Let V te a vector space of dim. n over Fg Let B be the set of sequences Vo, V1,..., Vor-1 of mutually disjoint affine subspaces of V of dimensions 0,1,2,..., n-1 respectively such that Vo70 and Vi is parallel to the linear subspace OV of V spanned by Vi-1 (i=1,..., n-1). (A subset X of V is said to be an office subspace if it is if the form of X with vEV, Xo a linear subspace. Site affine spaces X, X' are gaid to be parallel if the corresponding linear subpaces coincide.)

For n=2 3 consists of all you Va

Let G=GL(V). Now G acts on B by g(V₆,..,V_{n-1})=(gV₀,...,gV_{n-1}). This action is transitive. Let F be the vector space of functions B-7 K. [K algebraic closure of Fg.]

1]

Gacto on F by g: F -> F' where $f'(V_0,...,V_{n-1}) = f(g'V_0,...,g'V_{n-1}).$ We define an action of $(F_g^*)^n$ on f' by $(\lambda_0, \dots, \lambda_{m-1}): (V_0, \dots, V_{n-1}) = (\lambda_0 V_0, \lambda_1 V_1, \dots, \lambda_{n-1} V_{n-1}).$ This action commutes with the G-action. It induces an action of $(F_{2}^{*})^{n}$ on \mathcal{F} by $(\lambda_{0}, \dots, \lambda_{n-1})$: $\mathcal{F} \rightarrow \mathcal{F}'$, $\mathcal{F}'(V_{0}, \dots, V_{n-1}) = \mathcal{F}(\lambda_{0}^{-1}V_{0}, \dots, \lambda_{n-1}^{-1}V_{n-1})$ This commutes with the action of G on F. We have a direct sum decomposition (This is a general property of a linear repres. of (F*)ⁿ on a finite dim. K-vector space .) For example Fo can be identified with Fat a repres. of G. For any SE(Z/(g-1)Z)ⁿ let Jy be the set of all $i \in \{1, \dots, n-1\}$ such that $\delta_i = \delta_{i+1}$.

One con show : There is a bijection Eisom. classes of irred. reps. of G were K3 ~ { pairs (8, I), where $\mathcal{F} \in (\mathbb{Z}/(2-1)\mathbb{Z})^n$, $\mathcal{F} \subset \mathcal{F}_{\mathcal{F}}$. She is and reps corresp. To (83) with fixed & are exactly the irred. subregres. of Fy. Shey are obtained as images of some linear mops analogous to Gj: \$→7 J.

For example, if Y is non-degenerate in the sense that $v_{0},...,v_{n-1}$ are mutually distort, then there is a unique irreducible G-subrepres. of \tilde{F}_{y} (It corresponds to (Y, \emptyset)). It is the image of $T: \tilde{F}_{y} \rightarrow \tilde{F}_{y}$ where $\delta \subseteq [Y_{n-1},...,\delta_{n},v_{0})$ and $(T \notin I(V_{0},...,V_{n-1}) = \sum f(V_{0}',...,V_{n-1})$ sum over all $(V_{0}',...,V_{n-1}) \in \tilde{F}$ such that $V_{0}' \cap V_{n-1} \neq \emptyset, V_{1}' \cap V_{n-2} \neq \emptyset, ..., V_{n-1}' \cap V_{0} \neq 0$. (Each of these intersections is exactly one point.) The total number of irrom classes of irred reps. of G/K is equal to $q^{n-1}(\xi - 1)$.

4) Assume that n=2. The irred. C-subrep. which are subrep. of some Fy (8,781) hore dimension & where I can be any integer in 2,3,..., p-1. The irr. G- subrep. which are subrep of FX (X, = 2) are two in number; they dare ohin. 1, p.