CM Abelian Varieties

Grant Barkley

March 16, 2021

Goals

- Define CM abelian varieties and polarizations
- Show how abelian varieties induce K-theory classes
- Show how to construct/parametrize CM abelian varieties
- (Next week) show that CM abelian varieties generate K-theory

Abelian varieties

Definition

An abelian variety over \mathbb{C} is a group variety which is a connected complex projective variety.

Proposition
An abelian variety is in fact an abelian group object in the category of varieties.

Example: elliptic curves

- Any smooth projective complex genus 1 curve with a given rational point O is naturally an abelian variety (an elliptic curve)
- Elliptic curves over \mathbb{C} are isomorphic as abelian varieties to \mathbb{C} / L for a lattice L
- In fact, any complex abelian variety is of the form \mathbb{C}^{g} / L (though not all full-rank L work!)

Riemann forms

Let $V \cong \mathbb{C}^{g}$ and $\mathbb{Z}^{2 g} \cong L \subset V$ a lattice of rank $2 g$.

Definition

A skew-symmetric form $E: L \times L \rightarrow \mathbb{Z}$ is a Riemann form if the extension $E_{\mathbb{R}}: V \times V \rightarrow \mathbb{R}$ satisfies for all $v, w \in V$
(a) $E_{\mathbb{R}}(i v, i w)=E_{\mathbb{R}}(v, w)$, and
(b) If $v \neq 0$, then $E_{\mathbb{R}}(i v, v)>0$.

When condition (a) holds,

$$
H(v, w)=E_{\mathbb{R}}(i v, w)+i E(v, w)
$$

defines a Hermitian form on V. Then condition (b) says H is positive definite.

Riemann forms

Theorem
A complex torus V / L is (the analytification of) an abelian variety over \mathbb{C} iff L admits a Riemann form. Equivalently, there is a positive-definite Hermitian form H on V such that $\Im H(L, L) \subset \mathbb{Q}$.

In this case $H_{1}\left(A(\mathbb{C})^{\text {an }} ; \mathbb{Z}\right) \cong L$ has a skew-symmetric form. This is a class in

$$
H^{2}\left(A(\mathbb{C})^{\mathrm{an}} ; \mathbb{Z}\right) \cong \Lambda^{2} L^{*}
$$

When the form is a Riemann form, this class is $c_{1}(\mathcal{L})$ for an ample line bundle \mathcal{L} on A.

The dual abelian variety

Let $t_{a}: A \rightarrow A$ denote translation by $a \in A(\mathbb{C})$. The dual abelian variety A^{\vee} of A is the variety classifying line bundles on A, trivialized at 0 , such that $t_{a}^{*} \mathcal{L} \cong \mathcal{L}$. (This is the Picard scheme of A.)

By the classifying property, $A \times A^{\vee}$ has a universal line bundle \mathcal{P}, the Poincare bundle.

Dualization gives an equivalence $\mathbf{A b V a r}{ }^{\mathrm{op}} \rightarrow \mathbf{A b V a r}$ and satisfies $A^{\vee \vee} \cong A$.

In the complex case, $A \cong V / L$. We can take A^{\vee} to be V^{*} / L^{*}.

Polarizations

Proposition

Let \mathcal{L} be an ample line bundle on an abelian variety A. Then

$$
\begin{gathered}
\lambda_{\mathcal{L}}: A \rightarrow A^{\vee} \\
x \mapsto t_{x}^{*} \mathcal{L} \otimes \mathcal{L}^{-1}
\end{gathered}
$$

is an isogeny.
Recall that an isogeny is a surjection of algebraic groups with finite kernel.
An isogeny of the form $\lambda_{\mathcal{L}}$ for some ample \mathcal{L} is called a polarization of A.
An isogeny with kernel 0 is an isomorphism, and in this case we call $\lambda_{\mathcal{L}}$ a principle polarization.

Polarizations

There are surjective maps:
Line bundles on A
\Downarrow
Self-dual morphisms $A \rightarrow A^{\vee}$
\Downarrow
Skew-symmetric bilinear forms on $H_{1}\left(A(\mathbb{C})^{\text {an }} ; \mathbb{Z}\right)$

The composite is the Chern class $c_{1}(\mathcal{L}) \in H^{2}\left(A(\mathbb{C})^{\text {an }} ; \mathbb{Z}\right)$.

Polarizations

This upgrades to:

> Ample line bundles on A
> \Downarrow
> Polarizations $A \rightarrow A^{\vee}$ (up to isogeny)
> \Uparrow
> Riemann forms on $H_{1}\left(A(\mathbb{C})^{\text {an }} ; \mathbb{Z}\right.$) (up to overall rational factor)

Define a correspondence between abelian varieties A and B to be a line bundle on $A \times B$ with trivializations on $A \times\{0\}$ and $\{0\} \times B$ that agree at the origin.
Then polarizations are furthermore in bijection with symmetric correspondences on $A \times A$ which pull back on the diagonal to an ample bundle on A.

This is a "symmetric positive-definite bilinear form" on A.

The moduli stack of abelian varieties

The moduli stack of principally polarized abelian varieties \mathcal{A}_{g} classifies complex abelian varieties A of dimension g, equipped with a principle polarization $\lambda: A \rightarrow A^{\vee}$.

The moduli stack of abelian varieties

A complex PPAV is specified by a full-rank lattice $L \subset \mathbb{C}^{g}$ with an identification $\lambda: \mathbb{C}^{g} / L \xrightarrow{\sim}\left(\mathbb{C}^{g}\right)^{*} / L^{*}$. By principleness this gives $L \xrightarrow{\sim} L^{*}$. Choosing L to contain the real basis e_{1}, \ldots, e_{g} of \mathbb{C}^{g}, then L and λ are specified by the lift of λ,

$$
\tau: \mathbb{C}^{g} \rightarrow\left(\mathbb{C}^{g}\right)^{*}
$$

which, by the properties of the Riemann form, satisfies

$$
\tau^{T}=\tau \quad \text { and } \quad \Im \tau \text { is positive definite. }
$$

Let \mathbb{H}_{g} denote the space of such τ (the Siegel upper half-space). Change of basis preserving the Riemann form preserves the underlying variety and polarization, so

$$
\mathcal{A}_{g}(\mathbb{C}) \cong \mathbb{H}_{g} / \operatorname{Sp}_{2 g}(\mathbb{Z})
$$

The map to K-theory

Let \mathcal{L}_{λ} be the pullback of the Poincare bundle under the graph morphism $A \rightarrow A \times A^{\vee}$. The map

$$
\begin{aligned}
\mathcal{A}_{g}(\mathbb{C}) & \longrightarrow \mathcal{S P}(\mathbb{Z}) \\
(A, \lambda) & \longmapsto\left(H_{1}\left(A(\mathbb{C})^{\mathrm{an}} ; \mathbb{Z}\right), c_{1}\left(\mathcal{L}_{\lambda}\right)\right)
\end{aligned}
$$

extends to a map of groupoids.
So we get

$$
\left|\mathcal{A}_{g}(\mathbb{C})\right| \rightarrow|\mathcal{S P}(\mathbb{Z})| \rightarrow \Omega^{\infty} \mathrm{KSp}(\mathbb{Z})
$$

and adjointly

$$
\Sigma_{+}^{\infty}\left|\mathcal{A}_{g}(\mathbb{C})\right| \rightarrow \operatorname{KSp}(\mathbb{Z})
$$

We wish to show this map is surjective on $(\bmod q)$ homotopy. In fact, there is a nice subgroupoid of $\mathcal{A}_{g}(\mathbb{C})$ for which this is true.

Complex multiplication

We wish to construct maps $\Sigma_{+}^{\infty}(B(\mathbb{Z} / q)) \rightarrow \operatorname{KSp}(\mathbb{Z})$ (to get "CM classes" in $\mathrm{KSp}_{*}(\mathbb{Z} ; \mathbb{Z} / q)$ as images of the Bott element).

We get these from maps $B(\mathbb{Z} / q) \rightarrow \mathcal{A}_{g}(\mathbb{C})$, equiv. \mathbb{Z} / q actions on PPAVs.

Such an action can be realized in PPAVs admitting an action of $\mathcal{O}_{q} \doteq \mathbb{Z}\left[\zeta_{q}\right]$. These are principally polarized abelian varieties with complex multiplication.

Complex multiplication

Definition

Let A be an abelian variety of dimension g. If $\operatorname{End}(A) \otimes \mathbb{Q}$ has a commutative \mathbb{Q}-subalgebra of dimension $2 g$, then A is said to have complex multiplication.

What do these look like?

CM orders and CM fields

Definition

A CM field E is a number field which is a totally imaginary extension of a totally real field E_{+}.
($E=E_{+}(\sqrt{d})$, where every algebra map $E_{+} \rightarrow \mathbb{C}$ has real image and takes d to a negative number.)

A CM algebra is a product of CM fields.
A CM order is an order in a CM algebra which is stable under complex conjugation.

An order in E is a full rank integral sublattice; a free \mathbb{Z}-subalgebra \mathcal{O} such that $\mathcal{O} \otimes \mathbb{Q} \cong E$.

If A has complex multiplication, then $\operatorname{End}(A)$ is a CM order.

Constructing CM abelian varieties

A PPAV with complex multiplication is specified by the following data:

1. \mathcal{O} a CM order (with CM algebra E)
2. \mathfrak{a} an \mathcal{O}-submodule of E such that $\mathfrak{a} \otimes \mathbb{Q} \cong E$
3. $\Phi: \mathcal{O} \otimes \mathbb{R} \xrightarrow{\sim} \mathbb{C}^{g}$ an algebra isomorphism
4. A purely imaginary element u in E
(1-3) give $\mathcal{O} \otimes \mathbb{R} / \mathfrak{a}$ the structure of a complex torus. Then (4) induces a Riemann form on \mathfrak{a} by

$$
\begin{gathered}
\mathfrak{a} \times \mathfrak{a} \rightarrow \mathbb{Q} \\
(x, y) \mapsto \operatorname{Tr}_{E \mid \mathbb{Q}}(\bar{x} u y) .
\end{gathered}
$$

Realizing the CM classes

If we fix a CM order \mathcal{O} in a CM field E and an isomorphism
$\Phi: \mathcal{O} \otimes \mathbb{R} \xrightarrow{\sim} \mathbb{C}^{g}$, then the remaining data can be assembled into a groupoid \mathcal{P}_{E}^{-}with objects \mathcal{O}-lattices in E with a Riemann form.

This is equivalent to the groupoid of rank 1 projective \mathcal{O}-modules with skew-Hermitian form valued in $\operatorname{Hom}_{\mathbb{Z}}(\mathcal{O}, \mathbb{Z})$. On a lattice which is an ideal of \mathcal{O}, the skew-Hermitian form is given by

$$
(x, y) \mapsto\left[z \mapsto \operatorname{Tr}_{E \mid \mathbb{Q}}(\bar{x} u y z)\right] .
$$

Using the skew-Hermitian notation from previous talks, we have

$$
\mathcal{P}_{E}^{-} \cong \mathcal{P}\left(\mathcal{O}, \operatorname{Hom}_{\mathbb{Z}}(\mathcal{O}, \mathbb{Z}), f \mapsto(x \mapsto-\overline{f(\bar{x})})\right.
$$

Realizing the CM classes

The CM theory then gives a functor

$$
\mathrm{ST}: \mathcal{P}_{E}^{-} \rightarrow \mathcal{A}_{g}(\mathbb{C})
$$

The composite map with $\mathcal{A}_{g}(\mathbb{C}) \rightarrow \mathcal{S P}(\mathbb{Z})$:

$$
\mathcal{P}_{E}^{-} \rightarrow \mathcal{S P}(\mathbb{Z})
$$

is of particular interest. On the full subgroupoid of \mathcal{O}-lattices with integral-valued Riemann form, this simply realizes the lattice as a \mathbb{Z}-module and the Riemann form as a skew-symmetric form.

A lemma (for next week)

Specialize to $\mathcal{O}=\mathbb{Z}\left[\zeta_{q}\right]$, the ring of integers of $K_{q}=\mathbb{Q}\left(\zeta_{q}\right)$. Fix an isomorphism $\Phi: \mathcal{O} \otimes \mathbb{R} \xrightarrow{\sim} \mathbb{C}^{g}$.

Lemma
Let \mathfrak{b} be a fractional ideal of \mathcal{O}. Then there exist lattices $\mathfrak{a}_{1}, \mathfrak{a}_{2} \in \mathcal{P}_{K_{q}}^{-}$such that

$$
\left[\mathfrak{a}_{1} \mathfrak{a}_{2}\right]=\left[\mathfrak{b b} \overline{\mathfrak{b}}^{-1}\right]
$$

in the ideal class group of \mathcal{O}.
This is used for...

Conclusion

Proposition (Next week)
Take $E=K_{q}$. The map

$$
\mathcal{P}_{E}^{-} \rightarrow \mathcal{S P}(\mathbb{Z})
$$

induces maps

$$
\pi_{4 k-2}^{s}\left(\left|\mathcal{P}_{E}^{-}\right| ; \mathbb{Z} / q\right) \rightarrow \mathrm{KSp}_{4 k-2}(\mathbb{Z} ; \mathbb{Z} / q)
$$

which are surjective for all $k \geq 1$.

