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2) Let A * be the set of homomorphisms
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We form Tx = Ind µ×G×a(9×1 sa reports -off.
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( h"h , h-Ya'tta) = (heh ', hi
-

Yao) ta') that is

ho= h'hhi
"

, no = en
'h'Ya ') th '(a) - Lya ') and

X@D= X Ch'h'
'
a'l X(h 'M) x@ 'ca 'll -2=2/4 '@)-

X( hot L ' a')-

- X@ 'la'))
Thus our character is

1h,a) → I- E Hh 'M tlhhhi! g) .
HIHXA ) Ch ' d 't C-HXA

h'hhih C-Hx .

We ite the inner product C l ) of this
character Witts the analogous character attached

to Xss ' . Using Frobenius reciprocity this is
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otherwise . -7ftThus the entire sum is zero unless Xteuhcx)
which we now assume . We obtain
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we choose h6fH suck that hffx ')= X and
we define a representation 5 of Hye by
h -7glhjh h 21 . The sum becomes
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= 2 if 5Es ,{o otherwise .

We have thus a family of irreducible reposes .
of H indexed by (X, f) , where X C- A# is

a representative of any H - orbit and g is an
irred rep of Hx ( up to iso .) . The sum of
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squares of degrees of these representations is
- 2
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Hence all ironed. reps . of HXA are
obtained .
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The guest group of type on . (n ?D
rumrunners

Let Wn be the group of all permutations
of { 1,2 ; - -, n, n; -

- - i 251 '} which commute

with the involution it is it> i fetish).
for each j , if j En - n let sj C-Wn be
the permutation which interchanges j ,j-12
and also j

'

, j't t and leaves all other
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elements unchanged . Let Sn C- Wn be the

permutation which interchanges n with n
'

and leaves the other elements unchanged
Them S = {si , sz,. ., Sn} generate Wn-
Let X : W → £1 be the homomorphism
defined by x (si) = 1 a fish- t, X Csn)= -1 .
( show that X is well defined .)
A permutation in Wn defines a permutation
of the n element set consisting of the
unordered pairs 4,17, (2,24, - -in, n 't . Thus we
have a natural homomorphism
of Wn onto the symmetric group S .
Let r,I be integers 20 such that
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(convention i Wo -- 43 .) .



r

⑨Hence Wwi has a natural map (as above )

onto the product Sr xS5 of two symmetric

groups . Let E
, be an irreducible rep . of Sr

and let Ez be an irrhd - rep . of 55 . We can

regard E , Ez m a theft
,T representation

via the projection HM,ri→ Smx Sir . We tensor
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-Lz with the 1 - dimensional character of
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of which is 2 on the Wr - factor and is

the restriction of X on the Wei -factor. .
We induce the resulting repress from
Wr
,of town .

We obtain thus an irreducible
repres . of Mn . (In fact all ivied . reps. ) .

This is a special case of a semidirect
Product . Iet A = all permutations

'

in Wn

which preserve each pair ( 111 '), 12,2?. .; (n,n
')

an abelian group of order2h. Let H be
the group of all permit in Wn which
preserve 1,2 , - - in} hence also 2152,

'
. .

, n
' } .

Then Nn is the semidirect product
of A , H with A normal.


