
Étale Cohomology: A Crash Course
(with a word on algebraic K -theory)

Siyan Daniel Li-Huerta

March 2, 2021



Motivation: singular cohomology

Let X be a scheme. If X is locally of finite type over C, we can endow
X (C) with the Euclidean topology and consider H i

sing(X (C);A) for any
abelian group A. This is a useful invariant. Recall that it equals the sheaf
cohomology H i (X (C);A).

But what if X was locally of finite type over Fp? Or X = SpecZ? We no
longer have the Euclidean topology, but X has an underlying topological
space, so we can form sheaf cohomology, I guess. . .

Proposition

Let X be an irreducible topological space. Then H i (X ;A) = 0 for all i ≥ 1.

Proof.

By irreducibility, every pair of nonempty open subsets of X intersect. This
implies that A is flasque and hence has trivial higher cohomology.

The underlying topological space of X is often irreducible. Thus, for sheaf
cohomology purposes, it has “too few” open subsets!

2 / 13



So we should add more “open subsets.” But what exactly do we add? We
take a scheme-theoretic version of local isomorphisms, motivated by the
inverse function theorem:

Definition

Let π : Y →X be a morphism of schemes.

Suppose X = SpecR is affine. We say π is standard étale if it is
isomorphic to an open subscheme of Spec (R[t]/g)[ 1

g ′ ], where g in

R[t] is a monic polynomial, and g ′ denotes its derivative.

In general, we say π is étale if, for all x in X and y in π−1(x), there
exists an affine neighborhood U of x and a neighborhood V of y with
π(V ) ⊆ U such that π : V →U is standard étale.

Examples

Let k be a ring, and choose an integer n invertible in k . Then the
endomorphism of Gm,k := Spec k[x , x−1] given by x 7→ xn is standard
étale, as we can take g = tn − x . (Imagine this for k = C!)
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Examples (continued)

Let l/k be a finite separable extension of fields. Then Spec l→ Spec k
is standard étale, as we can take g to be the minimal polynomial of a
generator of l over k. Conversely, one can show that every étale
morphism to Spec k from a connected scheme is of this form.

Taking g = t shows that the identity is standard étale, so open
embeddings are étale. In general, étale morphisms are open.

Étale morphisms are stable under composition and base change.

Recall that presheaves are just contravariant functors from the category of
open subsets to (Set), and sheaves are just presheaves whose sections glue
along covers. This abstract perspective leads us to make the following:

Definition

The étale site Xét is the category of étale schemes over X , where a cover
of Y in Xét is given by families {Ui→Y }i of étale morphisms such that∐

i Ui→Y is surjective.

This yields a notion of sheaves, exact sequences, sheaf cohomology, etc.
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Proposition

Let X = Spec k , where k is a field. Fix a separable closure k of k . Then
the category of abelian sheaves on Xét is equivalent to the category of
continuous (i.e. every element has open stabilizer) Gal(k/k)-modules.

Proof.

Let F be an abelian sheaf on Xét. Set M := lim−→l
F (l), where l runs over

finite Galois extensions of k in k . Now Gal(k/k) acts via the Gal(l/k), and
M is evidently continuous for this action.

Conversely, let M be a continuous Gal(k/k)-module. For any finite

separable extension l of k in k , set F (l) := MGal(k/l). To see that F is a
sheaf, it suffices to check that, for all finite Galois extensions n/l in k ,

0→F (l)→F (n)→F (n ⊗l n) = F (
∏

Gal(n/l) n) =
∏

Gal(n/l) F (n)

is exact. We see it’s exact at the first term, and F (n)→
∏

Gal(n/l) F (n) is

the map m 7→ (m − σ(m))σ, whose kernel is F (n)Gal(n/l) = F (l).
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Under this identification, the global sections functor F 7→ F (k)

corresponds to the Gal(k/k)-invariants functor M 7→ MGal(k/k). Thus
étale cohomology on Spec k equals Galois cohomology!

Return to an arbitrary scheme X . Here’s a big source of étale sheaves:

Theorem (Grothendieck)

Let Z be a scheme. The presheaf Y 7→ Hom(Sch)(Y ,Z ) on Xét is a sheaf.

Examples

The abelian sheaf Gm given by Y 7→ OY (Y )× is represented by Gm,Z,

The abelian sheaf µn given by Y 7→ {y ∈ OY (Y )× | yn = 1} is
represented by µn,Z := SpecZ[x ]/(xn − 1),

The constant abelian sheaf A is represented by
∐

a∈A SpecZ.

Suppose that n is invertible in OX (X ) and that OX (X ) contains a
primitive n-th root of unity ζ. The Chinese remainder theorem identifies
Z[ζ][ 1

n ][x ]/(xn − 1) =
∏

j∈Z/nZ Z[ζ][ 1
n ]/(x − ζ j) ∼=

∏
j∈Z/nZ Z[ζ][ 1

n ].
Taking Spec yields an isomorphism µn ∼= Z/nZ of abelian sheaves on Xét.
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Proposition (Kummer)

Suppose that n is invertible in OX (X ). Then 1→µn→Gm
n→Gm→ 1 is

an exact sequence of abelian sheaves on Xét.

Proof.

It’s evidently exact at the first and second terms. For the third term, let Y
be in Xét, and consider a in Gm(Y ) = OY (Y )×. The relative spectrum
Spec

Y
OY [t]/(tn − a) is an étale cover of Y (as the image of ntn−1 there

is already invertible), and after passing to this étale cover, we
tautologically get an n-th root of a!

As usual, H1
ét(X ;F ) is in bijection with isomorphism classes of F -bundles

on Xét.

Proposition (Hilbert 90)

We have a natural isomorphism H1(X ;Gm) = H1
ét(X ;Gm).

If X is the spectrum of a field k , this implies that H1(Gal(k/k), k
×

) = 0.
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Since étale morphisms are stable under base change, morphisms of
schemes f : X1→X2 induce functors f∗ and f ∗ between their étale sheaves.

Proposition

Let X be a 1-dimensional regular integral scheme. Write j : η→X for the
generic point inclusion, and for any closed point x in X , write ix : x→X
for the closed point inclusion. We have an exact sequence

1→Gm→ j∗Gm
Div→

⊕
x

ix ,∗Z→ 0

of abelian sheaves on Xét.

Theorem (Artin)

Let X be locally of finite type over C, and let A be a finite abelian group.
Then we have a natural isomorphism H i

ét(X ;A) = H i (X (C);A).

Altogether, we see that étale cohomology is an invariant for schemes that
combines both Galois cohomology and singular cohomology.
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Let X be a connected smooth proper curve over an algebraically closed
field k , and suppose n is invertible in k . When k = C, we can compute
H i

ét(X ;Z/nZ) via singular cohomology. But for general k , we can still
compute it purely algebraically, and it’s what you expect!

Proposition

Write g for the genus of X . We have H0
ét(X ;Z/nZ) ∼= Z/nZ,

H1
ét(X ;Z/nZ) ∼= (Z/nZ)2g , H2

ét(X ;Z/nZ) ∼= Z/nZ, and all other

H i
ét(X ;Z/nZ) ∼= 0.

Proof.

Since X is connected, H0
ét(X ;Z/nZ) is immediate. Next, since n is

invertible in OX (X ) and OX (X ) contains a primitive n-th root of unity, we
can replace Z/nZ with µn. The Kummer short exact sequence yields a
long exact sequence

· · ·→H i−1
ét (X ;Gm)→H i

ét(X ;µn)→H i
ét(X ;Gm)

n→H i
ét(X ;Gm)→· · · .

We have OX (X )× = k× because X is connected and proper. 9 / 13



Proof (continued).

As k is algebraically closed, we see that k×
n→ k× is surjective. Thus

H1
ét(X ;µn) equals the n-torsion in H1

ét(X ;Gm). Hilbert 90 implies that
H1

ét(X ;Gm) = PicX , and recall that we have a short exact sequence

0→Pic0 X →PicX
deg→ Z→ 0.

Now Pic0 X is the k-points of a g -dimensional abelian variety over k , and
since n is invertible in k, its n-torsion is isomorphic to (Z/nZ)2g . (For the
same reason, multiplication by n is surjective on Pic0 X .) As Z is
torsion-free, we see that H1

ét(X ;µn) ∼= (Z/nZ)2g .

I claim that H i
ét(X ;Gm) = 0 for all i ≥ 2. This would conclude the proof,

because then H2
ét(X ;µn) would equal PicX/nPicX , which is Z/nZ by the

degree short exact sequence. The Kummer long exact sequence would also
show that the other H i

ét(X ;µn) = 0.

To prove H i
ét(X ;Gm) = 0 for all i ≥ 2, we use the divisor short exact

sequence. As you might expect, f∗ is exact for closed embeddings f . 10 / 13



Proof (continued).

Furthermore, a short argument using the étale version of local rings (i.e.
strictly henselian local rings), checking isomorphisms at stalks, classical
Hilbert 90, and Tsen’s theorem shows that Rj∗Gm = j∗Gm. Therefore the
divisor short exact sequence and the Grothendieck–Leray spectral sequence
yield a long exact sequence

· · ·→
⊕
x

H i−1
ét (x ;Z)→H i

ét(X ;Gm)→H i
ét(η;Gm)→

⊕
x

H i
ét(x ;Z)→· · · .

As x is the spectrum of an algebraically closed field, its higher Galois and
hence étale cohomology vanish. Finally, η is the spectrum of a field with
transcendence degree 1 over an algebraically closed field, so Tsen’s
theorem says that its Galois cohomology vanishes in degree ≥ 2. This
yields the aforementioned vanishing of H i

ét(X ;Gm) for i ≥ 2.

Many theorems in étale cohomology (proper base change, finitude of
cohomology, Poincaré duality, etc) are bootstrapped from this calculation.
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Thomason spectral sequence

Let q be an odd prime power. Let k be Z[ 1
q ] or one of

{global field, ring of integers of local field, separably closed field}
where q is invertible.

Theorem (Thomason)

Let X be a regular separated scheme of finite type over k. Then there
exists a spectral sequence with differentials dr in bidegree (−r , r − 1) and

E s,t
2 = H−sét (X ;µ

⊗(t/2)
q )⇒ K

(β)
s+t(X ;Z/qZ)

concentrated in degrees s ≤ 0 and 2|t, where K
(β)
s+t(X ;Z/qZ) denotes

Bott-inverted algebraic K -theory with coefficients in Z/qZ.

For example, if H i
ét(X ;µ

⊗(t/2)
q ) = 0 for i ≥ 3 (as we’ve seen for our curves,

but also it holds for SpecZ[ζq][ 1
q ] and SpecZ[ 1

q ]), this spectral sequence
immediately degenerates and is super simple.
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Closing remarks

When X is an open subscheme of the spectrum of the ring of integers of a
number field, the divisor short exact sequence applies. And if n is
invertible on X , the Kummer short exact sequence applies. One can use
these, along with Galois cohomology computations from class field theory,
to calculate étale cohomology groups of X .
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Thank you!
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