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The Unitary Dual

G : real reductive group (GL(n,R), Sp(2n,R),E8(split))

Problem: compute the Unitary Dual Ĝ of G : the irreducible,
norm-preserving representations of G on a Hilbert space (up to
isomorphism)

Hermann Weyl (1920s)

Not known in general. Some cases which are known:

Compact groups (Weyl)

SL(2,R) (Bargmann 1947)

GL(n,R),GL(n,C),GL(n,H) (Vogan, 1986)

Complex classical groups (Barbasch 1989)

G2 (Vogan, 1994)

The answer is known to be very complicated in many cases.



Atlas of Lie Groups and Representations

Theorem (Vogan, 1980s)

For any given group G there exists a finite algorithm to compute Ĝ

Question: is this result of more than theoretical interest? In other words,
can this algorithm be made explicit, and implemented on a computer?

Atlas of Lie Groups and Representations (2002): take this question
seriously. . .

Also:

many other questions in representation theory.

Software for the mathematical community

I only really understand something if I can implement it on a computer



(g,K )-modules

Harish-Chandra reformulated the question algebraically in terms of
(g,K )-modules.

g0 = Lie(G ), g = g0 ⊗ C, K : maximal compact subgroup of G .

An admissible (g,K )-module is an algebraic representation (π,V ) of g and
(compatibly) K . The admissible dual is known
(Langlands/Knapp/Zuckerman/Vogan).

We say (π,V ) (irreducible) is Hermitian if it preserves a non-degenerate
invariant Hermitian form 〈 , 〉 on V :

〈π(X )v ,w〉+ 〈x , π(X )w〉 (X ∈ g0)

〈π(k)v , π(k)w〉 = 〈v ,w〉 (k ∈ K )

We say (π,V ) is unitary if this form is positive definite.



Atlas Algorithm

Theorem (Harish-Chandra)

Ĝ
1−1←→ {(π,V ) irreducible unitary}/ ∼ equivalence

The groups: G (C) is a connected, complex reductive group; with real
points G = G (R)

Theorem (Atlas)
Suppose π is an irreducible admissible (g,K )-module. There is an explicit,
computable algorithm to compute the signature of the invariant Hermitian
form on V , and in particular to determine if π is unitary.

This algorithm has been implemented in the ATLAS software.
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Signatures of Hermitian forms

The notion that an invariant Hermitian form on an infinite dimensional
vector space is positive definite is well defined.

However, what does it mean to compute the signature of a Hermitian form
〈 , 〉 on (π,V )?

π|K '
∑
µ∈K̂

multπ(µ)µ (multπ(µ) ∈ Z≥0)

This sum is orthogonal with respect to 〈 , 〉. On the µ K -isotypic
component:

〈 , 〉 is

{
positive definite on p copies of µ

negative definite on q copies of µ

(p + q = multπ(µ)).



The ring W

Record this information:

Definition
W = Z[s] (s2 = 1)

sigπ : K̂ →W : sigπ(µ) = p + qs

(π, 〈 , 〉) =
∑
µ∈K̂

sigπ(µ)µ

sigπ is a refinement of the multπ:

sigπ(µ)|s=1 = p + q = multπ(µ) (µ ∈ K̂ )



Theorem (Vogan)
Suppose π is an irreducible admissible representation. Then there are
finitely many irreducible tempered representations πi , and wi ∈W such
that

sigπ =
n∑

i=1

wimultπi

π is unitary if and only if wi ∈ Z for all i , or wi ∈ sZ for all i .

In other words the sigπ functions are in the finite W-span of the multπi
functions. Or:

sigπ(µ) =
n∑

i=1

multπi (µ)wi

Tempered implies unitary.

The functions multπi are “known”.

ATLAS computes multπ for any π (tempered or not; this is a long story in
itself)

So it is enough to compute wi .



Existence and uniqueness of Hermitian
forms
Question: suppose (π,V ) is an irreducible admissible representation.

Does it have an invariant Hermitian form?

If so, it is canonical up to sign?

Answers: No, and No (i.e. not always)

From now on: restrict to case of real infinitesimal character (λ ∈ X ∗ ⊗ R).
There is a natural reduction to this case (Vogan↔Knapp).

Knapp and Zuckerman (1986) computed the “Hermitian” dual.

Theorem (Atlas)
Let θ be the Cartan involution of g. Then π is Hermitian if and only if
πθ ' π.
In particular: every representation of an equal rank group is Hermitian.

(Reminder: real infinitesimal character)



The c-form

Example: G = SL(2,R), principal series with odd K -types ↔ 2Z + 1,
infinitesimal character 0 < ν < 1:
〈 , 〉 has opposite signs on the two lowest K-types ±1.

Recall:

〈π(X )v ,w〉+ 〈v , π(X )w〉 = 0 (X ∈ g0)

Want X ∈ g:

〈π(X )v ,w〉+ 〈v , π(σ(X ))w〉 = 0 (X ∈ g)

where σ is anti-holomorphic, and g0 = gσ.



The c-form

So: while in small examples it is possible to compute these wi , it is not
possible to formulate a general algorithm for them.

Here is the key idea to resolve this: use a modification of the invariant
form.

Definition
A c-form on (π,V ) is a Hermitian form satisfying:

〈π(X )v ,w〉c + 〈v , π(σc(X ))w〉c = 0 (X ∈ g)

Here σc is the compact real form of g: σcσ = σσc , and G (C)σc is the
compact form of G (C).

Definition
sigcπ(µ) = p + qs according to the signature (p, q) of the c-form on the
µ-isotypic subspace.



The c-form
Recall it isn’t possible formulate a precise algorithm to compute sigπ.

Theorem (Atlas - Life is beautiful)
Suppose (π,V ) is irreducible, with real infinitesimal character.

〈 , 〉c exists

〈 , 〉c is canonical (positive on all lowest K -types)

There is an explicit formula relating 〈 , 〉c and 〈 , 〉.

So it is at least possible to formulate an algorithm to compute sigcπ, and
therefore sigπ.

We want a formula for

sigcπ =
n∑

i=1

w c
i multπi (πi tempered)

and a way to go from sigcπ to sigπ.



The ATLAS Algorithm: Main Step

Each irreducible representation π is the unique irreducible quotient of a
standard module

I (P, σ, ν)

P = MAN is a real parabolic subgroup

σ is a discrete series of M

and ν ∈ a∗ ' Cn

Real infinitesimal character: ν ∈ Rn.

Tempered: ν = 0.



Key step: Deformation

I (ν) = I (P, σ, ν): all realized on the same vector space V .

Write the Hermitian form 〈 , 〉ν on I (ν).

Deform ν to 0: 〈 , 〉ν only changes at (finitely many) reducibility points.

At a reducibility point ν0 we have the Jantzen filtration.

Basic principle:

〈 , 〉ν0+ε and 〈 , 〉ν0−ε differ on odd levels of the Jantzen filtration.

(Essentially: f (x) = xn changes sign at 0 if and only if n is odd.)

So: deform ν to 0; keep track of the sign changes

At ν = 0 the representation is tempered, and all signs are positive.



ATLAS Algorithm for the signature of the
c-form
Deformation (see Astérisque/arXiv):

sigc(I ((1 + ε)ν)) = sigc(I ((1− ε)ν)+

(1− s)
∑
φ,τ

φ<τ<γ
`(γ)−`(τ) odd

s(`0(γ)−`0(τ))/2Pφ,τ (s)Qτ,γ(s)sigc(I(φ))

P,Q : the Kazhdan-Lusztig-Vogan polynomials ∈ Z[q].

Applied recursively: ν → 0 (tempered), this gives a computable formula

sigc(I) =
n∑

i=1

w c
i ·multπi (πi tempered)



ATLAS Algorithm for the signature of the
c-form

Furthermore: you can express an irreducible representation π (with its
form) as a linear combination of standard representations to give a formula
for sigcπ.

Finally the c-form and the ordinary form are related in the equal rank case
by:

〈v ,w〉 = ζπ〈π(x)v ,w〉c
where ζπ is a fixed root of unity and x ∈ K , x2 ∈ Z (G ).

Most significant thing swept under the rug:in the unequal rank case we
need an extended group K o δ with δ2 = 1, and x ∈ Kδ. This requires the
twisted Kazhdan-Lusztig-Vogan polynomials studied by Lusztig and Vogan
(2014).



Application: Unipotent Representations
Let’s consider the most interesting unitary representations.

Γ = Gal(C/R)

G : connected reductive algebraic group, defined over R
∨G Γ = G∨ o Γ

Ψ : SL(2,C)× Γ

&&

// ∨G Γ

~~
Γ

This is a unipotent Arthur parameter

Conjecture (Arthur - 1983)
Associated to Ψ is a finite set Π(Ψ) of irreducible “unipotent”
representations.



Application: Unipotent Representations

Arthur gave some properties these packets should have, including:

1 Π(Ψ) contains a certain L-packet Π(φψ)

2 The representations in Π(ψ) have infinitesimal character
λΨ = dΨ(diag( 1

2 ,−
1
2 ))

3 The span of the distribution characters {θπ | π ∈ Π(Ψ)} contains a
stable character.

4 The representations in Π(Ψ) are unitary.

Arthur conjectured that the (global) unipotent representations are the
building blocks for general automorphic representations.

Locally: the unipotent representation of real groups are expected to be the
building blocks of the unitary dual.



What is a Unipotent Representation/Packet?

Arthur did not give a definition of what unipotent representations should
actually be.

The terms unipotent representation/packet have come to mean many
different things, over R, and over local and global fields (Barbasch and
others), and are not precisely defined in full generality (see Vogan’s
Orange book for more on this).a

Here we only discuss R, and well defined notions of Arthur unipotent (aka
Special unipotent) representations/packets.

These were originally defined by Barbasch and Vogan [1986] for complex
groups, and Adams/Barbasch/Vogan [1992] for real groups.



Weak Unipotent Arthur packets

It is natural to ignore the restriction to Γ:

Definition
Suppose O∨ ⊂ G∨ is a unipotent orbit. The weak Arthur packet
associated to O∨ is

Π(O∨) =
⋃

Ψ:SL(2,C)×Γ→∨GΓ

Ψ|SL(2,C)←→O∨

Π(Ψ)

It turns out it is easier to describe weak Arthur packets Π(O∨).



Weak Arthur packets

We now apply the definition of Π(Ψ) [ABV 1992] to compute Π(O∨).
This becomes essentially [BV 1986] and has the following simple form.

Theorem
The weak Arthur packet Π(O∨) consists of the irreducible representations
π of G satisfying:

1 The infinitesimal character of π is λO∨

2 AV(Ann(π)) = dO∨

Ingredients:

d is Spaltenstein/Barbasch/Vogan duality: Unip(G∨)→ Unip(G )

Ann(π) is the annihlator of π in U(g)

AV(Ann(π)) is the associated variety of Ann(π): the closure of a complex
unipotent orbit O of G .



Unipotent Representations

Definition
The unipotent representations Πu(G ) of G are the union of the weak
Arthur packets.

ΠUnip(G ) =
⋃

O∨∈Unip(G∨)

Π(O∨)

Remark: Honest Arthur packets has a similar definition, but involving the
finer invariant AV(π) in place of AV(Ann(π)).



Unipotent Representations in Atlas

Theorem
There is an explicit algorithm to compute each weak Arthur packet
Π(O∨), and therefore ΠUnip(G ).

This algorithm has been implement in the ATLAS software: given G and
O∨, we compute an explicit list of Langlands parameters of the
representations in ΠG (O∨).



Unipotent Representations in Atlas

Ingredients:

Unipotent orbits {O∨} in G∨

S(O∨) = CentG∨(ψ) (a disconnected reductive group)

Action of the Weyl group on the Grothendieck group Gr of virtual
(g,K )-modules

The Kazhdan-Lusztig-Vogan polynomials

The cell decomposition of Gr

Special representation of each cell

Duality of nilpotent orbits

Springer correspondence (*)
(*) Only the Springer correspondence requires tables: everything else
is computed de nuovo for an arbitrary reductive group.



Unipotent Representations of Exceptional
Groups
G K #Unip

G2(cpt) G 2 1
G2(split) 2A1 12

F4(compact) F 4 1
F4 (B4) B4 3
F4 (split) A1 + C 3 75

E sc
6 (compact) E 6 1

E sc
6 (herm.) D5 + T 1 12

E sc
6 (quasisplit) A1 + A5 47

E sc
6 (F4) F 4 3

E sc
6 (split) C 4 68

E ad
6 (compact) E6 1

E ad
6 (herm.) D5 + T 1 12

E ad
6 (quasisplit) A1 + A5 47

E ad
6 (F4) F 4 3

E ad
6 (split) C 4 68

G K #Unip

E sc
7 (compact) E7 1

E sc
7 (herm.) E6 + T 1 28

E sc
7 (quat.) A1 + D6 56

E sc
7 (split) A7 252

E ad
7 (compact) E7 1

E ad
7 (herm.) E6 + T 1 23

E ad
7 (quat.) A1 + D6 54

E ad
7 (split) A7 276

E8(compact) E8 1
E8(quat.) A1 + E7 57
E8 (split) D8 362

TOTAL 1,465



Example: G2

i diagram dim BC Levi Cent_0 Z C2 A(O) #AP Cent(O) #reps

0 [0,0] 0 2T1 G2 1 2 [1] 2 G2 2=1+1

1 [1,0] 6 A1+T1 A1 2 2 [1] 2 SL(2) 2=1+1

2 [0,1] 8 A1+T1 A1 2 2 [1] 2 SL(2) 2=1+1

3 [2,0] 10 G2 e 1 1 [1,2,3] 2 S3 5=2+3

4 [2,2] 12 G2 e 1 1 [1] 1 G2 1=1

orbit# parameters inf. char.

0 param(x=9,lambda=[1,1]/1,nu=[0,0]/1) [0,0]

0 param(x=0,lambda=[0,0]/1,nu=[0,0]/1) [0,0]

1 param(x=9,lambda=[1,1]/1,nu=[1,0]/2) [1/2,0]

1 param(x=9,lambda=[2,1]/1,nu=[1,0]/2) [1/2,0]

2 param(x=9,lambda=[1,2]/1,nu=[0,1]/2) [0,1/2]

2 param(x=9,lambda=[1,1]/1,nu=[0,1]/2) [0,1/2]

3 param(x=4,lambda=[1,0]/1,nu=[2,-1]/2) [1,0]

3 param(x=8,lambda=[3,0]/1,nu=[1,0]/1) [1,0]

3 param(x=2,lambda=[1,0]/1,nu=[0,0]/1) [1,0]

3 param(x=6,lambda=[4,-1]/1,nu=[3,-1]/2) [1,0]

3 param(x=9,lambda=[1,1]/1,nu=[1,0]/1) [1,0]

4 param(x=9,lambda=[1,1]/1,nu=[1,1]/1) [1,1]



Example: E8

i diagram dim BC Levi Cent_0 Z A(O) C2 #A Cent(O) #Unip split quat.

0 [0,0,0,0,0,0,0,0] 0 8T1 E8 1 [1] 3 3 E8 3=1+1+1 0

1 [0,0,0,0,0,0,0,1] 58 A1+7T1 E7 2 [1] 4 4 E7 4=1+1+1+1 0

2 [1,0,0,0,0,0,0,0] 92 2A1+6T1 B6 2 [1] 5 5 Spin(13) 5=1+1+1+1+1 0

3 [0,0,0,0,0,0,1,0] 112 3A1+5T1 A1+F4 2 [1] 6 6 SL(2)xF4 6=1+1+1+1+1+1 0

4 [0,0,0,0,0,0,0,2] 114 A2+6T1 E6 3 [1,2] 3 5 E6|2 10 0

5 [0,1,0,0,0,0,0,0] 128 4A1+4T1 C4 2 [1] 5 5 Sp(8) 5=1+1+1+1+1 0

6 [1,0,0,0,0,0,0,1] 136 A1+A2+5T1 A5 6 [1,2] 4 6 SL(6) 12 0

7 [0,0,0,0,0,1,0,0] 146 2A1+A2+4T1 A1+B3 2 [1] 5 5 SL(2)xSpin(7)/(-1,-1) 6 0

8 [1,0,0,0,0,0,0,2] 148 A3+5T1 B5 2 [1] 4 4 Spin(11) 4=1+1+1+1 0

9 [0,0,1,0,0,0,0,0] 154 3A1+A2+3T1 A1+G2 2 [1] 4 4 SL(2)xG2 4=1+1+1+1 0

10 [2,0,0,0,0,0,0,0] 156 2A2+4T1 2G2 1 [1,2] 4 4 [2G2]|2 7 0

11 [1,0,0,0,0,0,1,0] 162 A1+2A2+3T1 A1+G2 2 [1] 4 4 SL(2)xG2 4=1+1+1+1 0

12 [0,0,0,0,0,1,0,1] 164 A1+A3+4T1 A1+B3 4 [1] 6 6 SL(2)xSpin(7) 6=1+1+1+1+1+1 0

13 [0,0,0,0,0,0,2,0] 166 D4+4T1 D4 4 [1,2,3] 5 5 Spin(8)|S3 12 0

14 [0,0,0,0,0,0,2,2] 168 D4+4T1 F4 1 [1] 3 3 F4 3 2

15 [0,0,0,0,1,0,0,0] 168 2A1+2A2+2T1 B2 2 [1] 3 3 Spin(5) 3 0

16 [0,0,1,0,0,0,0,1] 172 2A1+A3+3T1 A1+B2 4 [1] 6 6 SL(2)xSpin(5) 6 0

17 [0,1,0,0,0,0,1,0] 176 A1+D4+3T1 3A1 8 [1,2,3] 8 6 [SL(2)^3]|S3 14 0

18 [1,0,0,0,0,1,0,0] 178 A2+A3+3T1 B2+T1 2 [1,2] 4 6 GSpin(5)|2 8 0

19 [2,0,0,0,0,0,0,2] 180 A4+4T1 A4 5 [1,2] 3 4 SL(5).2 8 0

20 [0,0,0,1,0,0,0,0] 182 A1+A2+A3+2T1 2A1 2 [1] 4 4 SL(2)xSL(2) 4=1+1+1+1 0

21 [0,1,0,0,0,0,1,2] 184 A1+D4+3T1 C3 2 [1] 4 4 Sp(6) 4=1+1+1+1 2

22 [0,2,0,0,0,0,0,0] 184 A2+D4+2T1 A2 1 [1,2] 2 3 PSL(3)|2 6 0

23 [1,0,0,0,0,1,0,1] 188 A1+A4+3T1 A2+T1 3 [1,2] 4 4 GL(3).2 8 0

24 [1,0,0,0,1,0,0,0] 188 2A3+2T1 C2 2 [1] 3 3 Sp(4) 3=1+1+1 0

25 [1,0,0,0,0,1,0,2] 190 D5+3T1 A3 4 [1,2] 3 5 SL(4)|2 10 0

26 [0,0,0,1,0,0,0,1] 192 2A1+A4+2T1 A1+T1 2 [1,2] 3 4 GL(2).2 8 0

27 [0,0,0,0,0,2,0,0] 194 A2+A4+2T1 2A1 2 [1] 3 3 SL(2)xSL(2)/<-1,-1> 5 0

28 [2,0,0,0,0,1,0,1] 196 A5+3T1 A1+G2 2 [1] 4 4 SL(2)xG2 4=1+1+1+1 0

29 [0,0,0,1,0,0,0,2] 196 A1+D5+2T1 2A1 2 [1] 4 4 SL(2)xPSL(2) 5 0

30 [0,0,1,0,0,1,0,0] 196 A1+A2+A4+T1 A1 2 [1] 2 2 SL(2) 2=1+1 0

31 [2,0,0,0,0,0,2,0] 198 E6+2T1 G2 1 [1,2] 2 4 G2xZ2 8 0

32 [0,2,0,0,0,0,0,2] 198 A2+D4+2T1 A2 3 [1,2] 2 3 SL(3)|2 4 1



i diagram dim BC Levi Cent_0 Z A(O) C2 #A Cent(O) #Unip split quat.

33 [2,0,0,0,0,0,2,2] 200 D5+3T1 B3 2 [1] 3 3 Spin(7) 3=1+1+1 3

34 [0,0,0,1,0,0,1,0] 200 A3+A4+T1 A1 2 [1] 2 2 SL(2) 2=1+1 0

35 [1,0,0,1,0,0,0,1] 202 A1+A5+2T1 2A1 4 [1] 2 4 SL(2)xSL(2) 4=1+1+1+1 0

36 [0,0,1,0,0,1,0,1] 202 A2+D5+T1 A1 2 [1] 2 2 SL(2) 2=1+1 0

37 [0,1,1,0,0,0,1,0] 204 D6+2T1 2A1 4 [1,2] 4 4 [SL(2)xSL(2)].2 7 0

38 [1,0,0,0,1,0,1,0] 204 A1+E6+T1 A1 2 [1,2] 2 4 SL(2)xZ2 8 0

39 [0,0,0,1,0,1,0,0] 206 E7+T1 A1 2 [1,2,3] 2 4 SL(2)xS3 10 0

40 [1,0,0,0,1,0,1,2] 208 A1+D5+2T1 2A1 4 [1] 4 4 SL(2)xSL(2) 4=1+1+1+1 2

41 [0,0,0,0,2,0,0,0] 208 E8 e 1 [S5] 1 3 S5 18=7+6+5 0

42 [2,0,0,0,0,2,0,0] 210 A6+2T1 2A1 2 [1] 3 3 SL(2)xSL(2)/<-1,-1> 5 0

43 [0,1,1,0,0,0,1,2] 210 D6+2T1 2A1 4 [1,2] 4 4 [SL(2)xSL(2)].2 7 4

44 [0,0,0,1,0,1,0,2] 212 E7+T1 A1 2 [1,2] 2 4 SL(2)xZ2 5 0

45 [1,0,0,1,0,1,0,0] 212 A1+A6+T1 A1 2 [1] 2 2 SL(2) 2=1+1 0

46 [2,0,0,0,0,2,0,2] 214 E6+2T1 A2 3 [1,2] 2 3 SL(3)|2 6 1

47 [0,0,0,0,2,0,0,2] 214 A2+D5+T1 T1 1 [1,2] 2 3 GL(1)|2 4 1

48 [2,0,0,0,0,2,2,2] 216 E6+2T1 G2 1 [1] 2 2 G2 2=1+1 3

49 [2,1,1,0,0,0,1,2] 216 D6+2T1 B2 2 [1] 3 3 Spin(5) 3=1+1+1 3

50 [1,0,0,1,0,1,0,1] 216 D7+T1 T1 1 [1,2] 2 2 GL(1).2 4 0

51 [1,0,0,1,0,1,0,2] 218 A1+E6+T1 T1 1 [1,2] 2 2 GL(1).2 4 0

52 [1,0,0,1,0,1,1,0] 218 A7+T1 A1 2 [1] 2 2 SL(2) 2=1+1 0

53 [2,0,0,1,0,1,0,2] 220 E7+T1 A1 2 [1,2] 2 4 SL(2)xZ2 8 2

54 [0,0,0,2,0,0,0,2] 220 E8 e 1 [1,2,3] 1 2 S3 6 0

55 [1,0,0,1,0,1,2,2] 222 A1+E6+T1 A1 2 [1] 2 2 SL(2) 2=1+1 2

56 [2,0,0,0,2,0,0,2] 222 D7+T1 T1 1 [1,2] 2 3 T|2 5 1

57 [0,1,1,0,1,0,2,2] 224 E7+T1 A1 2 [1] 2 2 SL(2) 2=1+1 3

58 [0,0,0,2,0,0,2,0] 224 E8 e 1 [1,2,3] 1 2 S3 5 0

59 [2,1,1,0,1,1,0,1] 226 D7+T1 A1 2 [1] 2 2 SL(2) 2=1+1 1

60 [0,0,0,2,0,0,2,2] 226 E8 e 1 [1,2,3] 1 2 S3 5 7

61 [2,1,1,0,1,0,2,2] 228 E7+T1 A1 2 [1] 2 2 SL(2) 2=1+1 1

62 [2,0,0,2,0,0,2,0] 228 E8 e 1 [1,2] 1 2 Z2 6 2

63 [2,0,0,2,0,0,2,2] 230 E8 e 1 [1,2] 1 2 Z2 3 2

64 [2,1,1,0,1,2,2,2] 232 E7+T1 A1 2 [1] 2 2 SL(2) 2=1+1 2

65 [2,0,0,2,0,2,0,2] 232 E8 e 1 [1,2] 1 2 Z2 4 1

66 [2,0,0,2,0,2,2,2] 234 E8 e 1 [1,2] 1 2 Z2 4 6

67 [2,2,2,0,2,0,2,2] 236 E8 e 1 [1] 1 1 1 1=1 2

68 [2,2,2,0,2,2,2,2] 238 E8 e 1 [1] 1 1 1 1=1 1

69 [2,2,2,2,2,2,2,2] 240 E8 e 1 [1] 1 1 1 1=1 1



Example: The orbit E8(a7)

i diagram dim BC Levi Cent_0 Z A(O) C2 #A Cent(O) #Unip

41 [0,0,0,0,2,0,0,0] 208 E8 e 1 [S5] 1 3 S5 18=7+6+5

One weak Arthur packet, disjoint union of three (honest) Arthur packets:

\Psi(j)=e, \Cent(\Psi(j))=S_5, |{S_5}^|=7

parameter(G,114501,[0,0,-4,-4,13,0,-4,0]/1,[0,0,-1,-1,3,0,-1,0]/1)

parameter(G,216857,[-4,0,0,-2,14,-7,0,-2]/1,[-2,0,0,-1,6,-3,0,-1]/2)

parameter(G,268640,[0,-5,-2,0,12,-2,-2,0]/1,[0,-2,-1,0,5,-1,-1,0]/2)

parameter(G,289903,[0,-4,0,0,9,1,-5,0]/1,[0,-1,0,0,2,0,-1,0]/1)

parameter(G,304971,[-4,1,1,-5,15,1,-3,-1]/1,[-1,0,0,-1,4,0,-1,0]/2)

parameter(G,316982,[3,3,-6,1,8,1,1,-5]/1,[0,0,-1,0,3,0,0,-1]/2)

parameter(G,320205,[1,1,1,1,1,1,1,1]/1,[0,0,0,0,1,0,0,0]/1) (spherical)

\Psi(j)=(1,2) \Cent(\Psi(j))=S_2xS_3 |(S_2xS_3)^|=6

parameter(G,206741,[-4,0,-2,-2,13,-4,0,-2]/1,[-2,0,-1,-1,6,-2,0,-1]/2)

parameter(G,257336,[-6,-4,-1,0,14,-1,-3,-2]/1,[-1,-1,-1,0,5,-1,-1,-1]/2)

parameter(G,287349,[0,-4,0,0,10,0,-5,0]/1,[0,-1,0,0,2,0,-1,0]/1)

parameter(G,293421,[0,-2,-2,0,9,1,-3,-2]/1,[0,-1,-1,0,4,0,-1,-1]/2)

parameter(G,309039,[0,-2,-3,2,9,-2,2,-4]/1,[0,0,-1,0,3,0,0,-1]/2)

parameter(G,318032,[0,0,1,-1,6,1,1,-2]/1,[0,0,0,0,1,0,0,0]/1)

\Psi(j)=(1,2)(3,4) \Cent(\Psi(j))=D_4 |D_4^|=5

parameter(G,212118,[-2,-2,-2,-2,13,-2,-2,-2]/1,[-1,-1,-1,-1,6,-1,-1,-1]/2)

parameter(G,278536,[-4,-1,1,-4,13,0,-1,-3]/1,[-1,-1,0,-1,5,-1,0,-1]/2)

parameter(G,289899,[0,-2,-2,0,10,0,-3,-2]/1,[0,-1,-1,0,4,0,-1,-1]/2)

parameter(G,299063,[-3,0,0,-2,11,0,-3,0]/1,[-1,0,0,-1,4,0,-1,0]/2)

parameter(G,317576,[0,0,1,-1,6,1,0,-1]/1,[0,0,0,0,1,0,0,0]/1)



Unitarity

Every unipotent representation of GL(n,R) or GL(n,C) is unitary.

If G = SO(n) or Sp(2n) (split) Jim Arthur has shown that every unipotent
representation is unitary (any local field).

Theorem (Atlas-Stephen D. Miller/Joe Hundley)
Every unipotent representation of a real exceptional group is unitary, with
the possible exception of 4 representations of E8 (split).



Unitarity

Sketch:

Miller and Hundley have shown that some of the unipotent representations
of split groups can be realized as L2-residues of Eisenstein series, and are
therefore unitary.

If O∨ is not distinguished (it intersects a proper Levi subgroup L∨), then
ΠG (O∨) can be obtained by unitary (or cohomological) induction from
ΠL(O∨L ) (L is a real (or θ-stable) Levi factor of G ).

The ATLAS software can determine if each π is unitary. However: for some
representations of E8 this is not possible due to time and/or memory
limitations.

The unitarity of many unipotent representations can be checked by several
of these methods.



Conjecture I
Each Arthur packet comes with a map

τ : Π(Ψ)→ R(SΨ)

where (SΨ is the component group of CentG∨(Ψ)):

SΨ = SΨ/S0
Ψ

R is the finite dimensional representations (not necessarily irreducible)

Conjecture
For Ψ a unipotent parameter τ is a bijection

Π(Ψ)
1−1←→ ŜΨ

This is known to be false for more general (non-unipotent) Arthur packets

We know of no counterexamples to the Conjecture.



Conjecture II: Tempered Unipotent Arthur
Packets
Question: When does Π(O∨) consist entirely of tempered representations?

Very roughly: never, since the whole point of the SL(2,C) factor is to
account for non-tempered representations.

Roughly: If Ψ|SL(2,C) = 1

Proposition
1) If G is split then Π(O∨) is nonempty for all O∨.

2) Let O∨ = {0}. Then Π(O∨) is nonempty if and only if G is quasisplit.
In this case

Π(Ψ) = {π | infinitesimal character of π = 0}

and these representations are all tempered.

(See the talk by Lucas Mason-Brown, in this seminar on May 29, for more
on 2).



Conjecture II: Tempered Unipotent Arthur
Packets

Conjecture
Π(O∨) consists entirely of tempered representations if and only if O∨ is
the minimal orbit for G such that Π(O∨) is nonempty.

This is true for G quasisplit (previous Proposition), or compact (duh),and
for all real forms of exceptional groups (case-by-case).



Example: quaternionic form of E8

i diagram dim BC Levi Cent_0 Z A(O) C2 #A Cent(O) #Unip split quat.

0 [0,0,0,0,0,0,0,0] 0 8T1 E8 1 [1] 3 3 E8 3=1+1+1 0

1 [0,0,0,0,0,0,0,1] 58 A1+7T1 E7 2 [1] 4 4 E7 4=1+1+1+1 0

2 [1,0,0,0,0,0,0,0] 92 2A1+6T1 B6 2 [1] 5 5 Spin(13) 5=1+1+1+1+1 0

3 [0,0,0,0,0,0,1,0] 112 3A1+5T1 A1+F4 2 [1] 6 6 SL(2)xF4 6=1+1+1+1+1+1 0

4 [0,0,0,0,0,0,0,2] 114 A2+6T1 E6 3 [1,2] 3 5 E6|2 10 0

5 [0,1,0,0,0,0,0,0] 128 4A1+4T1 C4 2 [1] 5 5 Sp(8) 5=1+1+1+1+1 0

6 [1,0,0,0,0,0,0,1] 136 A1+A2+5T1 A5 6 [1,2] 4 6 SL(6) 12 0

7 [0,0,0,0,0,1,0,0] 146 2A1+A2+4T1 A1+B3 2 [1] 5 5 SL(2)xSpin(7)/(-1,-1) 6 0

8 [1,0,0,0,0,0,0,2] 148 A3+5T1 B5 2 [1] 4 4 Spin(11) 4=1+1+1+1 0

9 [0,0,1,0,0,0,0,0] 154 3A1+A2+3T1 A1+G2 2 [1] 4 4 SL(2)xG2 4=1+1+1+1 0

10 [2,0,0,0,0,0,0,0] 156 2A2+4T1 2G2 1 [1,2] 4 4 [2G2]|2 7 0

11 [1,0,0,0,0,0,1,0] 162 A1+2A2+3T1 A1+G2 2 [1] 4 4 SL(2)xG2 4=1+1+1+1 0

12 [0,0,0,0,0,1,0,1] 164 A1+A3+4T1 A1+B3 4 [1] 6 6 SL(2)xSpin(7) 6=1+1+1+1+1+1 0

13 [0,0,0,0,0,0,2,0] 166 D4+4T1 D4 4 [1,2,3] 5 5 Spin(8)|S3 12 0

14 [0,0,0,0,0,0,2,2] 168 D4+4T1 F4 1 [1] 3 3 F4 3 2

Orbit 14:

14: parameter(G,65,[0,0,0,0,0,0,1,1]/1,[0,0,0,0,0,0,0,0]/1),

14: parameter(G,4101,[-3,1,1,1,1,-3,1,1]/1,[0,0,0,0,0,0,0,0]/1)



Thank you David!


