
CM Abelian Varieties

Grant Barkley

March 16, 2021



Goals

I Define CM abelian varieties and polarizations

I Show how abelian varieties induce K-theory classes

I Show how to construct/parametrize CM abelian varieties

I (Next week) show that CM abelian varieties generate K-theory



Abelian varieties

Definition
An abelian variety over C is a group variety which is a connected
complex projective variety.

Proposition

An abelian variety is in fact an abelian group object in the category
of varieties.



Example: elliptic curves

I Any smooth projective complex genus 1 curve with a given
rational point O is naturally an abelian variety (an elliptic
curve)

I Elliptic curves over C are isomorphic as abelian varieties to
C/L for a lattice L

I In fact, any complex abelian variety is of the form Cg/L
(though not all full-rank L work!)



Riemann forms

Let V ∼= Cg and Z2g ∼= L ⊂ V a lattice of rank 2g .

Definition
A skew-symmetric form E : L× L→ Z is a Riemann form if the
extension ER : V × V → R satisfies for all v ,w ∈ V

(a) ER(iv , iw) = ER(v ,w), and

(b) If v 6= 0, then ER(iv , v) > 0.

When condition (a) holds,

H(v ,w) = ER(iv ,w) + iE (v ,w)

defines a Hermitian form on V . Then condition (b) says H is
positive definite.



Riemann forms

Theorem
A complex torus V /L is (the analytification of) an abelian variety
over C iff L admits a Riemann form. Equivalently, there is a
positive-definite Hermitian form H on V such that =H(L, L) ⊂ Q.

In this case H1(A(C)an;Z) ∼= L has a skew-symmetric form. This is
a class in

H2(A(C)an;Z) ∼= Λ2L∗.

When the form is a Riemann form, this class is c1(L) for an ample
line bundle L on A.



The dual abelian variety

Let ta : A→ A denote translation by a ∈ A(C). The dual abelian
variety A∨ of A is the variety classifying line bundles on A,
trivialized at 0, such that t∗aL ∼= L. (This is the Picard scheme of
A.)

By the classifying property, A× A∨ has a universal line bundle P,
the Poincare bundle.

Dualization gives an equivalence AbVarop → AbVar and satisfies
A∨∨ ∼= A.

In the complex case, A ∼= V /L. We can take A∨ to be V ∗/L∗.



Polarizations

Proposition

Let L be an ample line bundle on an abelian variety A. Then

λL : A→ A∨

x 7→ t∗xL ⊗ L−1

is an isogeny.

Recall that an isogeny is a surjection of algebraic groups with finite
kernel.
An isogeny of the form λL for some ample L is called a
polarization of A.
An isogeny with kernel 0 is an isomorphism, and in this case we
call λL a principle polarization.



Polarizations

There are surjective maps:

Line bundles on A
⇓

Self-dual morphisms A→ A∨

⇓
Skew-symmetric bilinear forms on H1(A(C)an;Z)

The composite is the Chern class c1(L) ∈ H2(A(C)an;Z).



Polarizations

This upgrades to:

Ample line bundles on A
⇓

Polarizations A→ A∨ (up to isogeny)
m

Riemann forms on H1(A(C)an;Z)
(up to overall rational factor)

Define a correspondence between abelian varieties A and B to be a
line bundle on A× B with trivializations on A× {0} and {0} × B
that agree at the origin.
Then polarizations are furthermore in bijection with symmetric
correspondences on A× A which pull back on the diagonal to an
ample bundle on A.

This is a “symmetric positive-definite bilinear form” on A.



The moduli stack of abelian varieties

The moduli stack of principally polarized abelian varieties Ag

classifies complex abelian varieties A of dimension g , equipped
with a principle polarization λ : A→ A∨.



The moduli stack of abelian varieties

A complex PPAV is specified by a full-rank lattice L ⊂ Cg with an
identification λ : Cg/L

∼−→ (Cg )∗/L∗. By principleness this gives
L
∼−→ L∗. Choosing L to contain the real basis e1, ..., eg of Cg , then

L and λ are specified by the lift of λ,

τ : Cg → (Cg )∗

which, by the properties of the Riemann form, satisfies

τT = τ and =τ is positive definite.

Let Hg denote the space of such τ (the Siegel upper half-space).
Change of basis preserving the Riemann form preserves the
underlying variety and polarization, so

Ag (C) ∼= Hg/Sp2g (Z)



The map to K -theory

Let Lλ be the pullback of the Poincare bundle under the graph
morphism A→ A× A∨. The map

Ag (C) −→ SP(Z)
(A, λ) 7−→ (H1(A(C)an;Z), c1(Lλ))

extends to a map of groupoids.

So we get
|Ag (C)| → |SP(Z)| → Ω∞KSp(Z)

and adjointly
Σ∞+ |Ag (C)| → KSp(Z).

We wish to show this map is surjective on (mod q) homotopy. In
fact, there is a nice subgroupoid of Ag (C) for which this is true.



Complex multiplication

We wish to construct maps Σ∞+ (B(Z/q))→ KSp(Z) (to get “CM
classes” in KSp∗(Z;Z/q) as images of the Bott element).

We get these from maps B(Z/q)→ Ag (C), equiv. Z/q actions on
PPAVs.

Such an action can be realized in PPAVs admitting an action of
Oq

.
= Z[ζq]. These are principally polarized abelian varieties with

complex multiplication.



Complex multiplication

Definition
Let A be an abelian variety of dimension g . If End(A)⊗Q has a
commutative Q-subalgebra of dimension 2g , then A is said to have
complex multiplication.

What do these look like?



CM orders and CM fields

Definition
A CM field E is a number field which is a totally imaginary
extension of a totally real field E+.
(E = E+(

√
d), where every algebra map E+ → C has real image

and takes d to a negative number.)

A CM algebra is a product of CM fields.
A CM order is an order in a CM algebra which is stable under
complex conjugation.

An order in E is a full rank integral sublattice; a free Z-subalgebra
O such that O ⊗Q ∼= E .

If A has complex multiplication, then End(A) is a CM order.



Constructing CM abelian varieties

A PPAV with complex multiplication is specified by the following
data:

1. O a CM order (with CM algebra E )

2. a an O-submodule of E such that a⊗Q ∼= E

3. Φ : O ⊗ R ∼−→ Cg an algebra isomorphism

4. A purely imaginary element u in E

(1-3) give O ⊗ R/a the structure of a complex torus. Then (4)
induces a Riemann form on a by

a× a→ Q

(x , y) 7→ TrE |Q(xuy).



Realizing the CM classes

If we fix a CM order O in a CM field E and an isomorphism
Φ : O ⊗ R ∼−→ Cg , then the remaining data can be assembled into
a groupoid P−E with objects

O-lattices in E with a Riemann form.

This is equivalent to the groupoid of rank 1 projective O-modules
with skew-Hermitian form valued in HomZ(O,Z). On a lattice
which is an ideal of O, the skew-Hermitian form is given by

(x , y) 7→ [z 7→ TrE |Q(xuyz)].

Using the skew-Hermitian notation from previous talks, we have

P−E ∼= P(O,HomZ(O,Z), f 7→ (x 7→ −f (x))



Realizing the CM classes

The CM theory then gives a functor

ST : P−E → Ag (C).

The composite map with Ag (C)→ SP(Z):

P−E → SP(Z)

is of particular interest. On the full subgroupoid of O-lattices with
integral-valued Riemann form, this simply realizes the lattice as a
Z-module and the Riemann form as a skew-symmetric form.



A lemma (for next week)

Specialize to O = Z[ζq], the ring of integers of Kq = Q(ζq). Fix
an isomorphism Φ : O ⊗ R ∼−→ Cg .

Lemma
Let b be a fractional ideal of O. Then there exist lattices
a1, a2 ∈ P−Kq

such that

[a1a2] = [bb
−1

]

in the ideal class group of O.

This is used for...



Conclusion

Proposition (Next week)

Take E = Kq. The map

P−E → SP(Z)

induces maps

πs4k−2(|P−E |;Z/q)→ KSp4k−2(Z;Z/q)

which are surjective for all k ≥ 1.


