1) Characters. If  $A = (a_{ij})$  is an  $n \times ni$ -matrix with  $a_{ij} \in C$  its those is  $tr A = \sum_{i} a_{ii}$ . It satisfies tr(AB) = tr(BA). (If  $A = (a_{ij})_{,}, B = (b_{ij})_{,}$  this is:  $\Sigma a_{ij}b_{ji} = \Sigma b_{kl} a_{lk}$ : clear). If in addition C is invertible then to (CBC)=tr(B). Indeed to (CBC)=tr(ECB)=tr(B). Let V be a vector space of dim. n. For TiVIV linear we set tr (T)= tr (A) where A is the matrix of T with respect to a basis of V. If we showse a different basis, A is changed into CACM where C is an invertible matrix, so tr(T) is indep of basis.

2/ Let p: G-7GL(V) be a lin. rep. For seG let  $\chi(s) = \chi_{\rho}(s) = Tr(\rho(s)).$ The function  $S \rightarrow \chi(S)$ ,  $G \rightarrow \mathbb{C}$  is called the character of  $\rho$ . Lemmag)  $\chi(1) = \dim V$   $\chi(s^{-1}) = \chi(s) \quad \text{(complex conj.)}$ Proof (1), (3) ove immediate. We prove(2). For a matrix A, tr(A) is the sum of eigenvalues of A, tr(A) is the sum of inverses of eigenvalues of A. Enough to show: If A is an eigenv. of p(s) then  $\lambda^{1}=\lambda$ . Enough to show:  $\lambda^{R}=1$  for some AZ1. Enough to show: p(5) = 1 for some k21. Follows from s#G=1. Example:  $\chi_{g}(s) = \chi_{g}(s^{-1})$ . (Use that for a lin-map  $T: K \ni V$ , we have  $tr(T^{transp}) = tr(T)$ .) 3)

If  $g': G \to GL(V_1)$ ,  $g^2: G \to GL(V_2)$ on lin. rep. then  $\chi_{g_1 \oplus g_2} = \chi_{g_1} + \chi_{g_2}$ ,  $\chi_{g_2} = \chi_{g_1} \chi_{g_2}$ . Follows from definition. Schur's lemma. Let  $g^1, g^2$  be as above. Assume they are irreducible. Let  $g: V_1 \rightarrow V_2$  be a lin-map such that 9 (5) x = 8 9 (5): 1/7 /2 \\ \tag{4.66.} (1) If 51,52 are not isomorphic then (2) If  $V_1 = V_2$ ,  $\xi^1 = \xi^2$  then there exists  $\lambda \in \mathbb{C}$  such that  $\xi(x) = \lambda x$ ,  $\forall x \in V_1$ Proof. If 1=0, result is obvious. Now assume  $f \neq 0$ . Let  $W = \{x \in V_n \mid g(x) = 0\}$ . If  $x \in W$ ,  $s \in G$  then  $f(g^1(s)x) = g^2(s)(f(x)) = 0$ so that  $g'(s) \times eW$ . Thus W is invariant. By i'rreducibility of V, we have W = 0 or

 $W=Y_h$  since  $f \neq 0$  we have  $W \neq V_g$  so that W=0 and f is injective. Let  $W'=f(Y_h)$ . If  $x \in V_g$ ,  $s \in \mathcal{B}$ , we have 3 (5/x) = \$ (5/x) × (W'. Thus s'(s) W'C W' and W' is invariant. By irreducibility of Vz me have W = 0 or W = V2. Since & 7 0 me have W to so that W'z Wz and & is surjective hence an isomorphism This prove (1). We prove (2). By linear algebra, there exists AFC such that  $t = 2 \times 6 \times 1$   $f(x) = 3 \times 3 \neq 0$ If xeu, sec thing(s) x) = g(s) f(x) = = 197(s) x and s'(s) x & U. Thus, U. invariant. By irreducibility, we have U=0 or U=4. But U+0 so that U=1/4. []

Cvr. Let 
$$h: Y_1 \rightarrow V_2$$
 be a lin. map. Let

 $1^{\circ} = 1$   $\int_{S(5)}^{S(5)} h \, s^{3}(5) : V_3 \rightarrow V_2$ .

 $s \in G$ 

(1) If  $s_{1}^{3} g^{2}$  are not isomorphic then  $h = 0$ .

(2) If  $V_{1} = V_{2}$ ,  $g = g^{2}$  then  $h \times = \lambda \times gradl \times eV_{1}$ 

where  $\lambda = \frac{1}{\dim V} t_{2}(h)$ .

Proof. We have  $s_{1}^{2}(s) h^{2} = h^{2} s^{2}(s)$ :

 $s^{3}(s) h^{2} = \frac{1}{4} \sum_{k \in G} s^{3}(s t^{-1}) h \, s^{3}(t) = \frac{1}{4} \sum_{k \in G} s^{2}(u^{-1}) h \, s^{3}(u^{-1}) h \, s^{3}(u^{-1})$ 

Now pick a bosso (ei) for 1/4 and a bossis (ei) for 1/2. For sec we have  $s^{2}(s)e_{i}^{1} = \sum_{i} a_{i}^{2}(s)e_{i}^{1}, a_{i}^{2}(s)e_{i}^{2},$  $g^2(s) e_j^2 = \sum_j a_{jj}^2(s) e_j^2, \quad a_{jj}^2(s) \in \mathbb{C}$ . Let h: V1-7 V2 be the lin map:  $h(e_u) = \sum_{v} h_v e_v^2, k_v u \in \mathbb{C}.$ We have  $h(e_u) = \sum_{v} a_i^1(s) s^2(s^{-1}) h e_i^1 = \sum_{v} s \in G$ 1  $f(e_u) = \sum_{v} a_i^1(s) s^2(s^{-1}) h e_i^1 = \sum_{v} s \in G$ =  $\frac{1}{\mu G} \sum_{s \in G} a_{iu}^{1}(s) g^{2}(s^{-1}) h_{vi} e_{v}^{2} =$  $=\frac{1}{4G}\sum_{s\in G}a_{iu}^{1}(s)a_{jv}^{2}(s^{-1})h_{vi}e_{j}^{2}$ this is 0 for In case (1) 7 thus is 0 y dry has hence  $\sum_{s \in G} a_{iu}^{1}(s) a_{jv}^{2}(s^{-1}) = 0$ ヤシュラルルで・

In case (2), taking 
$$e_{u}^{1}=e_{u}^{2}$$
:

 $\frac{1}{\#G} \sum_{s \in G} a_{iu}^{1}(s) a_{j}^{1}(s') h_{vi} e_{j}^{1} = \frac{1}{\#G} \sum_{s \in G} a_{iu}^{1}(s) a_{j}^{1}(s') h_{vi} = \int_{ju} \sum_{n} h_{nn}/n$ 
 $\frac{1}{\#G} \sum_{s \in G} a_{iu}^{1}(s) a_{j}^{1}(s') h_{vi} = \int_{ju} \sum_{n} h_{nn}/n$ 
 $\sum_{v,i} a_{vi}^{1}(s) a_{j}^{1}(s') h_{vi} = \int_{ju} \sum_{n} h_{nn}/n$ 

Hence  $\sum_{v,i} a_{iu}^{1}(s) a_{jv}^{1}(s') a_{jv}^{1}(s')$ 
 $\sum_{v,i} a_{vi}^{1}(s) a_{iu}^{1}(s) a_{jv}^{1}(s')$ 

= 8ju svi/n \vi,j,v,u.

=  $\begin{cases} 1/n & \text{if } j=u, v=c, \\ 0 & \text{otherwise}. \end{cases}$ 

We compute 
$$7 - \frac{1}{46} \sum_{s} \chi(s) \chi(s^{-1})$$

$$= \frac{1}{46} \sum_{s \in G} \alpha_{ii}^{1}(s) \alpha_{j}^{2}(s^{-1}).$$

$$= \frac{1}{46} \sum_{s \in G} \alpha_{ii}^{1}(s) \alpha_{j}^{2}(s^{-1}).$$
The case (1) this is zero. In case (2) this is  $\frac{1}{46} \sum_{s \in G} \alpha_{ii}^{1}(s) \alpha_{ij}^{2}(s^{-1}) = \frac{1}{6} \sum_{i,i'} \delta_{ii'} \delta_{ii'} \int_{m} \frac{1}{m} \sum_{i'} \frac{1}{m} = 1.$ 

Thus 
$$Z = \{0 \text{ in } case(1)\}$$
  
I in  $case(2)$ .  
For two functions  $f, g: G \rightarrow C$   
Whine  $(f|g) = \frac{1}{\#G} \sum_{s \in G} f(s) \frac{1}{2(s)} = \frac{1}{(g|f)}$   
bar = complex conjugation

Ear(1) If X is the character of an irred rep. of G then (XIX)=1. (2) If X, X' are the characters of two non is om organic representations of G then (x|x') = 0Proof. Use  $\overline{\chi}(s) = \chi(s^{-1})$ . Let  $g: G \rightarrow GL(V)$  be a lin. rep,  $V = W_1 \oplus ... \oplus W_n$  $W_i$  irr. rep. of G. Let  $g': G \rightarrow GL(W)$  be an irred-nep. Then  $\#\{i \in [1,n], W_i: ioom \cdot \}$   $= (\chi_p \mid \chi_{g'}).$ Proof. Let Xi be the char. of Wi. Then  $(\chi_{\rho}/\chi_{\rho'}) = \sum (\chi_{i}/\chi_{\rho})$  and it remains to use the views (  $x_{i}/\chi_{\rho}$ ) the previous Corollary. Claim. Two lin repres of G with the same character are isomorphice. (Follows Srom (\*)) Let X1, X he she distinct irred char. The char of any rep. is of the form q= m/x, +. +m, x, and  $(9|9) = \sum m_i^2$ . Hence 9 is irred. (9/9)=1.

10)
If p:G-7GL(V), g':G-7GL(V') ore
linear representations let (9791) -  $\{f: V\rightarrow V' \text{ linear }\}$   $\{s(s)\}=\{g(s) \forall s\in G\}$ We show:  $\dim (sig') = (x_{g} | x_{gi}).$ Proof. Writing p, p' or direct sums of irred repres., we are reduced to the cose where s and s' one irraduable. If g, g' are isomorphic, then  $(\chi_{g_1}\chi_{g_1})=1=\dim(g;g')$ (can assume 9=9'; use Sepur's Lemma) If I, I' we not isomorphic than  $(\chi_{g},\chi_{g'})=0=\dim(g';g)$ .

1) The chor of the regular rep is 76:678 r(1) = #G, r(5)=0 if 5 +1. We have ( ( | xi) = xi(1). Home any irr. rep. is contained in the reg. rep. with multiplicity  $\chi(1)$ We have  $n_{\dot{S}}(s) =$ Σχ:(1)χ,(s) - Hence Σ χ; (n) = # G. A function f: G-D is a class function of f(tst)=f(s), v s,t in G (equivalently f(ab)=f(ba) v a,b in C). Two elements s,s' in Gare conjugate ip s'= +st for some tEG. This is an equivalence relation on G. Equivalence classes called conjugacy classes. A function f: G-7 C is a class function () it is constant on each conjugacy class.

For example, the donactor of a lin. rep. of a is a class function. Let p:670 be a class function. For any lin. rep. 9:67 V define a lin. map

 $\mathcal{T}_{\mathcal{S}}^{\mathcal{P}}: V \to V \quad \text{dy} \quad \mathcal{T}_{\mathcal{S}}^{\mathcal{P}}(x) = \sum_{s \in G_s} \mathcal{F}(s) \, \mathcal{F}(s)(x).$ For t G G we have g(t)  $T^{g} = T^{g} g(t) : V \rightarrow V$ .

Indued, Indied,

 $T_{f}^{f} g(t) x = \sum_{s} f(s) g(st)(x) = \sum_{s} f(s)^{-1} g(ts^{-1})(x) = \sum_{s} f(s^{-1}) g(ts^{-1})(x) = \sum_{s} f(s)^{-1} g(t$ If p is irred, then  $T_s' = \lambda_s \cdot 1$ ,  $\lambda_s \in C(Schuz)$ . We have  $\lambda_p$  dim  $V = tr(T_s^p) = \sum_{s \in G} \chi(s) \chi(s)$  (x)

Lemma. Assume that f:6-7 t is a class fund. such that (f1Xg)=0 for any irred. rep. g. Then (1) Ts' =0 for any lin rep. g': G-7GL(V)

 $(2) \mathcal{S} = 0.$ Proof. Using (x) we see that  $T_5^8=0$  if g: G-7G44)is irreducible.

Taking direct rums, we deduce that TS=0 for any lin. nep. g of G.

In particular  $T_F^g: V_FV$  is zero where  $g: G \to G_{U}(V)$  is the regular nepres. of G with basis  $\{e_{t} \mid t \in G\}$ ). We have  $O = T_{G}^g(e_{t}) = \sum_{t \in G} g(s)e_{t}$ 

 $0 = T_s^{\beta}(e_1) - \sum_{s \in G} \overline{f(s)} s(s)e_1$   $= \sum_{s \notin G} \overline{f(s)}e_s \cdot \text{Hence } f(s)=0 \quad \forall s \notin G.$ 

Theorem Let  $X_1, X_2, \dots X_h$  be the characters of the various irred. represe of G. They

of the various irred. represe of G. They from a basis of H, the vector space of class functions on G.

 $\frac{\text{res}_{i}}{\text{det}_{i}}$ .

Assume i=1 i=113 poug. We get cj = 0, hence {\chi\_i} are linearly independent. Let H'be the subspace of H spanned by { Xi}. Define a linear map S:H -> H'\*, 3-> [ h' -> (\*)]. If  $f \in \text{ker}(5)$ , then  $(f|\chi_i)=0$  for any i so, by an earlier result, \$=0. Thus ker (5)=0 that is 3 is injective, so dim H 5 dim H' = dim H'. It follows that H'=H. [] (up to isomorphism) is equal to the number of conjugacy closses of G.

The Grothenolieck group RCO can be identified with the subgroup of the vector space of class functions G-7 & with U-basis given by the characters of irreducible representions (= inacd. characters) Now (1) can be viewed as a bilinear pairing RGX RG) -> Z such that  $(\chi/\chi') = \begin{cases} \exists ij \ \chi, \chi' \text{ or inred. char. } \chi = \chi' \end{cases}$ Let  $\mu \in \mathcal{R}(G)$  be such that (ulu)=1. Then u=±X where X is an irreducible charecter. If in addition u(1) >0 then the sign + is +. Proof. Let X1,-, Xn be the various (distinct)
irred. char. of G. We have  $\mu = \sum_{i=1}^{n} m_i \chi_i$ where  $m: C \gamma = \sum_{i=1}^{n} m_i \chi_i$ where mi (Z. from (u/u)=1 we deduce Emi=1. It follows that mi=11  [6] [sotypic components of a repres. of G Let 9: 6 > GL(V) be a lin. nepres. For any irred-character x of 6 we set  $V_{\chi} = \{x \in V \mid T_{\chi} = x\}$  where  $T_{\chi} = \frac{\chi(s)}{\#G} \geq \frac{\chi(s)}{\#G} \leq \chi(s) \leq (s) \leq V_{\chi} \leq V_{\chi}$ . x commutes with any g(t), tEG.  $\sum_{s} \chi(s) g(s) g(t) \stackrel{?}{=} \sum_{s} \chi(s) g(t) g(s)$  $\Rightarrow$  $\mathcal{E}_{s'} \times (s't')_{p(s')} \stackrel{?}{=} \mathcal{E}_{\chi(t's')_{p(s')}}$ use  $\chi(s'z'') = \chi(z''s')$ . If E is an irred. subrep. of V then  $T_{\chi}|_{E} = 1$ if  $x = \chi_E$ ,  $\gamma_{\chi|_E} = 0$  if  $\chi \neq \chi_E$  ( $\chi_E$ : char. of E). Indeed TxlE=2.1, 26C and to  $(T_{\chi}|_{E}) = \frac{\chi(1)}{\#G} \sum_{s} \overline{\chi(s)} \chi_{E}(s) = \chi(1) \int_{\chi_{s}} = \chi(1) \chi_{E}(s)$ Hence  $V = \bigoplus V_X$  (x nums over the irred char of G) and Vx is the sum of all irred. subrep- of V with character X. The subspaces Vx are called the isotypic components of V.