
SPECTRAL PARTITION LIE ALGEBRAS AND KOSZUL DUALITY

§0. Introduction

We’ve been discussing the spectral Lie operad. This is an operad in the∞-category of spectra, which I’ll
denote here by L. This in particular allows us to consider, for any E∞-ring spectrum k, the∞-category
Liek ∶= AlgL(Modk) of spectral Lie algebras over k. In this talk, we will focus on the case that k is an
ordinary field.

There is a further dichotomy to this case: the characteristic of k may be zero or it may be positive. On
the one hand, LieQ has a “classical” description: it is equivalent to the∞-category obtained by inverting
quasi-isomorphisms in the category of differential graded Lie algebras (note however that this equivalence
involves a shift). On the other hand, for a prime number p, the ∞-category LieFp is more subtle: for
instance, we saw in the previous talk that there is a rich supply of operations on the homotopy groups of
spectral Lie algebras over F2.

We’ve seen two characterizations of the spectral Lie operad, first as the Goodwillie derivatives of
the identity functor on pointed spaces and second as the Koszul dual to the nonunital E∞-operad. The
latter is the one relevant to today’s talk. I’ll review the meaning of Koszul duality later on, but whatever it
means, one might guess that accompanying this operad-level duality is a duality at the level of algebras,
i.e. between spectral Lie algebras and nonunital E∞-algebras. Let me begin by stating such a result that
holds over Q.

Definition 0.1. Let k be a field and let A be an augmented E∞-k-algebra. Say that A is complete local
noetherian if the following conditions hold: A is connective; π0(A) is a noetherian commutative ring;
π0(A) is complete with respect to its (finitely generated) augmentation ideal, i.e. the kernel of the map
π0(A)→ k induced by the augmentation of A; for each i > 0, πi(A) is a finitely generated π0(A)-module.
Let CAlgcln

k denote the∞-category of complete local noetherian augmented E∞-k-algebras.

Theorem 0.2. [Lurie, Pridham] There is a fully faithful embedding (CAlgcln
Q )op ↪ LieQ, with essential

image given by those L ∈ LieQ such that πi(L) ≃ 0 for each i > 0 and πi(L) is finite dimensional over Q
for each i ≤ 0.

Theorem 0.2 describes a partial relationship between E∞-algebras and spectral Lie algebras over Q,
but this is not the whole picture. To indicate this, let me sketch another part of the picture, which comes
from rational homotopy theory.

Notation 0.3. Let SpcQ denote the full subcategory of the∞-category of spaces spanned by those spaces
X that are simply connected and for which πi(X) is a Q-vector space for each i ≥ 2. Let (SpcQ)∗ denote
the∞-category of pointed objects in SpcQ. Let Spcft

Q denote the full subcategory of SpcQ spanned by
those objects where moreover πi(X) is a finite dimensional Q-vector space for each i ≥ 2.

Theorem 0.4. [Sullivan] The functor C∗(−;Q) ∶ Spcft
Q → CAlgop

Q is fully faithful.

Theorem 0.5. [Quillen] There is a fully faithful embedding (SpcQ)∗ ↪ LieQ.

Combining Theorems 0.4 and 0.5, we see that the opposite of a certain full subcategory of coconnective
augmented E∞-Q-algebras also embeds fully faithfully into LieQ (the augmentation of the E∞-algebra
corresponds to the pointing of the space). This does not fall into the scope of Theorem 0.2, and suggests a
common generalization of these results. There is indeed such a generalization (also due to Lurie and
Pridham): there is an equivalence between “E∞ formal moduli problems” and spectral Lie algebras over
Q; but let’s not get into the precise formulation of this today.

Today’s goal is to outline a proof of Theorem 0.2 and its analogue over Fp, following the work of
Brantner–Mathew. The analogue will describe CAlgcln

Fp
not in terms of spectral Lie algebras over Fp , but

a variant notion introduced by Brantner–Mathew, which they call spectral partition Lie algebras.
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Before we dive into that, let me end the introduction with a heuristic idea behind the relationship
between E∞-algebras and Lie algebras.

Heuristic 0.6. Let k be a field and let A be an E∞-k-algebra. Let’s think geometrically: there are some
geometric objects Spec(k) and Spec(A) associated to k and A, and the former can be thought of as a
point. An augmentation A→ k corresponds to a map Spec(k)→ Spec(A), i.e. a point of X ∶= Spec(A).
Given such a basepoint, we can pass to the loop space ΩX = Spec(k ⊗A k). There is a group structure on
the loop space, so we may think of it as analogous to a Lie group. This analogy suggests that the tangent
space of ΩX at its identity should be some sort of a Lie algebra.

The idea is that, if A is sufficiently small, i.e. Spec(A) sufficiently localized around its basepoint, then
this construction should not lose information: that is, we should be able to recover A from the Lie algebra
we end up with. This is the upshot of the main results we’ll discuss today, but we won’t phrase it in these
geometric terms. Rather, we’ll just extract the desired Lie algebra directly from A, as the dual of its
“cotangent fiber” (note that, since we won’t pass to the loop space, the relevant notion of Lie algebra is off
by a shift from the classical notion; this shift is the same as the one mentioned above in the comparison
of spectral Lie algebras with differential graded Lie algebras over Q).

§1. A Koszul duality warm-up

Before we discuss Koszul duality between operads and algebras over operads, let’s warm up in a simpler
setting. Let k be a field, let R be an associative k-algebra spectrum, and let ε ∶ R → k be an augmentation.
Then we have an adjunction

F ∶ ModR ⇄Modk ∶ G

given by base change and restriction along ε . We can ask ourselves:

Question 1.1. Can we recover an R-module N from the k-module F(N) = k ⊗R N? Or rather, is there
some natural additional structure on the latter that can be used to recover the former?

Abstract nonsense tells us one natural structure to consider: the composition FG is a comonad on
Modk , and for an R-module N , the k-module F(N) is naturally a comodule over this comonad. In the
current setting, all this can be rephrased in the following way:

– For M ∈ Modk , we have FG(M) ≃ k ⊗R M ≃ (k ⊗R k) ⊗k M. The comonad structure on FG
comes from the natural coalgebra structure on Bar(R) ∶= k ⊗R k; this coalgebra structure was
explained in a previous talk (using the notion of “coendomorphism object”), but for example, the
comultiplication map is the composition

k ⊗R k ≃ k ⊗R R⊗R k
εÐ→ k ⊗R k ⊗R k .

– For N ∈ ModR, the k-module F(N) = k ⊗R N is naturally a comodule over Bar(R) = k ⊗R k; for
example, the coaction map is the composition

k ⊗R N ≃ k ⊗R R⊗R N
εÐ→ k ⊗R k ⊗R N ≃ (k ⊗R k)⊗k (k ⊗R N).

To summarize, the adjunction F ⊣ G canonically factors through another adjunction

F′ ∶ ModR ⇄ cModBar(R) ∶ G′.

To address Question 1.1, we can ask how close this new adjunction is to being an equivalence. This can
be tested using the following “comonadicity” result:

Theorem 1.2. [Beck, Lurie] If F ∶ ModR → Modk preserves the limits (i.e. totalizations) of a certain
class of cosimplicial diagrams1, then G′ ∶ cModBar(R) →ModR is fully faithful. If F is also conservative,
then G′ (and hence F′) is an equivalence.

Example 1.3. Take R = k[t], with the augmentation R → k sending t ↦ 0. Then there is a cofiber
sequence of R-modules R → R → k, where the first map is multiplication by t. From this we deduce two

1Namely, the F-split cosimplicial diagrams; but we won’t get into the details of this today.
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things:

– There is a cofiber sequence of k-modules k → k → k ⊗R k where the first map is zero. Thus,
Bar(R) = k ⊗R k ≃ k ⊕ k[1].

– The base change functor F ∶ ModR →Modk preserves all limits, as k is a perfect R-module.

Using Theorem 1.2, the second of these implies that in the adjunction F′ ∶ ModR ⇄ cModBar(R) ∶ G′, the
right adjoint G′ is fully faithful. And the first suggests how to think about comodules over Bar(R): they
are in particular k-modules M equipped with a map d ∶ M → M[1]; more careful thought shows that d is
furthermore a “differential” (it is square-zero, in a homotopy-coherent sense).

So, in this example, the discussion above is telling us that to attempt to recover a k[t]-module from its
quotient mod t, we should remember a differential on the latter, and the recovery will work up to a certian
(Bousfield) localization of the∞-category of k[t]-modules (arising because F is not conservative). This
should sound sensical: the differential is the “t-Bockstein”, and the relevant localization is given by
t-completion. (One can also analyze base change along the map Zp → Fp in a similar fashion, and see
the usual Bockstein appear, but this doesn’t fit exactly into the discussion of this section, since Zp is not
an Fp-algebra.)

§2. The Koszul duality we wanted

We will now repeat the discussion of the previous section but with algebras over k replaced by operads
over k and modules over algebras replaced by algebras over operads. Let’s first recall the setup for operads.

Notation 2.1. Let k be a field still, let F denote the groupoid of finite sets, and let SSeqk denote the
∞-category Fun(F ,Modk) of symmetric sequences of k-modules. For X ∈ SSeqk and n ≥ 0, we write
X(n) ∶= X({1, . . . ,n}) (where this means X(∅) for n = 0), which is a k-module with Σn-action.

There is a fully faithful embedding ι ∶ Modk ↪ SSeqk with essential image those symmetric sequences
X such that X(n) ≃ 0 for n > 0. We may abuse notation and just regard Modk as a full subcategory of
SSeqk via this embedding.

There is a Day convolution product ⊗ on SSeqk , given by

(X ⊗Y)(T) ≃ ⊕
T=T0∐T1

X(T0)⊗k Y(T1)

for X,Y ∈ SSeqk and T ∈ F . This extends to a symmetric monoidal structure, which restricts to the usual
symmetric monoidal structure on Modk via the embedding ι.

There is also a composition product ○ on SSeqk , given by

X ○Y ≃⊕
n≥0

(X(n)⊗Y⊗n)hΣn

for X,Y ∈ SSeqk ; in this formula, ⊗ refers to the Day convolution product of symmetric sequences, and
the k-module X(n) is regarded as a symmetric sequence via the embedding ι. The composition product
extends to a (non-symmetric) monoidal structure on SSeqk , where the unit object is the symmetric
sequence Otriv which has Otriv(1) ≃ k and Otriv(n) ≃ 0 for n ≥ 1. An algebra (resp. coalgebra) in SSeqk
with respect to the composition product is called an operad over k (resp. cooperad over k).

Note in the above formula for the composition product that if Y is in the essential image of ι, then so
too is X ○Y . Thus the composition product also determines an action of SSeqk on Modk (and the above
formula for the composition product shows that this action is given by the expected construction).

For O an operad over k, an O-algebra is a module over O in Modk , i.e. a k-module A together with a
map

O ○ A =⊕
n≥0

(O(n)⊗ A⊗n)hΣn → A

and additional coherence data. We let AlgO denote the∞-category of O-algebras.
ForO a cooperad over k, a divided powerO-coalgebra is a comodule overO is Modk , i.e. a k-module
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A together with a map
A→ O ○ A =⊕

n≥0
(O(n)⊗ A⊗n)hΣn

and additional coherence data. We let cAlgpd
O denote the∞-category of divided power O-coalgebras.

Now, let O be an operad over k and let ε ∶ O → Otriv be an augmentation, and let’s replicate the
discussion from §1 in this setting. We have an adjunction

F ∶ AlgO ⇄ AlgOtriv
≃ Modk ∶ G,

where G is given by restriction along ε and F is given by base change. Let me spell out what base change
means: for A ∈ AlgO, we have

F(A) = Otriv ○O A ≃ colim
[n]∈∆

Otriv ○O○n ○ A ≃ colim
[n]∈∆

Free(n)O (A),

where FreeO = O○− is the freeO-algebra functor and Free(n)O denotes its n-th iterate. The bar contruction
Bar(O) = Otriv ○O Otriv has a canonical cooperad structure, and the adjunction F ⊣ G factors through
another,

F′ ∶ AlgO ⇄ cAlgpd
Bar(O)

∶ G′.

Let’s now specialize to the case of interest: fix O to be the nonunital E∞-operad, which has O(0) ≃ 0
and O(n) ≃ k (with trivial Σn-action) for n ≥ 0, and has a unique augmentation. Algebras over O are
nonunital E∞-k-algebras, which we may identify with augmented E∞-k-algebras (by tacking on a unit or
lopping it off). Denote Bar(O) by L∨: this is the cooperad dual to the spectral Lie operad L; from earlier
talks, we know that L∨(n) ≃ L(n)∨ is given by k⊗Σ∞+1Π♢n , whereΠ♢n is the unreduced suspension of the
n-th partition complex. For this case, let us replace the symbol G by sqz, for “square-zero multiplication”,
and the symbol F by cot, for “cotangent fiber”. So we have adjunctions

cot ∶ CAlgaug
k ⇄Modk ∶ sqz, cot′ ∶ CAlgaug

k ⇄ cAlgpd
L∨

∶ sqz′.

We can now state the first main result.

Notation 2.2. Let Modft
k ,≥0 denote the full subcategory of Modk spanned by those k-modules M that are

connective and such that πi(M) is finite dimensional over k for each i ≥ 0.

Theorem 2.3. [Brantner–Mathew] Firstly:

– The adjunction cot ∶ CAlgaug
k ⇄ Modk ∶ sqz restricts to an adjunction cot ∶ CAlgcln

k ⇄ Modft
k ,≥0 ∶

sqz.

It follows that the action of L∨ on Modk restricts to one on Modft
k ,≥0, so that it makes sense to form the

∞-category cAlgpd
L∨

(Modft
k ,≥0) of divided power L∨-coalgebras in Modft

k ,≥0. With this in mind, secondly:

– The induced adjunction cot′ ∶ CAlgcln
k ⇄ cAlgpd

L∨
(Modft

k ,≥0) ∶ sqz′ is an equivalence.

Unfortunately, I won’t say anything about the proof of Theorem 2.3 today, except that it goes by
verifying the criteria of Theorem 1.2. In any case, this result tells us that we can recover a complete local
noetherian augmented E∞-k-algebra from its cotangent fiber equipped with a divided power L∨-coalgebra
structure. Let us now translate this into something closer to a Lie algebra structure, by dualizing.

Notation 2.4. Let Modft
k ,≤0 denote the full subcategory of Modk spanned by those k-modules M that are

coconnective and such that πi(M) is finite dimensional over k for each i ≤ 0.

Note that linear duality supplies an equivalence (−)∨ ∶ Modft
k ,≥0 ≃ (Modft

k ,≤0)op. What does a divided
power L∨-coalgebra structure transfer to along this equivalence? The answer is something like “a divided
power algebra over the dual operad L” (which is not the same, in general, as a usual algebra over L, i.e. a
spectral Lie algebra). To formulate this precisely, we can work in the language of monads and comonads.
A divided power L∨-coalgebra structure is a coalgebra structure for the comonad

M ↦ cot(sqz(M)) ≃ L∨ ○ M ≃⊕
n≥0

(L∨(n)⊗ M⊗n)hΣn .
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This comonad on Modft
k ,≥0 dualizes to a monad T on Modft

k ,≤0, given by

M ↦ cot(sqz(M∨))∨ ≃∏
n≥0

(L(n)⊗ M⊗n)hΣn ≃⊕
n≥0

(L(n)⊗ M⊗n)hΣn

(the last equivalence follows from some finiteness considerations). It follows that linear duality determines
an equivalence cAlgpd

L∨
(Modft

k ,≥0) ≃ AlgT (Modft
k ,≤0)op, and we can rephrase the result above as follows.

Corollary 2.5. There is an equivalence of∞-categories

cot∨ ∶ CAlgcln
k ≃ AlgT (Modft

k ,≤0)op.

This is the result that was promised in the introduction, describing complete local noetherian
augmented E∞-k-algebras in terms of some kind of Lie algebra structure over k (for any field k). The
“kind of Lie algebra structure” is encoded by the monad T above, and is a “divided power version” of
a spectral Lie algebra structure (in the sense that we’ve replaced Σn-orbits with Σn-fixed points in the
definition).

Remark 2.6. In some situations, Σn-orbits and Σn-fixed points canonically agree, and then the above
divide power variant of spectral Lie algebras agrees with usual spectral Lie algebras. This happens in
particular when k has characteristic zero. In this way, Corollary 2.5 recovers Theorem 0.2. It also happens
in the “intermediate characteristics” of chromatic homotopy theory, which is the subject of the next talk.

Let me finish by tying up one loose end: so far, the monad T is only defined on the subcategory
Modft

k ,≤0 of Modk . This issue is addressed by the following further result:

Theorem 2.7. [Brantner–Mathew] The monad T extends canonically to a sifted colimit–preserving
monad Lπk on Modk . For M ∈ Modk bounded above, there is a natural equivalence

Lπk (M) ≃⊕
n≥0

(L(n)⊗ M⊗n)hΣn ≃⊕
n≥0

(kΣ
∞+1
Π
♢

n ⊗ M⊗n)hΣn .

Again, I unfortunately will say nothing substantial about the proof, but the idea is that there are
testable conditions (the preservation of certain colimits) for a functor on Modft

k ,≤0 to extend to a sifted
colimit–preserving functor on Modk .

Definition 2.8. Algebras in Modk for the monad Lπk of Theorem 2.7 are called spectral partition Lie
algebras over k. Let Lieπk denote the∞-category AlgLπ

k
(Modk) of spectral partition Lie algebras over k.

To sum up, Corollary 2.5 expresses a partial Koszul duality between E∞-algebras and spectral
partition Lie algebras over any field k. More generally, for any augmented E∞-k-algebra A, cot(A)∨ is
naturally a spectral partition Lie algebra. However, the resulting functor cot∨ ∶ CAlgaug

k → (Lieπk )op is not
an equivalence: the finiteness conditions in Corollary 2.5 are necessary. Nevertheless, as alluded to in §0,
there is a generalization of Corollary 2.5: namely, there is an equivalence between “E∞ formal moduli
problems” and spectral partition Lie algebras over any field k.
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