We now sketch an argument that F preserves finite limits and colimits, and leave
the details to the reader. First, observe that there is an equivalence FEtSpec(k) ≃ Fin.

Next, show that if X2 → X1 is a morphism, then the base-change functor FEtX1 →
FEtX2 preserves both finite limits and finite colimits. Finally, show that the functor F ∶
FEtX → Fin is given by base-change along x ∶ Spec(k)→X along with the identification
FEtSpec(k) ≃ Fin.

(c) The connected objects of FEtX are the connected schemes, and so decomposing a finite
étale cover of X into its connected components yields the desired condition.

�

Theorem 2.5 and Proposition 2.8 imply:

Corollary 2.9. Let π̂et
1 (X,x) denote the automorphism group Aut(F ∶ FEtX → Fin). Then

there is an equivalence FEtX ≃ RepFinSet(π̂et
1 (X,x)).

3. Examples of the étale fundamental group

Definition 3.1. The profinite group π̂et
1 (X,x) is called the étale fundamental group of X.

Example 3.2. Let X = Spec(k), and let x be a geometric point of X representing a fixed

algebraic closure k of k. Every finite étale cover X is a disjoint union of the spectra of finite
separable extensions of k, and so (since separable Galois extensions can be identified with normal

subgroups of the Galois group of a separable closure ksep of k) we find that π̂et
1 (Spec(k), k) ≅

Gal(ksep/k). For instance, the étale fundamental group of Q is the absolute Galois group of Q,

while the étale fundamental group of Fp is Ẑ, generated by the Frobenius.

We would like to compare the étale fundamental group to the topological fundamental group.
A comparison is given by the following.

Theorem 3.3 (Grothendieck-Riemann existence theorem). Let X be a C-scheme which is
locally of finite type. Then the C-points functor FEtX → Cfin

X(C) is an equivalence of categories.

Exercise 3.4. Is it true that the functor from the category of all étale covers of X to covering
spaces of X(C) is an equivalence?

Corollary 3.5. There is an isomorphism π̂et
1 (X,x) ≅ π̂1(X(C), x) of profinite groups.

The goal for the remainder of this section is to study some examples. Corollary 3.5 already
presents us with a lot of computable examples.

Example 3.6. We will work over C.

(a) Let X = A1, and let x ∈X be any geometric point. Then X(C) ≅ C, and so π̂et
1 (A1, x) =

π̂1(C, x) = 0.
(b) Similarly, let X = P1, and let x ∈ X be any geometric point. Then P1(C) ≅ S2, and so

π̂et
1 (P1, x) = π̂1(S2, x) = 0.

(c) More generally, if X = P1 − [n], where [n] ⊆ P1 is a collection of n ≥ 1 points, then
X(C) ≅ C − [n − 1]. It follows that π̂et

1 (X,x) is isomorphic to a free profinite group on
n − 1 generators.

The following is useful.
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Proposition 3.7. Let X be a connected and geometrically connected algebraic variety over a
field k. Then there is an exact sequence

0→ π̂et
1 (Xksep , x)→ π̂et

1 (X,x)→ Gal(ksep/k)→ 0.

The maps are induced by pulling back étale covers along the canonical maps Xksep → X →
Spec(k).

Remark 3.8. Rather than explaining the proof, let us give an intuitive explanation for this
result in the case when the exact sequence splits (which occurs, for instance, if X has a k-rational
point). In this case, the proposition says that a finite π̂et

1 (X,x)-set can be thought of a finite
π̂et

1 (Xksep , x)-set along with a compatible Gal(ksep/k)-action. Translating along the equivalence
FEtX ≃ RepFinSet(π̂et

1 (X,x)), this says that finite étale covers of X are the same as finite étale
covers of Xksep equipped with a compatible Gal(ksep/k)-action. In this case, the proposition
may therefore be regarded as a version of Galois descent.

Example 3.9. Let k = R, and let ksep = C. Then Example 3.6 implies:

π̂et
1 (A1

R, x) ≅ Gal(C/R) = Z/2, π̂et
1 (P1

R, x) ≅ Gal(C/R) = Z/2.
Example 3.10. The étale fundamental group of the affine line is not zero over a base field of
nonzero characteristic. Indeed, let k be an algebraically closed field of characteristic p > 0, and
consider the Artin-Schreier map α ∶ A1 →A1 given by t↦ tp − t. Since

d

dt
α(t) = ptp−1 − 1 = −1,

we see that α is indeed étale. Since k is algebraically closed, α is surjective, too. Observe that α
is a group homomorphism, and so the Galois group of this covering space is given by the kernel
of α. It is easy to see that ker(α) ≅ Z/p, and so π̂et

1 (A1
k, x) is nontrivial (it has a quotient Z/p).

Example 3.11. The étale fundamental group of P1 over any algebraically closed base field is
still zero. Indeed, the Riemann-Hurwitz theorem holds for finite separable morphisms of curves
over any such field (see §IV.2.4 of Hartshorne), so we can argue as follows. Let f ∶ C → P1

be a connected finite étale cover of P1 of degree n, where C is a curve of genus g. Since f is
unramified, the ramification divisor is zero. Therefore, by Riemann-Hurwitz, we see:

2g − 2 = n(2g(P1) − 2) = −2n.

This occurs if and only if g = 0 and n = 1, i.e., C = P1.

Example 3.12. The étale fundamental group of Pn over any algebraically closed base field
is still zero. Indeed, we can argue by induction, with the base case given by Example 3.11.
Consider a connected finite étale cover f ∶ X → Pn, and let H ⊆ Pn be a hyperplane. The
pullback of H along f is a divisor on X, which is ample because f is finite. Since f∗H is ample,
it is connected, and so f defines a connected finite étale cover f ′ ∶ f∗H →H of H. The inductive
hypothesis implies that f ′ is an isomorphism, so deg(f) = 1, i.e., f is an isomorphism.

Example 3.13. Let X be a normal Noetherian scheme, and let K denote its function field. Let
Ω denote a separably closed field containing K, and let x ∶ Spec(Ω) → X denote the resulting
geometric point of X. Denote by L the union of all finite separable extensions K ′ of K in Ω
which are unramified over X (i.e., such that the normalization of X in K ′ is étale over X).

Proposition 3.14. In the above setup, there is an isomorphism π̂et
1 (X,x) ≅ Gal(L/K).

Proof sketch. We follow Tag 0BQM. It suffices to show that every connected finite étale cover
f ∶ Y → X arises as the normalization of X in the finite separable extension K ′/K, where K ′

is the function field of Y . Namely, we need to show that Y is the normalization of X in the
function field of Y . First, recall that normality is local in the étale topology, and so Y is itself
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normal. Moreover, Y is integral (because it has a finite number of irreducible components). Let
Y ′ denote the normalization of X in the function field k(Y ) of Y , so there is a map Y ′ → X
which factors as Y → Y ′ → X which exhibits Y ′ as the normalization of Y in k(Y )1. We now
appeal to Tag 0AB1, which says that any finite birational morphism X1 →X2 of integral schemes
with X2 normal is an isomorphism. Applying this to the morphism Y → Y ′ shows that Y → Y ′

is an isomorphism. �

Example 3.15. Let K be a global field, and S a finite set of places. Let OK,S denote the
ring of S-integers in K. The above proposition implies that π̂et

1 (Spec(OK,S), x) is isomorphic
to Gal(KS/K), where KS is the maximal Galois extension of K which is unramified over S.

4. A proof sketch for Theorem 2.5

The goal of this section is to sketch a proof of Theorem 2.5. We first need to define the
profinite structure on Aut(F ).

Construction 4.1. Any automorphism of the functor F ∶ C→ Fin defines an automorphism of
F (x) for x ∈ C. There is therefore a homomorphism

Aut(F )→∏
x∈C

Aut(F (x)).

It is easy to see that this homomorphism is injective, and so Aut(F ) can be regarded as a
subgroup of the product group. Since each F (x) is finite, the group Aut(F (x)) is also finite.
The product group is generally not finite, but it acquires a topology if one equips each Aut(F (x))
with the discrete topology. One can show that Aut(F ) is then a closed subgroup of the product
group, and so is a profinite group.

Proof sketch of Theorem 2.5. For details, the reader should consult Tag 0BMQ. The assumption
that F is conservative implies that it is faithful. Indeed, suppose f, g ∶ x→ y are two morphisms
in C such that F (f) = F (g). If z is the equalizer of f and g, this implies that F (z) = F (x).
Because F is conservative, we see that z = x, and so f = g.

It remains to prove that F is essential surjective and full. Before doing so, we need an
important result, for which we refer the reader to Tags 0BN2 and 0BN3. Say that an object
x ∈ C is Galois if it is connected, and Aut(x) acts transitively on x. Then:

(∗) If x ∈ C is a connected object, then there is a Galois object y ∈ C with a morphism y → x.
This can be shown to imply that Aut(F ) acts transitively on F (x).

We may now prove that F is essential surjective and full.

(a) For essential surjectivity, recall that if G is a profinite group, then all finite G-sets are
disjoint unions of orbits G/H with H an open subgroup of G of finite index. Since F
preserves finite colimits, it therefore suffices to lift each G/H to C, where G = Aut(F ).
By Construction 4.1, there is a finite set {xi} of (connected) objects of C such that H
contains the kernel K of the map G→∏iAut(F (xi)).

By (∗), there is a Galois object y ∈ C along with a map from y to a connected
component of ∏i xi. Since y is connected, Aut(F ) acts transitively on F (y), there is an
open subgroup U ⊆ G such that F (y) = G/U in RepFinSet(G). In order to show that
G/H is in the image of F , it therefore suffices to show two things:
● The group U is contained in H, and is a normal subgroup.
● The (opposite of the) quotient group H/U acts on y.

1Have I got the direction of the map wrong? According to https://mathoverflow.net/a/46401, the map
should go the other way: the normalization of X is the initial object in the category of finite birational maps to

X. In particular, there should be a map Y ′ → Y .
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Indeed, if we now let x denote the quotient of y by H/U (i.e., the coequalizer of all
arrows h ∶ y → y for h ∈H/U), then the fact that F preserves finite colimits implies that

F (x) = F (y)/(H/U) ≅ G/H,
as desired.

We now prove the two bullets. For the first bullet, note that because each xi is
connected, we see that F (y) surjects onto F (xi), which implies that U ⊆K, i.e., U ⊆H.
It remains to show that U is normal in H. Since y is Galois, we also see that Aut(y)
acts transitively on F (y) ≅ G/U ; because Aut(y) ≅ AutRepFinSet(G)(G/U), this implies
that U is normal.

We now turn to the second bullet. Since F (y) = G/U , and U is normal in G, we see
that Aut(y) is isomorphic to the opposite of the group G/U . Since H/U is a subgroup
of G/U , we now see that the opposite of H/U is a subgroup of Aut(y), i.e., the opposite
of H/U acts (faithfully!) on y, as desired.

(b) To prove that F is full, suppose f ∶ F (x)→ F (y) is a map in RepFinSet(G), where x, y ∈ C.
We need to define a map f0 ∶ x → y such that F (f0) = f . The map f is determined by
its graph Γ ⊆ F (x)×F (y) ≅ F (x× y). The graph is a union of connected components of
F (x) × F (y), which can be lifted along F ; in other words, Γ is the image under F of a
union z of connected components of x × y. The map Γ ≅ F (z)→ F (x) is bijective; since
F is conservative, the map z → x must be an equivalence in C. It follows that f is the
image under F of the composite x ≅ z → y, as desired.

�

Remark 4.2. It turns out that Theorem 2.5 is (almost) a special case of a much more general
result, known as the Barr-Beck monadicity theorem. This result states that a functor F ∶ C→D

exhibits C as the category of algebras for a monad on D if and only if F has a left adjoint,
is conservative, coequalizers which split under F do in fact exist in C, and F preserves such
coequalizers. Another special case of the Barr-Beck theorem that might be familiar is the
Tannakian formalism, which states that any abelian symmetric monoidal category where all
objects are dualizable, equipped with an exact and conservative functor to Vectk (with k a field
of characteristic zero) is equivalent to the category of representations of an algebraic group over
k.

We will not prove Theorem 2.5 via the Barr-Beck theorem in these notes, but the idea of the
argument is as follows: by enlarging C and Fin to the associated pro-categories, one produces
a functor Pro(F ) ∶ Pro(C) → Pro(Fin). Since F is conservative and preserves finite limits
and finite colimits, one can show that Pro(F ) in fact satisfies the conditions of the Barr-Beck
theorem. In other words, there is a monad defined on Pro(Fin) such that Pro(C) is the category
of algebras for this monad. With a little more work, one can identify this monad as the free
algebra functor for a group object in Pro(Fin), i.e., for a profinite group.

Email address: sdevalapurkar@math.harvard.edu
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