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These are the notes for my talk at MIT juvitop.

1. Motivation

Recall that the spectral Lie operad is defined by the symmetric sequence (∂0, ∂1, . . . ), so that

FreeLie(Y ) =

∞⊕
n=0

(∂n ⊗ Y ⊗n)hΣn
.

We wish to understand the free spectral Lie algebra on spheres

FreeLie(S
a) or FreeLie(S

a1 ⊕ · · · ⊕ Sak).

Since

FreeLie(Σ
∞X) =

∞⊕
n=0

(∂n ⊗ Σ∞X∧n)hΣn
=

∞⊕
n=0

Dn(X),

we have some understanding of FreeLie(Sa) when a is odd. For example, recall the following theorem:

Theorem 1.1 ([AM99]). Dn(S
2b+1) = 0 unless n = pe.

We also know how to compute its Fp-homology when n is a prime power. For even spheres, we have the
following result:

Theorem 1.2. Dn(S
2b) = 0 unless n = pe, 2pe. More precisely, there is a fiber sequence

Dn(S
2b−1) → Σ−1Dn(S

2b) → Σ−1Dn/2(S
4b−1)

where the third term should read 0 if n is odd.

For multiple generators, if Y = Y1 ⊕ · · · ⊕ Yk, we have

(∂j ⊗ Y ⊗j)hΣj
=

⊕
n1+···+nk=n

(∂j ⊗ Y ⊗n1
1 ⊗ · · · ⊗ Y ⊗nk)h(Σn1

×···×Σnk
),

and we would like to understand the summands of RHS.

2. More Goodwillie Calculus

Lemma 2.1. Let F : Sk
∗ → S∗ be a functor, and let Σ : Sk

∗ → Sk
∗ denote the functor suspending all k inputs.

If G = ΩFΣ, then D(n1,...,nk)G = Σ−1(D(n1,...,nk)F )Σ.

Proof. Left exactness of D takes care of Ω. For Σ, it’s by the construction of P(n1,...,nk) ([Lur17, 6.1.1.30]). □

For the next lemma, let F : S∗ → S∗ and

G(X1, . . . , Xk) := F (X1 ∨ · · · ∨Xk).

Recall that we have
DkF (X) = (∂kF ⊗ Σ∞X∧k)hΣk

and
D(1,1,...,1)G(X1, . . . , Xk) = ∂kF ⊗ Σ∞(X1 ∧ · · · ∧Xk)

by the crn ↔ (−)hΣn
equivalence between symmetric multilinear functors and homogeneous functors. Simi-

larly, we have the following lemma:
1
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Lemma 2.2. If F,G are as above,

D(n1,...,nk)G(X1, . . . , Xk) = (∂nF ⊗ Σ∞(X∧n1
1 ∧ · · · ∧X∧nk

k ))h(Σn1×···Σnk
).

where n = n1 + · · ·+ nk.

Next, we consider functors of the form G(X) = F (X∧m).

Lemma 2.3. If F is analytic, then PnG(X) = P⌊n/m⌋F (X∧m), and

DnG(X) = Dn/mF (X∧m)

if m divides n and 0 if m doesn’t divide n.
More generally, if G(X1, . . . , Xk) = F (X∧m1

1 ∧ · · ·X∧mk

k ) then

D(ℓm1,...,ℓmk)G(X1, . . . , Xk) = DℓF (X∧m1
1 ∧ · · ·X∧mk

k )

and 0 otherwise.

Proof. We sketch the proof of the first statement following [Beh12, Lem. 2.1.3]. We shall show that

PnG(X) = P⌊n/m⌋F (X∧m).

First, we show that the RHS is n-excisive. Writing P⌊n/m⌋F as a taylor tower, it is enough to show that

Ω∞(∂jF ⊗ (X∧m)∧j)hΣj

is n excisive for j ≤ ⌊n/m⌋. But this is equal to

Ω∞((∂jF ⊗ Σ∞
+ Σmj)hΣj

⊗X∧mj)hΣmj

which is mj-homogeneous. Therefore, P[n/m]F (X∧m) is n-excisive and we obtain a map

PnG(X) → P⌊n/m⌋F (X∧m).

To show that this is an equivalence, we need to do some connectivity analysis and use the following
lemma. □

Lemma 2.4. ([Goo03, Prop 1.6]) Let F,G : S∗ → S∗ be functors and let F → G be a map of functors. If
there exist c, ρ ∈ Z such that F (X) → G(X) is ((n+ 1) conn(X)− c)-connected for any conn(X) > ρ, then
PnF → PnG is an equivalence.

3. Differentiating EHP Sequence

This section is essentially [AM99, Section 4.2]. Let Sq be the functor X 7→ X∧2.

Theorem 3.1. There are maps of functors

id → ΩΣ → ΩΣSq

such that the composite is null. This is a fiber sequence when evaluated at an odd sphere.

Proof. The first map is the unit map. The second map, for connected X, comes from the James splitting

ΣΩΣX =
∨
n≥1

ΣX∧n → ΣX∧2.

See [DH21] for a detailed discussion. □

Let F = fib(ΩΣ → ΩΣSq). Then, since Dn is left exact, we get a fiber sequence.

DnF (S2b−1) → Σ−1Dn(id)(S
2b) → Σ−1Dn/2(S

4b−1).

Using the next lemma, we have Theorem 1.2.

Lemma 3.2. Dn(id)(S
2b−1) → DnF (S2b−1) is an equivalence for all n.
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Proof. We use induction on n. Consider the diagram

Ω∞Dn(id)(S
2b−1) Pn(id)(S

2b−1) Pn−1(id)(S
2b−1)

Ω∞Dn(F )(S2b−1) Pn(F )(S2b−1) Pn−1(F )(S2b−1)

The right vertical arrow is an equivalence by the induction hypothesis. Also, there is some s ∈ Z such that
the middle vertical arrow is ((2b− 1)(n+ 1)− s)-connected. We can see this from the diagram

S2b−1 Pn(id)(S
2b−1)

F (S2b−1) Pn(F )(S2b−1)

using that S2b−1 ≃ F (S2b−1). Therefore, the left vertical arrow

Ω∞Dn(id)(S
2b−1) → Ω∞Dn(F )(S2b−1)

is also ((2b− 1)(n+ 1)− s)-connected.
Doing the same for S2b+2c−1 for c large, we have that

Ω∞(∂n(id)⊗ Sn(2b+2c−1))hΣn
→ Ω∞(∂n(F )⊗ Sn(2b+2c−1))hΣn

is ((2b+ 2c− 1)(n+ 1)− s)-connected. Since ∂n(id) and ∂n(F ) are bounded below, if c is large enough, the
map of spectra

(∂n(id)⊗ Sn(2b+2c−1))hΣn
→ (∂n(F )⊗ Sn(2b+2c−1))hΣn

is also ((2b+ 2c− 1)(n+ 1)− s)-connected. But since (S2c)n is a complex representation sphere of Σn, we
have

Z⊗ (∂n(id)⊗ Sn(2b+2c−1))hΣn = Z⊗ Σ2nc(∂n(id)⊗ Sn(2b−1))hΣn

Z⊗ (∂n(F )⊗ Sn(2b+2c−1))hΣn = Z⊗ Σ2nc(∂n(F )⊗ Sn(2b−1))hΣn

by Thom isomorphism as Z is complex-oriented, so that

Z⊗ (∂n(id)⊗ Sn(2b−1))hΣn
→ Z⊗ (∂n(F )⊗ Sn(2b−1))hΣn

is ((2b − 1)(n + 1) + 2c − s)-connected. Since connectivity of bounded below spectra can be tested after
applying Z⊗−, we have that

(∂n(id)⊗ Sn(2b−1))hΣn
→ (∂n(F )⊗ Sn(2b−1))hΣn

is ((2b− 1)(n+ 1) + 2c− s)-connected. Taking c → ∞, we have the desired result. □

4. Differentiating Hilton-Milnor

This section is from [AK98]. The following statement is the Hilton-Milnor theorem. See [DH21] for a
detailed discussion.

Theorem 4.1. There is a multiset Bk of k-tuples of nonnegative integers such that each w = (w1, . . . , wk)
appear finitely many times, and a natural equivalence

ΩΣ(X1 ∨ · · · ∨Xk) =
∏

w∈Bk

ΩΣ(X∧w1
1 ∧ · · · ∧X∧wk

k )

for connected X1, . . . , Xk.

Considering both sides as functors in X1, . . . , Xk, we take D(n1,...,nk). The LHS is

Σ−1(∂n ⊗ (ΣX1)
∧n1 ∧ · · · ∧ (ΣXk)

∧nk)h(Σn1×···×Σnk
).

The RHS is⊕
w∈Bk,ℓw=(n1,...,nk)

Dℓ(ΩΣ)(X
∧w1
1 ∧ · · · ∧X∧wk

k ) =
⊕

w∈Bk,ℓw=(n1,...,nk)

Σ−1(∂ℓ ⊗ (ΣX∧w1
1 ∧ · · · ∧X∧wk

k )ℓ)hΣℓ
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Summing up for all (n1, . . . , nk), we have

FreeLie(Σ(X1 ∨ · · · ∨Xk)) =
⊕
w∈Bk

FreeLie(Σ(X
∧w1
1 ∧ · · · ∧X∧wk

k )).

References

[AK98] Greg Arone and Marja Kankaanrinta. The homology of certain subgroups of the symmetric group with coefficients in
Lie(n), J. Pure Appl. Algebra, 127(1):1-14, 1998.

[AM99] Greg Arone and Mark Mahowald. The Goodwillie tower of the identity functor and the unstable periodic homotopy of
spheres. Invent. Math., 135(3):743-788, 1999.

[Beh12] Mark Behrens. The Goodwillie tower and the EHP sequence. Mem. Amer. Math. Soc., 218(1026):xii+90, 2012.
[DH21] Sanath Devalapurkar and Peter Haine. Doc. Math., 26:1423-1464, 2021.
[Goo03] Thomas G. Goodwillie. Calculus III: Taylor Series. Geom. Topol., 7:645-711, 2003.
[Lur17] Jacob Lurie. Higher algebra. 2017.


	1. Motivation
	2. More Goodwillie Calculus
	3. Differentiating EHP Sequence
	4. Differentiating Hilton-Milnor
	References

