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Abstract. In this talk, we will show that the free K(1)-local E∞ ring on a class in degree zero

has a particularly nice form. Namely, it is a free θ-algebra on a single generator. Understanding
this brings us closer to the goal of finding “enough points” to show that Nullstellensatzian rings

are interesting.
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1. Introduction

The main goal of this talk is to completely describe the structure of the free K(1)-local E∞ ring
on the sphere spectrum. Through several steps, we will show a K(1)-local equivalence between this
free K(1)-local E∞ ring and a sum of K(1)-local spheres, as well as recognize two power operations
that provide the structure of a θ-algebra on this ring.

For comparison, consider the (not localized) free E∞ ring on a spectrum X. This is given by

FreeE∞(X) = S⊕X ⊕X⊗2
hΣ2

⊕X⊗3
hΣ3

⊕ · · ·
When we take X = S the sphere spectrum, we get

FreeE∞(X) = S⊕ S⊕ S⊗2
hΣ2

⊕ S⊗3
hΣ3

⊕ · · ·
This is a complicated ring, with many power operations. Each individual summand is also difficult to
study- for example, S⊗2

hΣ2
≃ Σ∞

+ RP∞, an object with many cells and complicated homotopy groups.
On the other hand, if we work rationally and take the free rational E∞ ring on the Eilenberg-

MacLane spectrum HQ (for which we will use the shorthand Q) then the output is simpler:

FreeQE∞
(Q) = Q⊕Q⊕Q⊗2

hΣ2
⊕Q⊗3

hΣ3
⊕ · · · ≃ Q⊕Q⊕Q⊕ · · · ≃ Q[x].

In this ring, the only operations we have are addition and multiplication, and we completely un-
derstand its structure: it is a polynomial ring on a single generator, which we name x. Let’s write
down explicitly which summand each monomial corresponds to:
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Q ⊕ Q ⊕ Q ⊕ · · ·
x x2 x3 . . .

The simplicity of this ring is a height zero phenomenon. Working K(1)-locally, so at height 1, the
result is a bit more complicated. A result of McClure, which is Theorem 5 in [Hop], is the following.

Theorem 1.1. Let E be a K(1)-local E∞ ring spectrum. Then

Free
K(1)
E∞E(S) → E∗{x, θx, θ2x, · · · }

is an isomorphism of θ-algebras.

A θ-algebra is an algebra with operations θ and ψ such that ψ(x) = xp + pθ(x) and such that ψ
is a ring homomorphism. We write θx for θ(x). The requirement that ψ is a ring homomorphism
also places restrictions on the values of θ on sums and products of elements, so that each operation
is completely determined.

Remark 1.2. In [Hop], θ-algebras are called Frobenius algebras. In some sense, they are a mod p
analog of lambda rings.

We will focus on the case where E is the K(1)-local sphere.

Corollary 1.3. Let SK(1) be the K(1)-local sphere spectrum. Then

Free
K(1)
E∞

(SK(1)) → SK(1)∗{x, θx, θ
2x, · · · }

is an isomorphism of θ-algebras.

Note that from this result we may recover the general case by smashing with E.
The right hand side is the free θ-algebra on a single generator, x. Explaining and sketching a

proof of this theorem will be the main goal of this talk, but first we will explain why this result is
relevant to the seminar.

2. Relevance to the Chromatic Nullstellensatz

Let’s fix a prime p and a formal group law of height n over Fp. Recall from Tomer’s talk that
there is a functor

PerfFp
→ CAlg(SpT (n))

from perfect Fp-algebras to T (n)-local spectra taking F 7→ E(F ), where E(F ) is the Lubin-Tate
spectrum .

A main theorem in [BSY22] is the following characterization of Nullstellensatzian rings.

Theorem 2.1. A spectrum R ∈ CAlg(SpT (n)) is Nullstellensatzian ⇐⇒ there exists an algebraically

closed field F of characteristic p such that R ≃ E(F ).

For this to be useful, we wanted a notion of “having enough points;” i.e. having enough E∞ ring
maps S → E(F ). This would show that Nullstellensatzian rings can capture interesting information.

Thinking optimistically, if we did have such ring maps

S → E(F ),

then by taking π0, we’d get a map of θ-algebras

π0S → π0E(F ).

Now recall that if F is a perfect Fp algebra, then π0E(F ) ∼= W (F )[[v1, ..., vn−1]], where W (F ) are
the Witt vectors of F . We rely on the following fact.

Fact 2.2. The assignment F 7→W (F ) defines a functor

CRing → Λ-Ring.
This functor is the right adjoint to the forgetful functor fgt : Λ-Ring → CRing.
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In other words, the Witt vectors of F form a cofree lambda ring. See, e.g., [Haz08]. The lambda
ring structure onW (R) arises from the Frobenius automorphism on R, which by functoriality defines
a Frobenius automorphism on W (R). In any case, the adjunction provides a natural isomorphism

HomΛ-Ring(A,W (F )) ∼= HomCRing(A,F ),

allowing us to identify the map on π0 with a map

π0S → F.

But now, in the category of commutative rings, it is easy to produce maps into a ring F .
This argument doesn’t yet show that we “have enough points,” but it provides some corroborating

evidence, and similar ideas will lead to a proof later in the seminar.

3. Proof of Theorem

We start by expanding out the LHS of the theorem statement. We have, as in the general case,

Free
K(1)
E∞

(SK(1)) ≃ SK(1) ⊕ (SK(1))
⊗2
hΣ2

⊕ · · · ⊕ (SK(1))
⊗p−1
hΣp−1

⊕ (SK(1))
⊗p
hΣp

⊕ · · ·

However, K(1)-locally, we will see that the first p − 1 terms are each equivalent to SK(1), while

(SK(1))
⊗p
hΣp

≃ SK(1) ⊕ SK(1), and the remaining terms also split into sums of spheres. That is, we

can rewrite the above as

Free
K(1)
E∞

(SK(1)) ≃ SK(1) ⊕ SK(1) ⊕ · · · ⊕ SK(1) ⊕ (SK(1) ⊕ SK(1))⊕ · · ·

We’ll start by studying the terms (SK(1))
⊗n
hΣn

with n < p.

3.1. Summands with n < p.

Lemma 3.1. When n < p, there is a K(1)-local equivalence (SK(1))
⊗n
hΣn

≃ SK(1).

Proof sketch. Note that when n < p, the order of the symmetric group, |Σn| = n!, is coprime to p.
In general, if a finite group G acts on X, then we can compose the norm map with the inclusion of
the fixed points into X, as well as precompose with the quotient map to the orbits:

XhG XhG XNm i

q

When |G| is invertible, the composition X → X is invertible since it corresponds to a multiplication
by |G|. So, each of the compositions XhG → XhG and XhG → XhG is also invertible. Therefore,
we can realize XhG and XhG as retracts of X. Then π∗(XhG), for example, is the image of the
idempotent witnessing the retraction applied to π∗X, which is π∗(X)hG.

Using this, we can identify π∗(SK(1))
⊗n
hΣn

with (π∗S⊗n
K(1))hΣn . But now, the Σn action is trivial,

since it acts by permuting copies of the unit object in our symmetric monoidal category, so we may
simplify further to π∗S⊗n

K(1) ≃ π∗SK(1). This equivalence on π∗ implies a K(1)-local equivalence, so

we see that K(1)-locally, (SK(1))
⊗n
hΣn

≃ SK(1).
□

3.2. pth Summand. When n = p, the argument is more involved. We will use the notation BΣn+

for LK(1)Σ
∞
+ BΣn, the K(1)-localization of the suspension spectrum of the classifying space of the

symmetric group. Recall that (SK(1))hΣn ≃ BΣn+. We want to show the following result, called
Lemma 3 in [Hop]:

Lemma 3.2. Let ε be the map induced by BΣp → pt and let tr be the transfer map. Then

BΣp+

ε,tr−→ SK(1) ⊕ SK(1)

is a K(1)-local equivalence.
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Remark 3.3. A bit more generally, whenever we are working in a p-complete, 1-semiadditive cat-
egory, 1 ⊕ 1 is a retract of BΣp ⊕ 1. So, for instance, K(n)-locally, SK(n) ⊕ SK(n) is a retract of
LK(n)Σ

∞
+ BΣp. However, there is only an equivalence at height 1.

Recall from last time that for K(1)-local spectra, we have Tate vanishing; i.e. the norm map

XΣp

≃−→ XhG is an equivalence. This implies that K(1)-locally,

BΣp+ ≃ ShΣp ≃ ShΣp .

Smashing both sides with K(1), we see that

K(1)⊗ ShΣp ≃ K(1)⊗ ShΣp ,

so after we take π∗, we see that

K(1)∗(BΣp+) ≃ K(1)∗(BΣp+).

Therefore, to compute the K(1)-homology, it suffices to compute the K(1)-cohomology, for which
we can use an Atiyah-Hirzebruch spectral sequence:

H∗(BΣp;π∗K(1)) =⇒ K(1)∗BΣp.

To compute the input, we’ll start with a similar trick to the one used in the previous section.
Note that Cp ↪→ Σp is the inclusion of an index-prime-to-p subgroup. (Specifically, the index is
(p− 1)!.) On classifying spaces,

BCp+ BΣp+
i

tr

the composition i ◦ tr should be multiplication by the index, which is a unit, implying that BΣp+ is

a retract of BCp+. So, we will compute H∗(BCp;π∗K(1)), which is a bit easier, and then identify

two summands corresponding to H∗(BΣp;π∗K(1)).
To compute this, we can use a general fact for complex oriented cohomology theories.

Claim 3.4. Let R be a complex oriented cohomology theory. Then,

R∗(BCp) ∼= R[[t]]/[p](t),

where [p](t) is the p-series for the formal group law associated to R.

Proof sketch. It follows from results in Tristan’s talk that for R complex oriented, H∗(BS1;R) ∼=
R∗[[t]]. To get from BS1 to BCp, we may start with the fibration

BCp → BS1 ×p−→ BS1.

Continuing to the left, there is also a fibration

S1 → BCp → BS1.

The Atiyah-Hirzebruch spectral sequence associated to this fibration has the following signature:

H∗(BS1;R∗(S1)) =⇒ R∗(BCp).

The cohomology of S1 is an exterior algebra on some generator, say ε, of degree 1, so combining
this with the result that the cohomology of BS1 is a power series on one generator, we see that the
input to the spectral sequence looks like Λ∗(ε)[[t]]. A sketch of the E2 page is as follows:
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∗ (
S
1
)

1

ε

t

εt

t2

εt2

For degree reasons, the only possible differentials are d2’s. These are all determined, due to multi-
plicativity and the Leibniz rule, by the differential emanating from (0,1). Write d for this differential.

Claim 3.5. im d ∼= [p](t)

Some idea for why this is true is that the [p]-series must die by exactness- the next map in

the sequence if BS1 ×p−→ BS1. To make this rigorous, we would need to argue that the [p]-series is
indecomposable, for one thing. But, admitting this claim, we see that the spectral sequence collapses
on the E3 page, and we have shown the desired statement (at least at the level of the associated
graded). □

Next, we apply this general fact to R = K(1). Recall that for KU , the formal group law is the
multiplicative formal group law Gm, which can be written

x+Gm
y = (x+ 1)(y + 1)− 1

(neglecting the Bott class). So, the [p]-series for KU is

[p]Gm
(t) = (t+ 1)p − 1 = tp + p(· · · ).

Since K(1) ≃ K̂U
Ad
/p, the p-completed Adams summand of KU mod p, we have that the [p]-series

for K(1) is given by

[p](t) = tp.

Therefore,

K(1)∗(BCp) ∼= K(1)∗[[t]]/tp.

Note that as a module overK(1)∗(pt) this isK(1)∗{1, . . . , tp−1}. In particular, it’s finitely generated.
This is already much nicer than the non-K(1)-local result.

Finally, we need to extract the summands corresponding to K(1)∗(BΣp).

Claim 3.6. There is an isomorphism of K(1)∗(pt) modules

K(1)∗(BΣp) ∼= K(1)∗{1, tp−1}.

We will not really justify this claim, but instead appeal to the fact that K(1)∗(BΣp) corresponds
to the fixed points of the F×

p action on K(1)∗(BCp). The action of some generator c ∈ F×
p takes a

class t to ct, so in addition to the trivial summand, the tp−1 summand is also fixed since tp−1 7→
cp−1tp−1 = tp−1. (This uses that c ∈ F×

p is order p− 1.)
Finally, to connect back to the lemma statement, we note that the trivial summand 1 corresponds

to the map ε, basically by definition of ε. To see that the summand tp−1 corresponds to the transfer,
it would take some more work. For example, it follows from the fact that tr(1) = [p](t)/t, but we
won’t justify this.

In any case, the computation K(1)∗(BΣp) ∼= K(1)∗{1, tp−1} shows that there is a K(1)-local
equivalence BΣp+ ≃ SK(1) ⊕ SK(1).
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3.3. Summands with n > p. These summands are a bit more complicated. For n = p + 1 until
n = 2p−1, one can use an argument with the inclusion Σp ↪→ Σn index-prime-to-p index subgroup to
see that there is a K(1)-local equivalence between these spectra. For n = 2p, one needs to examine
a different subgroup, like Σp ×Σp. For n = p2, the argument requires a more complicated choice of
subgroup.

3.4. Power Operations. Above, we gave a partial argument for how K(1)-locally, the free E∞
ring on a generator in degree 0 was equivalent to a sum of spheres. However, we haven’t yet realized
the θ-algebra structure.

Lemma 3.2 exhibits the ε and transfer maps as a dual basis for BΣp as a K(1)∗(pt) module. We
can form another basis dual to this by defining operations θ, ψ : S → BΣp+ such that

• tr ◦ θ is multiplication by (p− 1)!,
• ε ◦ θ is 0,
• tr ◦ ψ is 0, and
• ε ◦ ψ is 1.

Then, define a map e as follows. Start with the inclusion of a point pt ↪→ Σp, then take the classifying
spaces, Bpt ↪→ BΣp, and finally apply Σ∞

+ to get

e : S → BΣp+.

One can compute that ε ◦ e = 1 from the definitions of these maps, and that tr ◦ e = p! by using
the double coset formula for the (trivial) subgroup {1} ⊂ Σp. Then, one can show by evaluating the
basis elements tr and ε that

ψ = e+ pθ.

Let E be aK(1)-local E∞ ring spectrum. Given an element x ∈ π0E, define a map P (x) : BΣp+ →
E by starting with the map S → E representing x, using the free E∞-forgetful adjunction, and
restricting the resulting map to the summand S⊗p

hΣp
≃ BΣp+. Next, define e(x) = P (x) ◦ e, θ(x) =

P (x) ◦ θ, and ψ(x) = P (x) ◦ ψ. One can show that e(x) = xp; it follows that ψ(x)− xp = pθ(x).

Fact 3.7. The map ψ is a ring homomorphism.

We won’t prove this, but emphasize that it is a height 1 phenomenon. One can define operations
θ and ψ on K(n)-local spectra, but for general n, ψ will not be a ring homomorphism, and thus the
ring structure may not be completely determined by these two operations.

3.5. Conclusion. With the two power operations defined, we can now identify the summands in
the free K(1)-local E∞ ring on S with the elements in the free θ-algebra. We claim that the
correspondence is as follows:

Free
K(1)
E∞

(SK(1)) ≃

SK(1) ⊕ · · · ⊕ SK(1) ⊕ (SK(1) ⊕ SK(1)) ⊕ · · · ⊕ (SK(1) ⊕ SK(1) ⊕ SK(1)) ⊕ · · · ⊕ (SK(1) ⊕ · · · )
x . . . xp−1 xp, θx . . . x2p, xpθx, θxθx . . . θ2x, . . .

Note that the generators appearing in the sum are exactly the generators one sees in the free
θ-algebra on x. Understanding this structure will contribute toward the proof of the Nullstellensatz
in future talks.
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