Quantization and Duality for Spherical Varieties

David Ben-Zvi University of Texas at Austin

> Lie Groups Seminar MIT May 2021

Overview

Geometric quantization: representation theory as quantum mechanics of hamiltonian actions.

Joint work with Yiannis Sakellaridis and Akshay Venkatesh: recast relative Langlands program as duality between "arithmetic" and "spectral" forms of higher¹ geometric quantization

¹in sense of higher-dimensional quantum field theory

Setting: Spherical varieties

Spherical variety: nonabelian version of toric variety

G reductive, split/*k*. $G \odot X$ (normal, affine) is a spherical variety if Borel $B \subset G$ has an open orbit

- Tate: Toric varieties
- Hecke: PGL_2/\mathbb{G}_m
- Eisenstein: Flag varieties G/P (or G/U as $G \times L$ -space)
- Symmetric spaces G/K
- Group: $G = H \times H \circlearrowright X = H$
- Branching, Gan-Gross-Prasad : $GL_{n+1} \times GL_n \bigcirc GL_{n+1}$, $SO_{2n+1} \times SO_{2n} \bigcirc SO_{2n+1}$, ...

Hyperspherical varieties

Microlocal perspective: focus on $M = T^*X \xrightarrow{\mu} \mathfrak{g}^*$ not X.

affine Hamiltonian variety $G \circlearrowright M \to \mathfrak{g}^*$ is hyperspherical² if $\mathcal{O}(M)^G$ is Poisson commutative.

Require $G \circlearrowright M$ graded – equipped with commuting \mathbb{G}_m action of weight 2 on $\check{M} \to \mathfrak{g}^*$.

- Cotangents $M = T^*X$ to spherical varieties
- Hypertoric varieties
- Whittaker: $T^*G//_{\psi}N$
- Θ -correspondence: $SO_{2n} \times Sp_{2n} \circlearrowright Std \otimes Std$.

²multiplicity one / coisotropic

Dual data for spherical varieties

X spherical. Assume smooth, affine³.

Extract increasingly rich algebraic/combinatorial data:⁴

- A_X torus
- W_X little Weyl group
- $\bullet\ \check{G}_X \to \check{G} \text{ dual group}$
- $\check{G}_X \times SL_2 \rightarrow \check{G}$ Arthur parameter

Strongly Tempered case: $\check{G}_X = \check{G}$.

e.g. Tate, Hecke, Whittaker, Rankin-Selberg, Gan-Gross-Prasad, ...

³Also: no roots of type N

⁴Luna, Vust, Brion, Knop, Gaitsgory, Nadler, Sakellaridis, Venkatesh,...

Knop geometry I

F. Knop: the dual data controls Hamiltonian flows on M

• Invariant moment map

$$M \xrightarrow{\mu} \mathfrak{g}^* \longrightarrow \mathfrak{c} = \mathfrak{h}^* / W$$

factors through

$$M//G \longrightarrow \mathfrak{c}_X = \mathfrak{a}_X^*/W_X$$

• Harish-Chandra homomorphism $Z(U\mathfrak{g}) \to \mathcal{D}(X)$ lifts to isomorphism

$$Z(U\mathfrak{g}_X) := Sym(\mathfrak{a}_X)^{W_X} \xrightarrow{\sim} \mathcal{D}(X)^G$$

Knop geometry II

Much stronger: invariant hamiltonians integrate to action of

Kostant-Toda lattice in $G_X := (\check{G}_X)^{\vee}$ (group-scheme of regular centralizers)

 \rightsquigarrow complete birational⁵ description of M

Suggestive: G
ightarrow X looks like "Langlands lifting" of strongly tempered G_X -variety associated to dual data $\check{G}_X \to \check{G}$..

⁵BZSV: extend off codimension 2. With Gunningham: conjecture quantum version of Knop integration

The critical representation

One more crucial ingredient to describe spherical varieties:

• $\check{G}_X \circlearrowright S_X$ symplectic representation

In strongly tempered case S_X is all the data we have.

- Tate: $S_X = T^* \mathbb{A}^1$
- Hecke: $S_X = T^*Std$
- Whittaker: $S_X = 0$

Weights of S_X (or variant $V_X = S_X \oplus \check{\mathfrak{g}}^e/\check{\mathfrak{g}}_X$) come from Sakellaridis' Plancherel formula; geometry: see [Sakellaridis-Wang]

Sakellaridis-Venkatesh: dual data of X controls local harmonic analysis on $X(K_v)$ and global theory of X-periods of automorphic forms.

Useful to organize the questions into automorphic quantization $\Theta_M \in \mathcal{A}_G$ of $G \circlearrowright M$ in a variety of settings:

	local	global
geometric	$\overline{\mathbb{F}}_q((t))$ or $\mathbb{C}((t))$	C curve/ $\overline{\mathbb{F}}_q$ or $\mathbb C$
arithmetic	$\mathbb{F}_q((t))$	C curve/ \mathbb{F}_q

Automorphic Quantization: Local

To $G \circlearrowright M$ hamiltonian [e.g. $M = T^*X$ for $G \circlearrowright X$] seek to attach:

• K_v local nonarchimedean: unitary representation $\Theta_M(v)$ of $G(K_v)$ quantizing $M(K_v)$

 $L^2(X(K))$

• Basic spherical vector $\Phi_M(v) \in \Theta_M(v)$

 $1_{X(O_v)}$

Automorphic Quantization: Global

• F global field: theta series, a $G(\mathbb{A}_F)$ -intertwiner

$$\Theta_M(F): igotimes_v' \Theta_M(v) \longrightarrow C^\infty(G(F) ackslash G(\mathbb{A}_F))$$

 $\sum_{\gamma \in X(F)} \Phi(\gamma \cdot g)$

Function fields: X-theta series at a G-bundle counts sections of associated X-bundle,

i.e. pushforward along

 $Bun_{G,X}(C) = \{G\text{-bundle} + \text{section of } X\text{-bundle}\} \longrightarrow Bun_G(C)$

Automorphic Quantization: Geometric

Extend to geometric setting by function-sheaf dictionary (only unramified today, and assume $M = T^*X$ polarized)

• Local geometric:

 $\underline{Sph} = Shv(G(O) \setminus G(K)/G(O)) \bigcirc Shv(G(O) \setminus X(K))$ with basic sheaf $\underline{\Phi}_X = \underline{k}_{G(O) \setminus X(O)}$

• Global geometric:

$$\Theta_X = \pi_! \underline{k}_{Bun_{G,X}(C)} \in \mathcal{A}_G(C) = Shv(Bun_G(C))$$

X-period sheaf

Local picture [SV],[S],[SW]:

- Which representations appear in $L^2(X(K))$ determined by Arthur parameters factoring through $\check{G}_X \times SL_2 \rightarrow \check{G}$.
- Plancherel measure for spherical functions $L^2(X(K))^{G(O)}$ is Plancherel for G_X corrected by *L*-function of V_X : $H_V, H_W \in Sph$ spherical Hecke operators \Rightarrow

$$\langle H_V * \Phi_X, H_W * \Phi_X \rangle = \int_{\check{A}_X^{cpt}/W_X} \chi_V(t) \overline{\chi}_W(t) \frac{\det(Ad(1-t))}{\det(1-F^{-1}t|_{V_X})} dt$$

Periods on spherical varieties

Global unramified picture [SV]:

• Which automorphic forms have nonvanishing X-periods (integral over $X \leftrightarrow$ pairing with $\Theta_X(\Phi)$) determined by Arthur parameters factoring through $\check{G}_X \times SL_2 \rightarrow \check{G}$.

Norm-squared of period given in terms of *L*-function of V_X :

$$\frac{|\Theta_X(\varphi)|^2}{\langle \varphi, \varphi \rangle} = \frac{L(\rho, V_X)}{L(\rho, Ad_{\check{G}_X})}$$

- Euler product version of X-Plancherel measure

[BZSV] Change of perspective: conjecture a duality operation on hyperspherical varieties

$$G \circlearrowright M \Longleftrightarrow \check{G} \circlearrowright \check{M}$$

Dual \check{M} defined Tannakianly below. Conjecturally, it assembles all the dual data, as the Whittaker-twisted symplectic induction of S_X from \check{G}_X to \check{G} :

$$\check{M} = \mathcal{T}^*\check{G} imes_{\mathfrak{g}_X^{ee *} \oplus \mathfrak{u}_+}^{\check{G}_X U} \mathcal{S}_X$$

- e.g., $\check{M} = S_X$ in the strongly tempered case,
- $\check{M} = \check{G} \times {}^{\check{G}_X} V_X$ in tempered case.

Lifting

The duality highlights some symmetry between different periods, e.g.

- Tate and group cases self-dual
- Whittaker \leftrightarrow pt,
- Gan-Gross-Prasad \leftrightarrow $\Theta\text{-correspondence.}$

Formally, duality implies that any period $G \circlearrowright M$ is a lift of a strongly tempered period $(\check{G}_X \circlearrowright S_X)^{\lor}$ for G_X

→→ "explains" Knop H-C isomorphism, implies quantization of Knop's integration of invariant Hamiltonian flows à la [BZ-Gunningham].

Dual as categorified Plancherel measure

 \check{M} is geometrization of Plancherel measure for $G(O) \setminus X(K)$

Work in local geometric setting:

Plancherel

$$\langle H_V * \Phi_X, H_W * \Phi_X \rangle$$

lifts to

$$Hom_{Shv(G(O)\setminus X(K))}(\underline{H}_V * \underline{\Phi}_X, \underline{H}_W * \underline{\Phi}_X)$$

This data captured by internal endomorphism algebra

$$\mathcal{A}_X = \mathit{End}_{\underline{Sph}}(\Phi_X) \in \mathit{Alg}(\underline{Sph})$$

- an associative factorization algebra object; its cohomology is a [2-shifted] Poisson algebra.

Constructing the dual

Derived Geometric Satake⁶: <u>Sph</u> \longrightarrow Coh($\mathfrak{g}^{\vee*}[2]$)^{\check{G}}

So Plancherel algebra \mathcal{A}_X leads to affine Hamiltonian G^{\vee} -variety

 $\check{M} = Spec_{/\check{\mathfrak{g}}^*}(H^*(\mathcal{A}_X))$

• $\check{M}//\check{G} = Spec(\mathcal{O}(\check{M})^G) \simeq \check{\mathfrak{c}}_X$ Poisson commutative, automatically hyperspherical!

Closely related to Coulomb branch construction⁷ and electric-magnetic duality for boundary conditions⁸ in $\mathcal{N} = 4$ SYM.

⁶Bezrukavnikov-Finkelberg

⁷Braverman-Finkelberg-Nakajima

⁸Gaiotto-Witten

The Local Geometric Conjecture

The Local Geometric Conjecture: There is an equivalence of categories

$${\it Shv}({\it G}({\it O})ackslash X({\it K}))\simeq {\it QC}^{[2]}(\check{M})^{\check{G}}$$

compatible with

- Sph actions
- Frobenius $\leftrightarrow \mathbb{G}_m$ action
- Poisson / factorization structure

The big picture

The local geometric conjecture is the basic building block for a meta-conjecture:

automorphic quantization of $G \circlearrowright M$ is Langlands dual to spectral quantization of $\check{G} \circlearrowright \check{M}$:

$$\Theta_{\textit{M}} \in \mathcal{A}_{\textit{G}} \leftrightarrow \mathcal{L}_{\check{\textit{M}}} \in \mathcal{B}_{\check{\textit{G}}}$$

Sea of Conjectures

	automorphic	spectral
global arithmetic:	X-periods	<i>M</i> - <i>L</i> -function
(numbers)	of automorphic forms	of Galois reps
global geometric:	X-periods	<i>M</i> - <i>L</i> -sheaf
(vector spaces)	of automorphic sheaves	
local arithmetic:	spherical functions on	functions on
(vector spaces)	X(K)	$(\check{M})^{Frob}$
local geometric:	spherical sheaves	quasicoherent sheaves
(categories)	on $X(K)$	on Ď

Structure

The different settings are related by strong compatibilities:

Can formulate as an equivalence of [morphisms of] algebraic field theories on curves⁹ – algebraic model for [1, 2, 3]-dimensional part of a 4d TQFT with a boundary condition.

⁹Beilinson-Feigin-Mazur, Beilinson-Drinfeld

Spectral Quantization

Geometric quantization of 2-shifted symplectic varieties 10 \check{M} - form of Rozansky-Witten 3d TQFT.

 \check{M} graded Hamiltonian \check{G} -variety $\rightsquigarrow \mathcal{L}_{\check{M}} \in \mathcal{B}_{\check{G}}$ invariants defined relative to spectral side of Langlands.

What does this mean?

- Global geometric setting: attach a vector space, or relative version: sheaf $\mathcal{L}_{\check{M}}(C) \in QC^{!}(Loc_{\check{G}}(C))$
- Local geometric setting: attach a category. Unramified version: $QC(\check{M})$.

¹⁰Calaque-Pantev-Toën-Vezzosi-Vaquiè, Safronov

Spectral Quantization and Deformation Quantization

- $\mathcal{L}_{\check{M}}(\mathbb{P}^1)$: ring $\mathcal{O}(\check{M})$, with shifted Poisson bracket, deformation quantized to an associative factorization algebra¹¹ in the spherical Hecke category matching the Plancherel algebra $\mathcal{A}_X \in Sph$.
- $\mathcal{L}_{\check{M}}(\mathbb{P}^1)^{SO(2)}$: recover the *ordinary* (unshifted) deformation quantization of $\mathcal{O}(\check{M})$.

Polarized case: algebra $\mathcal{D}(\check{X}),$ setting of Knop Harish-Chandra isomorphism

¹¹In topology: [framed] E_3 -algebra

Spectral Quantization and L-functions

Geometric home for *L*-functions:

 $\check{G} \circlearrowright V$ representation \rightsquigarrow *L*-function

$$\frac{1}{det(1-t\rho(F))} = Tr_{gr}(F, Sym^{\bullet}V = \mathcal{O}(V^*))$$

Replace V^* by a $\check{G} \times \mathbb{G}_m$ -variety \check{X} ..

..or a graded Hamiltonian \check{G} -variety \check{M} with spectral quantization!

Global version: L-sheaf $\mathcal{L}_{\check{X}}(C) = \check{\pi}_* \omega \in QC^!(Loc_{\check{G}}(C))$,

$$Loc_{\check{G},\check{X}}(C) = \{\check{G} ext{-loc. sys.} + ext{section of }\check{X} ext{-bundle}\} \xrightarrow{\check{\pi}} Loc_{\check{G}}(C)$$

categorifies sum of *L*-functions of local system / Galois representation over fixed points on \check{X} .

• \check{M} not polarized: local-global compatibility defines "holonomic differential equation" for $\mathcal{L}_{\check{M}}(C)$.

Determined up to $\mathbb{Z}/2$ -gerbe (at least away from poles of L-function)¹².

¹²work in progress

The Global Geometric Conjecture

The Global Geometric Conjecture:¹³

The geometric Langlands correspondence¹⁴

$$Shv(Bun_G(C)) \simeq QC^!(Loc_{\check{G}}(C))$$

intertwines the period sheaf¹⁵ $\Theta_M(C)$ and the *L*-sheaf $\mathcal{L}_{\check{M}}(C)$.

 ¹³ignoring half-twists / normalizations
 ¹⁴de Rham, Betti or restricted
 ¹⁵after projection to nilpotent singular support