
1) Weyl char . formula and its p- analogue .
im

Let VI be an irreducible rep . of Glnfk)
§ aly . closed of char - p Zo) such that I VE Vpp :

{
"

¥2 .
.

r
- Kiri .--* v

t be 75. Heref:@ Egas -
- Ifn) , (integers) .

If p -O , Weyl character formula is

£
"
a
.

ivory! I xp
' niet' . .

. x?"
""

I i Iti
-

men
a-

I :÷÷÷÷÷i÷:L
This is a special case of a formula for
character of finite dim . refs of a simple Lie

algebra (with a purely algebraic proof ) and of
a char - formula for irred .rep- of a compact Lie

group . The most elegant proof is based on
the Atiyah - Batt- Lefschetz fixed point theorem

.



2)In our case the formula can be deduced
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Weyl 's dimension formula
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This can be deduced from the character
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4) Lost E=RY{qq.n.gl; CER} m
n-t dimensional R - vector space . Let

B"dom= { 4,92 , - ..sn/t2l
"

; Riffe . .- Egm}
and Yet Edom be the set of equivalence classes

on Rondon under (f, ,gz ,- - -sfn)N(gate, fete, - -Inte)
for c C- 21. The inclusion Rndom C R" induces
an inclusion

Edom CE .
Let

T : Rendon → Edom be the eixrbvious map .

For g c-Rndom we denote fog]= IT 7
.
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5) In particular trp is defined for any
B
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dom , p = o or a prime number . Note that

Xp; depends only on#I
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Indeed if Lp]-1913
then Vf, = % t ensured with a one dimensional

representation Glnfkj> k*, g -7 det
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is mapped to 2 .
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The affine symmetric group .
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we now assume that GER> o is
fixed .



6)
.

Let T be the group consisting of
}

all bijection E-7 E of the form
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Thus

, if }>§g is the semidirect product of the

symmetric groups in n letters with atom group

isomorphic to Zn
"

; if 9=0, we have Fg=S .

Recall that the affine symmetric group in n letters, Saf
- the
↳ group of all permutations m : Z-72 such that

n

u Cz -I n Ii µ th for all a c-Z and E gu - 21=0
.
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This contains S as the subgroup of all µ : 2-72 of
theform i -744 Hsien) → i + kn -> o +kn (RED
where or C- S

. This also contains the normal subgroup

consisting of ally : 2-72of the form
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i -7 it n
-Ci where Ci C- 2 , Eci=o .

Then Saf is the semi direct product of S
with this normal subgroup . We have

Eod : i → Gli)-I nci . Clearly if 370 there is
a well defined group isomorphism
Saf -5 Kg given by E

@
0 -7 Eg . Hence Tg

is a Coxeter group on the generators 272,2% , . .
- Ton,renin

(where ij denotes the transposition is>j )
with fixed point sets Hiz , Haj , - -, Hi-in , thinrespectively where .
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0 . ) Here isj in a , - --TT and k EZ .
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9) If I e Pg then T applied to any
alcove is an alcove . This defines an
action of Sy = r

,
on the set of alcoves .

This action defines a bijection
Sg = Eg → set of alcoves

z -7 Z A- o) .

We denote the generators

ton je :3 , - - -, Ino,,n ,
T ?n by

1 2 -- n n- y ,
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when n=z the correspondence
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when 9=3 , the correspondence Tg alcoves
is as follows
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Recall the new basis Lew } of the

Hecke algebra corresponding to the affine

symmetric group is of the form

(w
= E int'M Pywkg) Ty
y Sw

where Py w are polynomials in q=v?
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In the alcove corresponding to Y
the value Pym is written. . The alcoves

which don't appear have Pyw=O .
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Recall that for any e@ Edom C E
and any p E { 0, prime numbers} we have

well defined elements

Xfp, e) c- IN Ca , - - Xu - i , Xi's . -Xiii ]
which describe the irred . rational repress . of
Ghnlk) with K of chary . Those elements are

known explicitly wheny=o (Weyl char - formula)
but not when p to . we denote by Icp, e)z the
value of 86

,e) at XF -- =tn-FI . (teens is
the dimension of a rational reports . ) .
Assume now thatgsp is aprime number.
Let t = f , 2,3, - - - n# EE .

We set

.=⇐i¥'tight; -t ⇐i . . . .ci l CER}
For isj, he2. The connected component of
E - Y
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are '

Aye Ay - t C- sy=§
where Ag is the alcove indexed by ye Sy .
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bet e C- Edom

.

Assume that

e. GE
'
Aw ,

w E Tp .
For any y E Tp

there is a unique element ey C-
'

Ay
such that eytt , et t are in the
same Tp- orbit in E .

Assume also that p 770 amel

(A) en - en s p
'
- const- p .

theorem X(p , e) = §wsgn(yw)PywHXd,ey)
L l

Cy C-Edom

conjectured in 197g
Proved in 2994- 95 :

Andersen - Jantzen - Sbergel
Kathdan - Lhs2 tig
Koshinaka - Tanisaki
In

it is possible to reduce the calculation of Xcp
,
e)

in thecase where e is not in an alcove to the case

where it is . one can reduce the general case to the
case where # holds . But the assumption p770 cannot
be removed .
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Dimension formulas , Xcp,e7z
for A-3

, p=5
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