Topic: representation theory of a reductive group G over a local or finite field F.

Fundamental example: $G=GL(n)$, $n \times n$ matrices.

A parabolic subgroup P of G is one with G/P projective. Example: Grassmann variety $X = m$-diml subspaces of n-diml vec space = $GL(n)/P_{\{m,n-m\}}$.

Parabolic subgroups are important because ANY G/H can be deformed to G/Hd with Hd normal in parabolic P.

Original motivation: big idea from 1950s was that many representations are parabolically induced: sections of vector bundles over $G(F)/P(F)$.

Langlands idea from 1960s: all reps of $G(F)$ indexed by $f: W'F \rightarrow LG$; here $W'F$ is the Weil-Deligne group of F, and $LG = V_G \rtimes G$; V_G is cplx dual group, G is Gal(F).

MORE PRECISELY: $G//F =$ all F-forms inner to $G(F) \iff$ action of G on based root datum (P, X^*, P^v, X^*)

\[
\begin{align*}
&\iff \text{action of } G \text{ on dual based root datum } (P^v, X^*, P, X^*) \\
&\iff \text{action of } G \text{ on complex dual group } V_G \\
&\iff \text{Langlands L-group } LG = V_G \rtimes G
\end{align*}
\]

V_G and a covering group V_G^{Can} act on Langlands parameters $f \rightarrow$ stabilizer $S^{\text{Can}}(f)$, component group $A^{\text{Can}}(f)$.

COMPLETE LANGLANDS PARAMETER is pair (f, x) with x irreducible of $A^{\text{Can}}(f)$.

LOCAL LANGLANDS CONJECTURE: pairs ("rigid inner twist" $G(F)$, irr p of $G(F)$)/G conjugacy \iff pairs $(f, x)/V_G^{\text{Can}}$ conjugacy

This is proven by Adams-Barbasch-V in 1992 for $F=R$, and formulated by Tasho Kaletha for F characteristic zero p-adic.
Details A: p-adic case

\[\mathbb{F} \text{ p-adic } [\text{char } 0], \quad \Gamma = \text{Gal}(\overline{\mathbb{F}}/\mathbb{F}) \]

\[\mathcal{O}_F / \mathcal{P}_F = \mathbb{F}_q \]

\[\| \cdot \| : \mathcal{W}_F \rightarrow \{ q \mathbb{Z} \} \text{ homomorphism} \]

\[\| \cdot \| : \mathcal{I}_F = 1, \quad \| \mathcal{F}_F \| = q \]

Langlands parameter starts with

\[\phi_I : \mathcal{I}(F) \rightarrow \mathcal{L}_G = \mathbb{G}_x \times \Gamma \]

\[\phi(F_r) \text{ is semisimple} \]

\[\phi_0 : \mathcal{W}_F \rightarrow \mathcal{L}_G \]

\[\phi_0 \text{ generated by } \phi_I, \phi(F_r) \]
Details B: p-adic case

Langlands parameter starts with $\varphi_\pi: I(F) \to L_G = \gamma_G \times \Gamma$

$\gamma_G \subset$ reductive subgroup G

$\gamma_G = \text{fixed points of } \varphi(F)$

γ_G is reductive; G is semisimple

γ_G is \mathbb{Z}-graded; 0 subspace is γ_G^0.

(Waldarski) Langlands parameter $\varphi: W_E \to L_G$

is $\varphi_0: W_E \to L_G$ AND $N \in \gamma_G^{\pi, 0, 1}$, nilpotent element for $\gamma_G^{\pi, 1}$.
Details: real case

Wednesday, September 8, 2021 5:52 AM

\[\Gamma = \text{Gal}(\mathbb{C}/\mathbb{R}) = \{1, \sigma\} \]

\[L_G = V_G \times \Gamma = V_G \sqcup (V_G \sigma) \]

What matters about semisimple \(\lambda \in \mathfrak{g} \)
are integer eigenspaces of \(\text{ad}(\lambda) \)

\[V_G e(\lambda) \]

pseudo levi in \(V_G \)

\[\text{analogous to } \mathfrak{g}_\mathbb{C} \phi \mathbb{F}_\mathbb{C} = \langle \mathbb{Z} \rangle \text{-eigenspaces of } \phi(\mathbb{F}_\mathbb{C}) \text{ on } \mathfrak{g}_\mathbb{C} \phi \mathbb{F}_\mathbb{C} \]

\[V_G \mathcal{L} \]

Levi subgp of \(V_G e(\lambda) \) and \(V_G \)

\[\text{CANONICAL FLAT of } \lambda \text{ is } \Lambda = \lambda + \left[\sum_j \text{1-eigenspace of } \text{ad}(\lambda) \right] C G \cdot \lambda \]

\[e \cdot \text{constant } \]

\[\text{on } \Delta \text{ } e(\lambda) = e(\lambda) \]

\[\mathfrak{g}_2(\lambda) \text{ nilpotent} \]

\[\text{LANGLANDS PARAMETER is } (j, \lambda), j \in LG \setminus V_G \quad \land \text{c } \mathfrak{g} \text{ canonical flat } j^2 = e(\lambda) \]
What happened to parabolic induction?

\[
\begin{align*}
\Gamma & \text{- fixed character } \xi \text{ of } H(F) \text{ torus in } G(F) \\
\downarrow \quad & \\
\Gamma & \text{- fixed one-parameter subgroup } C^* \rightarrow G \\
\nu \cdot L & = \text{Cent}_G(\xi(C^*))
\end{align*}
\]

\[
\text{rational parabolic} \\
P(F) = L(F) \cup \mathbb{H}(F) \\
H(F)
\]

rational