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Overview

Geometric quantization: representation theory
as quantum mechanics of hamiltonian actions.

Joint work with Yiannis Sakellaridis and Akshay Venkatesh:
recast relative Langlands program as duality between
“arithmetic” and “spectral” forms of
higher1 geometric quantization

1in sense of higher-dimensional quantum field theory



Setting: Spherical varieties

Spherical variety: nonabelian version of toric variety

G reductive, split/k .
G � X (normal, affine) is a spherical variety if Borel B ⊂ G has an
open orbit

• Tate: Toric varieties
• Hecke: PGL2/Gm

• Eisenstein: Flag varieties G/P (or G/U as G × L-space)
• Symmetric spaces G/K
• Group: G = H × H � X = H
• Branching, Gan-Gross-Prasad : GLn+1 × GLn � GLn+1,
SO2n+1 × SO2n � SO2n+1, · · ·



Hyperspherical varieties

Microlocal perspective: focus on M = T ∗X
µ // g∗ not X .

affine Hamiltonian variety G � M → g∗ is hyperspherical2 if
O(M)G is Poisson commutative.

Require G � M graded – equipped with commuting Gm action of
weight 2 on M̌ → g∗.

• Cotangents M = T ∗X to spherical varieties
• Hypertoric varieties
• Whittaker: T ∗G//ψN
• Θ-correspondence: SO2n × Sp2n � Std ⊗ Std .

2multiplicity one / coisotropic



Dual data for spherical varieties

X spherical. Assume smooth, affine3.

Extract increasingly rich algebraic/combinatorial data:4

• AX torus

• WX little Weyl group

• ǦX → Ǧ dual group

• ǦX × SL2 → Ǧ Arthur parameter

Strongly Tempered case: ǦX = Ǧ .

e.g. Tate, Hecke, Whittaker, Rankin-Selberg, Gan-Gross-Prasad, ...

3Also: no roots of type N
4Luna, Vust, Brion, Knop, Gaitsgory, Nadler, Sakellaridis, Venkatesh,...



Knop geometry I

F. Knop: the dual data controls Hamiltonian flows on M

• Invariant moment map

M
µ // g∗ // c = h∗/W

factors through

M//G
∼ // cX = a∗X/WX

• Harish-Chandra homomorphism Z (Ug)→ D(X ) lifts to
isomorphism

Z (UgX ) := Sym(aX )WX
∼ // D(X )G



Knop geometry II

Much stronger: invariant hamiltonians integrate to action of

JX

  

� M

µ
~~

cX

Kostant-Toda lattice in GX := (ǦX )∨

(group-scheme of regular centralizers)

 complete birational5 description of M

Suggestive: G � X looks like “Langlands lifting” of strongly
tempered GX -variety associated to dual data ǦX → Ǧ ..

5BZSV: extend off codimension 2. With Gunningham: conjecture quantum
version of Knop integration



The critical representation

One more crucial ingredient to describe spherical varieties:

• ǦX � SX symplectic representation

In strongly tempered case SX is all the data we have.

• Tate: SX = T ∗A1

• Hecke: SX = T ∗Std
• Whittaker: SX = 0

Weights of SX (or variant VX = SX ⊕ ǧe/ǧX ) come from
Sakellaridis’ Plancherel formula;
geometry: see [Sakellaridis-Wang]



Sakellaridis-Venkatesh on Relative Langlands Program

Sakellaridis-Venkatesh: dual data of X controls local harmonic
analysis on X (Kv ) and global theory of X -periods of automorphic
forms.

Useful to organize the questions into automorphic quantization
ΘM ∈ AG of G � M in a variety of settings:

local global

geometric Fq((t)) or C((t)) C curve/Fq or C
arithmetic Fq((t)) C curve/Fq



Automorphic Quantization: Local

To G � M hamiltonian [e.g. M = T ∗X for G � X ]
seek to attach:

• Kv local nonarchimedean: unitary representation
ΘM(v) of G (Kv ) quantizing M(Kv )

L2(X (K ))

• Basic spherical vector ΦM(v) ∈ ΘM(v)

1X (Ov )



Automorphic Quantization: Global

• F global field: theta series, a G (AF )-intertwiner

ΘM(F ) :
′⊗
v

ΘM(v) −→ C∞(G (F )\G (AF ))

∑
γ∈X (F ) Φ(γ · g)

Function fields: X -theta series at a G -bundle counts sections of
associated X -bundle,

i.e. pushforward along

BunG ,X (C ) = {G -bundle + section of X -bundle} π // BunG (C )



Automorphic Quantization: Geometric

Extend to geometric setting by function-sheaf dictionary
(only unramified today, and assume M = T ∗X polarized)

• Local geometric:

Sph = Shv(G (O)\G (K )/G (O)) � Shv(G (O)\X (K ))

with basic sheaf ΦX = kG(O)\X (O)

• Global geometric:

ΘX = π!kBunG ,X (C) ∈ AG (C ) = Shv(BunG (C ))

X -period sheaf



Harmonic analysis on spherical varieties

Local picture [SV],[S],[SW]:

• Which representations appear in L2(X (K )) determined by Arthur
parameters factoring through ǦX × SL2 → Ǧ .

• Plancherel measure for spherical functions L2(X (K ))G(O) is
Plancherel for GX corrected by L-function of VX :
HV ,HW ∈ Sph spherical Hecke operators ⇒

〈HV ∗ ΦX ,HW ∗ ΦX 〉 =

∫
Ǎcpt
X /WX

χV (t)χW (t)
det(Ad(1− t))

det(1− F−1t|VX
)
dt



Periods on spherical varieties

Global unramified picture [SV]:

• Which automorphic forms have nonvanishing X -periods (integral
over X ↔ pairing with ΘX (Φ)) determined by Arthur parameters
factoring through ǦX × SL2 → Ǧ .

Norm-squared of period given in terms of L-function of VX :

|ΘX (ϕ)|2

〈ϕ,ϕ〉
=

L(ρ,VX )

L(ρ,AdǦX
)

- Euler product version of X -Plancherel measure



The dual hyperspherical variety

[BZSV] Change of perspective: conjecture a duality operation on
hyperspherical varieties

G � M ⇐⇒ Ǧ � M̌

Dual M̌ defined Tannakianly below. Conjecturally, it assembles all
the dual data, as the Whittaker-twisted symplectic induction of
SX from ǦX to Ǧ :

M̌ = T ∗Ǧ ×ǦXU
g∨∗X ⊕u+

SX

• e.g., M̌ = SX in the strongly tempered case,

• M̌ = Ǧ ×ǦX VX in tempered case.



Lifting

The duality highlights some symmetry between different periods,
e.g.

• Tate and group cases self-dual

• Whittaker ↔ pt,

• Gan-Gross-Prasad ↔ Θ-correspondence.

Formally, duality implies that any period G � M is a lift of a
strongly tempered period (ǦX � SX )∨ for GX

 “explains” Knop H-C isomorphism, implies quantization of
Knop’s integration of invariant Hamiltonian flows à la
[BZ-Gunningham].



Dual as categorified Plancherel measure

M̌ is geometrization of Plancherel measure for G (O)\X (K )

Work in local geometric setting:

Plancherel
〈HV ∗ ΦX ,HW ∗ ΦX 〉

lifts to
HomShv(G(O)\X (K))(HV ∗ ΦX ,HW ∗ ΦX )

This data captured by internal endomorphism algebra

AX = EndSph(ΦX ) ∈ Alg(Sph)

- an associative factorization algebra object; its cohomology is a
[2-shifted] Poisson algebra.



Constructing the dual

Derived Geometric Satake6: Sph
' // Coh(g∨∗[2])Ǧ

So Plancherel algebra AX leads to affine Hamiltonian G∨-variety

M̌ = Spec/ǧ∗(H
∗(AX ))

• M̌//Ǧ = Spec(O(M̌)G ) ' čX Poisson commutative,
automatically hyperspherical!

Closely related to Coulomb branch construction7 and
electric-magnetic duality for boundary conditions8 in N = 4 SYM.

6Bezrukavnikov-Finkelberg
7Braverman-Finkelberg-Nakajima
8Gaiotto-Witten



The Local Geometric Conjecture

The Local Geometric Conjecture: There is an equivalence of
categories

Shv(G (O)\X (K )) ' QC [2](M̌)Ǧ

compatible with

• Sph actions

• Frobenius ↔ Gm action

• Poisson / factorization structure



The big picture

The local geometric conjecture is the basic building block for a
meta-conjecture:

automorphic quantization of G � M is Langlands dual to
spectral quantization of Ǧ � M̌:

ΘM ∈ AG ↔ LM̌ ∈ BǦ



Sea of Conjectures

automorphic spectral

global arithmetic: X -periods M̌-L-function
(numbers) of automorphic forms of Galois reps

global geometric: X -periods M̌-L-sheaf
(vector spaces) of automorphic sheaves

local arithmetic: spherical functions on functions on
(vector spaces) X (K ) (M̌)Frob

local geometric: spherical sheaves quasicoherent sheaves
(categories) on X (K ) on M̌



Structure

The different settings are related by strong compatibilities:

Geometric
Trace of Frobenius // Arithmetic

Local
Factorization homology / Euler product

// Global

Can formulate as an equivalence of [morphisms of] algebraic field
theories on curves9 – algebraic model for [1, 2, 3]-dimensional part
of a 4d TQFT with a boundary condition.

9Beilinson-Feigin-Mazur, Beilinson-Drinfeld



Spectral Quantization

Geometric quantization of 2-shifted symplectic varieties10 M̌
- form of Rozansky-Witten 3d TQFT.

M̌ graded Hamiltonian Ǧ -variety  LM̌ ∈ BǦ invariants defined
relative to spectral side of Langlands.

What does this mean?

• Global geometric setting: attach a vector space,
or relative version: sheaf LM̌(C ) ∈ QC !(LocǦ (C ))

• Local geometric setting: attach a category. Unramified version:
QC (M̌).

10Calaque-Pantev-Toën-Vezzosi-Vaquiè, Safronov



Spectral Quantization and Deformation Quantization

• LM̌(P1): ring O(M̌), with shifted Poisson bracket, deformation
quantized to an associative factorization algebra11 in the spherical
Hecke category — matching the Plancherel algebra AX ∈ Sph.

• LM̌(P1)SO(2): recover the ordinary (unshifted) deformation
quantization of O(M̌).

Polarized case: algebra D(X̌ ), setting of Knop Harish-Chandra
isomorphism

11In topology: [framed] E3-algebra



Spectral Quantization and L-functions

Geometric home for L-functions:

Ǧ � V representation  L-function

1

det(1− tρ(F ))
= Trgr (F ,Sym•V = O(V ∗))

Replace V ∗ by a Ǧ ×Gm-variety X̌ ..

..or a graded Hamiltonian Ǧ -variety M̌ with spectral quantization!



Spectral Quantization and L-functions

Global version: L-sheaf LX̌ (C ) = π̌∗ω ∈ QC !(LocǦ (C )),

LocǦ ,X̌ (C ) = {Ǧ -loc. sys. + section of X̌ -bundle} π̌ // LocǦ (C )

categorifies sum of L-functions of local system / Galois
representation over fixed points on X̌ .

• M̌ not polarized: local-global compatibility defines “holonomic
differential equation” for LM̌(C ).

Determined up to Z/2-gerbe (at least away from poles of
L-function)12.

12work in progress



The Global Geometric Conjecture

The Global Geometric Conjecture:13

The geometric Langlands correspondence14

Shv(BunG (C )) ' QC !(LocǦ (C ))

intertwines the period sheaf15 ΘM(C ) and the L-sheaf LM̌(C ).

13ignoring half-twists / normalizations
14de Rham, Betti or restricted
15after projection to nilpotent singular support


