Juvitop Bott element

February 10, 2021

Here's the deal with the Bott element. First, remember that we have this spectrum ku, connective complex K-theory, whose zeroth space is $\mathrm{BU} \times \mathbb{Z}$. So we have, for a space X, that

$$
\pi_{0} \operatorname{Map}\left(\Sigma_{+}^{\infty} X, \mathrm{ku}\right)=\pi_{0} \operatorname{Map}(X, \mathrm{BU} \times \mathbb{Z})
$$

is the group of virtual vector bundles on X. In particular, $\pi_{2} \mathrm{ku}$ is the group of virtual vector bundles on $S^{2}=\mathbb{C} P^{1}$, and we have a favorite one, $\mathcal{O}(1)$, coming from the canonical line bundle. We usually shift it to have rank 0 and use $\beta:=[\mathcal{O}(1)]-1$. So we've got this diagram

$$
\mathbb{C} P^{1} \rightarrow \mathbb{C} P^{\infty}=\mathrm{B} S^{1}=\mathrm{BU}(1) \rightarrow \mathrm{BU} .
$$

defining the Bott element.
On the other hand, we can include a cyclic group C_{q} into S^{1} as the q th roots of unity, i.e. the kernel of the map $S^{1} \rightarrow S^{1}$ given by $z \rightarrow z^{q}$. So we have a map

$$
\mathrm{B} C_{q} \rightarrow \mathrm{~B} S^{1}
$$

We also have a little cofiber sequence

$$
S^{1} \xrightarrow{(-)^{q}} S^{1} \rightarrow S^{1} / q \rightarrow S^{2}
$$

Consider the diagram:

The long composite $S^{1} / q \rightarrow \mathrm{~B} S^{1}$ is null, $\mathrm{B} S^{1}$ represents $H^{2}(-, \mathbb{Z})$ and $H^{2}\left(S^{1} / q\right)=\mathbb{Z} / q$, so can fill in the dotted map. (Alternatively, you could use the fact that $\pi_{1} \mathrm{~B} S^{1}=0$ and use the cofiber sequence).

Taking suspension spectra, we then get the following diagram:

Now, it turns out that \mathbb{S} / q is dualizable, so that

$$
\operatorname{Map}(\mathbb{S} / q,-) \simeq D(\mathbb{S} / q) \otimes(-)
$$

for some spectrum $D(\mathbb{S} / q)$. Which spectrum? Well, we can work it out by dualizing the defining cofiber sequence:

$$
\Sigma^{-1} \mathbb{S} / q \rightarrow \mathbb{S} \xrightarrow{\cdot q} \mathbb{S} \rightarrow \mathbb{S} / q
$$

becomes

$$
\Sigma D(\mathbb{S} / q) \leftarrow \mathbb{S} \leftarrow \mathbb{S} \leftarrow D(\mathbb{S} / q)
$$

so that

$$
D(\mathbb{S} / q)=\Sigma^{-1} \mathbb{S} / q
$$

In particular:

$$
\pi_{n}(X / q):=\pi_{n}(X \otimes \mathbb{S} / q)=\pi_{0} \operatorname{Map}\left(\Sigma^{n} \mathbb{S}, X \otimes \mathbb{S} / q\right)=\pi_{0} \operatorname{Map}\left(\Sigma^{n-1} \mathbb{S} / q, X\right)
$$

Revisiting our diagram, we have produced an element $\beta \in \pi_{2}\left(\left(\Sigma_{+}^{\infty} \mathrm{B} C_{q}\right) / q\right)$ which lifts the mod q reduction of β in $\pi_{2} \mathrm{ku}$.

If we knew that the mod q homotopy groups had a ring structure, we would then get a split injection

$$
\mathbb{Z} / q[\beta] \rightarrow \pi_{*}\left(\left(\Sigma_{+}^{\infty} \mathrm{B} C_{q}\right) / q\right)
$$

Now, $\Sigma_{+}^{\infty} \mathrm{B} C_{q}$ is a ring (it's like the 'group ring' of the space $\mathrm{B} C_{q}$, which is a topological abelian group), but \mathbb{S} / q actually can't be made into a highly structured ring. However, when $q \geqslant 3$, we can define a pairing

$$
\mathbb{S} / q \otimes \mathbb{S} / q \rightarrow \mathbb{S} / q
$$

which is unital; and that's enough to get a ring structure on the homotopy groups, which is enough to define all those powers β^{n} of the Bott element.

