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Abstract. In this talk, we will discuss convergence of Goodwillie towers and see some examples.
We’ll start by seeing how connectivity conditions are an analog of a radius of convergence for

the Goodwillie tower. Then, we’ll discuss an example functor for which there is a model, due

to Arone, of its nth excisive approximation. Using Arone’s model, we will first show that the
tower converges, then deduce a result known as Snaith splitting. Finally, we will briefly discuss a

connection between Goodwillie towers and the Kahn-Priddy theorem.
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1. Review

Let’s recall our setting. We consider functors F : C → D where C admits finite colimits and D is
differentiable, meaning that it admits finite limits and sequential colimits and that these commute.
We are trying to study these functors by some analog of polynomial approximation.

Definition 1.1. A functor F : C → D is n-excisive if it takes strongly co-Cartesian n + 1-cubes in
C to Cartesian n+ 1-cubes in D.

We’ve seen how n-excisive functors can play the role of degree n polynomials. Goodwillie showed
that under the above conditions for C,D, there is a left adjoint to the inclusion of n-excisive functors.

Definition 1.2. Let Pn be the left adjoint to the inclusion

Excn(C,D) Fun(C,D)

Pn

We saw that Pn satisfies a couple of conditions that we would expect for a polynomial approxi-
mation:

• P 2
n = Pn

• Pm(−) ≃ Pm(Pn(−)) for m ≤ n.
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Lucy told us about the fibers of the maps PnF → Pn−1F in her talk last week. Such a fiber
is denoted DnF and called the nth homogeneous layer. Each fiber DnF is n-excisive and satisfies
Pn−1DnF (X) ≃ ∗ for all X ∈ C. Out of this information, one can form a Taylor tower or Goodwillie
tower :

F . . . PnF Pn−1F . . .

DnF

However, we noted that this tower does not always converge. We will discuss convergence conditions
in the next section.

Finally, in previous talks we have also seen the following formula for the nth homogeneous layer:

(1) DnF : X 7→ Ω∞(∂nF ∧X∧n)hΣn

for some ∂nF ∈ Sp. We call the coefficient ∂nF a Goodwillie derivative; we will see examples of ∂nF
for particular functors in sections 3 and 4.

2. Convergence

Questions of convergence involve the notion of analytic functors, whose precise definition we will
neglect to give in this talk. Instead, we will give some intuition for the properties an n-analytic
functor should have, and show that, given those properties, we have convergence of the Goodwillie
tower on appropriate objects. For the details on analytic functors, see [G92].

“Definition” 2.1. A functor F is n-analytic when it’s stably m-excisive for all m where connectivity
estimates depend linearly on m with slope n. [AC]

What we want to see is that n-analytic functors satisfy the following condition:

Claim 2.2. If F is n-analytic, then the Goodwillie tower for F converges strongly on n-connected
objects X.

In our analogy, we can begin to see that the connectedness of objects on which the tower converges
plays a role similar to the radius of convergence of a power series. For this reason, n as in the claim
may be referred to as a radius of convergence for the functor F .

To get a handle on the convergence of the tower, we will deduce a vanishing line for a certain
spectral sequence: the Goodwillie tower is made up of a sequence of fibrations, of which we can
take homotopy and then sum together to form an exact couple, from which we can form a spectral
sequence. This sequence is an example of a Bousfield-Kan spectral sequence.

Definition 2.3. The Goodwillie spectral sequence has the following signature:

E1
p,q = πpDqF (X) =⇒ πp−qP∞F (X).

For our purposes, we won’t need any fancy spectral sequence computation techniques- we will
find that under certain conditions, the E1-page has a vanishing line of positive slope, which will give
us strong convergence as desired. To see what those conditions are, we have to assume the following
lemma.

Lemma 2.4. If F is n-analytic and X is k-connected for k > n, then F (X) → PqF (X) is at least
(d+ k + q(k − n))-connected for some d.

We will see what d is in a later example. For now, let’s just see that these conditions guarantee
a vanishing line as promised. Assuming F is n-analytic, we have that F (X) → PqF (X) is at least
(d+k+ q(k−n))-connected, while F (X) → Pq−1F (X) is at least (d+k+(q−1)(k−n))-connected,
meaning that if we look at the long exact sequence in homotopy for the fibration DqF → PqF (X) →
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Pq−1F (X), we’ll see that DqF (X) → F (X) is itself at least (d+k+(q−1)(k−n))-connected. When
we plug this information into the spectral sequence, we see that E1

p,q = πpDqF (X) = 0 for

p ≤ d+ k + (q − 1)(k − n).

Solving for q, we indeed get a vanishing line of positive slope:

q ≥
(

1

k − n

)
p− d+ k

k − n
+ 1.

3. Arone’s Model

Let’s see the vanishing line in action. Let K be a finite CW complex, and consider the functor

F : Top∗ → Sp
X 7→ Σ∞MapsTop∗

(K,X).

Going forward, when we write F we will mean this functor. We’ll use the results of previous section
to prove the following theorem of Goodwillie.

Theorem 3.1 (Goodwillie). The tower for F converges with radius n = dimK.

proof strategy:

• use Arone’s model for PqF to deduce a model for DqF
• determine the connectivity of DqF
• use the vanishing line.

To show this, we will use Arone’s model for the nth polynomial approximation, as described in [A].
First, we need to set some notation. Let ε be the category whose objects are finite sets n = {1, . . . , n}
and whose morphisms are surjections. Let εd be the full subcategory whose objects are finite sets
of cardinality not exceeding d. For fixed d, given X ∈ Top∗, define a functor

X∧ : εopd → Top∗ → Sp
n 7→ X∧n 7→ Σ∞X∧n.

Theorem 3.2 (Arone). There is an identification

PdF (X) ≃ MapFun(εopd ,Sp)(Σ
∞K∧,Σ∞X∧).

Given this theorem, we can write out a similar model for the fiber.

Claim 3.3. There is a homotopy pullback in spectra

PdF (X) MapΣd

Sp (Σ
∞K∧d,Σ∞X∧d)

Pd−1F (X) MapΣd

Sp (Σ
∞δdK,Σ

∞X∧d)

where δdK = {(k1, . . . , kd) ∈ Kd | ∃i ̸= j, ki = kj} is the fat diagonal and Σd ⊂ εd is the subcategory
whose objects are sets of cardinality exactly d and whose morphisms are permutations.

proof idea: Write in Arone’s model on the LHS:

MapFun(εopd ,Sp)(Σ
∞K∧,Σ∞X∧) MapΣd

Sp (Σ
∞K∧d,Σ∞X∧d)

MapFun(εopd−1,Sp)(Σ
∞K∧,Σ∞X∧) MapΣd

Sp (Σ
∞δdK,Σ

∞X∧d)

ψ

φ

The data of a natural transformation f ′ ∈ MapFun(εopd ,Sp)(Σ
∞K∧,Σ∞X∧) includes a commuting

diagram of maps
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Σ∞K∧d Σ∞X∧d

Σ∞K∧d−1 Σ∞X∧d−1

...
...

Σ∞K∧1 Σ∞X∧1

f ′
d

f ′
d−1

f ′
1

In the alleged pullback diagram, the map ψ is the restriction of a natural transformation to just the
fat diagonal, while the map φ involves duplicating components f ′i to land in the fat diagonal. We
can think of natural transformations h : Σ∞K∧d → Σ∞X∧d living in the top right of the square as
encoding degree d information, while natural transformations f : Σ∞K∧ → Σ∞X∧ in the bottom
left encode information up to degree d− 1. A natural transformation g : Σ∞δdK → Σ∞Xd from the
bottom right tells us how to glue together the information from h and f to build f ′. In a diagram,
the data for f ′ now takes the following form:

Σ∞K∧d Σ∞X∧d

Σ∞δdK Σ∞X∧d

Σ∞K∧d−1 Σ∞X∧d−1

Σ∞K∧d−2 Σ∞X∧d−2

...
...

Σ∞K∧1 Σ∞X∧1

h

g

ψ∗ ψ∗

fd−1

φ φ

fd−2

f1

Given the claim, we can compute DdF by computing the homotopy fiber of the RHS vertical map
of the homotopy pullback square. Write K(d) for the quotient K∧d/δdK. We find that

DdF (X) ≃ MapεdSp(Σ
∞K(d),Σ∞X∧d)

≃ MapSp(Σ
∞K(d),Σ∞X∧d)hΣd

where in the second line we use that Σd acts freely on K(d), as we have quotiented out all configu-
rations with repeated points.

Now, we have a model for DdF , but its connectivity is not necessarily obvious. To understand
that better, we can rewrite it using Spanier-Whitehead duals.

Remark 3.4. Recall that for X a finite spectrum, its Spanier-Whitehead dual is given by

DX = MapSp(X,S0).

Morally, if we think of spectra as a linearization of spaces, we see that the SW dual takes the form
of a linear dual; i.e. homomorphisms into a unit.
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We can thus rewrite

DdF (X) ≃ (DΣ∞K(d) ∧ Σ∞X∧d)hΣd
.

From formula (1), we can then recognize ∂dF = DΣ∞K(d).
Let’s return to Goodwillie’s theorem and sketch in the last two parts of the outline.

sketch proof of 3.1: We assume X is k-connected, so its bottom cell is in dimension k + 1, and
hence Xq has bottom cell in dimension q(k + 1). Meanwhile, we set dimK = n, so K(q) is qn-
dimensional. This is the dimension of the top cell of K(q), so the dimension of the bottom cell of the
dual DK(q) is −qn. Putting all of this together with the formula for DqF (X), we see that DqF (X)
has bottom cell in dimension q(−n+ k + 1), so is (q(−n+ k + 1) + 1)-connected.

As discussed after Lemma 2.4, this leads to a vanishing line in the spectral sequence, which gives
us strong convergence. Comparing with the lemma statement, we see that d = q − 1 − n for the
functor F .

4. Snaith Splitting

Next we show how to deduce Snaith splitting using the Goodwillie tower in the previous section.
For some motivation, recall that for a topological space X, there is an identification of its stable
homotopy groups as

πs∗X ≃ π∗Ω
∞Σ∞X.

Assuming that we are interested in the LHS, it is then compelling to study the RHS. The space
ΩΣX is homotopy equivalent to the James construction, and more generally, if C(n) is the little n-
cubes operad, then ΩnΣnX is homotopy equivalent to the free C(n)-algebra on X modulo a relation
making the basepoint of X the identity, as shown by May. See, for example, [May] or [Mat] for more
on this story.

Write C(n)(k) for the space of embeddings of k little n-cubes in a big n-cube. Then Snaith
splitting is the following result.

Theorem 4.1 (Snaith). There is a splitting

Σ∞ΩnΣnX =
∨
k≥0

Σ∞(C(n)(k)+ ∧X∧k)hΣk
.

We can work toward this result using Arone’s model for the functor F in the case that K = Sn

is a sphere and X = ΣnY is an n-fold suspension. In this case,

DkF (Σ
nY ) ≃ (DΣ∞(Sn)(k) ∧ Σ∞(ΣnY )∧k)hΣk

≃ (DΣ∞(Sn)(k) ∧ Snk ∧ Σ∞Y ∧k)hΣk
.

To relate this to Snaith’s result, we need to recognize DΣ∞(Sn)(k) ∧ Snk as Σ∞
+ C

(n)(k). To that
end, consider that we have a map

α(n, k) : C(n)(k) → MapsTop∗
(Sn,

∨
k

Sn)⊔
k

In ↪→ In ⇝ Sn →
∨
k

Sn

given by using the Pontryagin-Thom collapse. Just as a reminder, a rough sketch of this map for
n = 2, k = 2 is
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Using an adjoint to α(n, 1) and forming a composite, one can define a map

δ(n, k) : C(n)(k)+ ∧ Sn(d) → Snk

going the other direction. We will not go through the details, but quote the following result from
[AK].

Theorem 4.2 (Ahearn-Kuhn). The map δ(n, k) induces a Σk-equivariant equivalence

Σ∞
+ C

(n)(k) ≃ MapSp(Σ
∞Sn(k), Snk).

To deduce Snaith splitting, we will need to assume the following fact.

Fact 4.3. When K = Sn, X = ΣnY , the Goodwillie tower for F strongly splits.

This begs the question of whether showing this fact is easier than taking Snaith’s approach, but
from here, it is quick to deduce the result:

Σ∞ΩnΣnY = F (ΣnY )

≃
∨
k>0

DkF (Σ
nY )

≃
∨
k>0

Σ∞(C(n)(k)+ ∧X∧k)hΣk
.

What happens in the limit as n→ ∞? Since hocolimn→∞C
(n)(k)+ is a model for EΣk+ ∼weq S0

and hocolimn→∞Σ−nΣ∞Xn → X is an equivalence for Xn the nth space of the spectrum X, we
can apply the above to this case.

Consider the functor G : X 7→ Σ∞Ω∞X. This is the identity on spectra and we’ll hear more
about it later in the seminar. Since smashing with S0 is the identity, we see that DdG(X) ≃ X∧d

hΣd
.

In fact, we know more.

Fact 4.4. For X a 0-connected suspension spectrum, the Goodwillie tower converges, and

Σ∞Ω∞X = X ⊕X∧2
hΣ2

⊕X∧3
hΣ3

⊕ . . .

This means that applying the functor Σ∞Ω∞ is like taking the group ring S[X]. Going back to
our power series analogy, we can recognize the RHS as encoding polynomials: it features different
powers of X and enforces commutativity of multiplication by taking homotopy orbits.

5. The Kahn-Priddy Theorem

We begin with the observation that there’s a unique map ε : RP∞ → ∗. It’s not very interesting.
If we take Σ∞

+ , we get

Σ∞
+ RP∞ ε−→ S,

which is also not very interesting. However, on the level of spectra, there is actually another map,

Σ∞
+ RP∞ tr−→ S,

called the transfer. It turns out that this map is interesting.

Theorem 5.1 (Kahn-Priddy). At the prime 2, the transfer map is surjective on homotopy.
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Note that Σ∞
+ RP∞ splits into Σ∞RP∞ ⊕ S. On the first component, ε is trivial, but tr is inter-

esting and surjective. On the second component, ε just projects, while tr is a kind of multiplication
by 2. Altogether, since RP∞ ≃ BC2, the transfer is surjective on homotopy at the prime 2. Hence
we assume that we are working 2-locally for the rest of this section.

We will neglect a discussion of the construction of the transfer map in favor of getting back to
Goodwillie calculus. In the previous section, we saw how the Goodwillie tower for the functor G
splits on 0-connected suspension spectra. However, the tower gives us a way to understand G on a
wider range of objects. Substituting the formula for the fibers, we have

X Σ∞Ω∞X

...

X⊗3
hΣ3

P3G

X⊗2
hC2

P2G

X.

To see the relationship to the transfer map, we plug in X = S−1. It turns out that when we
take C2 homotopy orbits of S−1 ⊗ S−1, where the C2 action is given by swapping factors, we get
Σ−1RP∞

−1 for D2G(S−1). Meanwhile, P2G(S−1) may be identified with Σ−1RP∞
+ . Finally, we claim

that the vertical map P2G(S−1) → S−1 is actually a desuspension of the transfer map.
Altogether, we have claimed that the bottom of the Goodwillie tower for G becomes

Σ∞Ω∞S−1

...

Σ−1RP∞
−1 Σ−1RP∞

+

S−1

Σ−1tr

Admitting these claims, how can we deduce something close to the Kahn-Priddy theorem? Applying
Ω∞ to the top and bottom portions of the tower gives

Ω∞Σ∞Ω∞S−1

Σ−1RP∞
+ Ω∞S−1Ω∞Σ−1tr

We have drawn a section in this diagram splitting the map Ω∞Σ∞Ω∞S−1 → Ω∞S−1. This sec-
tion comes from the unit of the suspension-loops adjunction applied to the identity map id: Z 7→
Σ∞Ω∞Z. Composed with the left arrow, this section will split the desuspension of the trans-
fer. This amounts to “one suspension away” from the Kahn-Priddy theorem at the prime 2, since
π∗(Ω

∞X) = π∗(X). For details, see [K04] Appendix.
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