CM Abelian Varieties

Grant Barkley

March 16, 2021

Goals

- Define CM abelian varieties and polarizations
- Show how abelian varieties induce K-theory classes
- Show how to construct/parametrize CM abelian varieties
- (Next week) show that CM abelian varieties generate K-theory

Abelian varieties

Definition

An *abelian variety* over \mathbb{C} is a group variety which is a connected complex projective variety.

Proposition

An abelian variety is in fact an abelian group object in the category of varieties.

Example: elliptic curves

- Any smooth projective complex genus 1 curve with a given rational point O is naturally an abelian variety (an *elliptic curve*)
- Elliptic curves over C are isomorphic as abelian varieties to C/L for a lattice L
- In fact, any complex abelian variety is of the form C^g/L (though not all full-rank L work!)

Riemann forms

Let $V \cong \mathbb{C}^g$ and $\mathbb{Z}^{2g} \cong L \subset V$ a lattice of rank 2g.

Definition

A skew-symmetric form $E : L \times L \to \mathbb{Z}$ is a *Riemann form* if the extension $E_{\mathbb{R}} : V \times V \to \mathbb{R}$ satisfies for all $v, w \in V$

(a)
$$E_{\mathbb{R}}(iv, iw) = E_{\mathbb{R}}(v, w)$$
, and
(b) If $v \neq 0$, then $E_{\mathbb{R}}(iv, v) > 0$.

When condition (a) holds,

$$H(v,w) = E_{\mathbb{R}}(iv,w) + iE(v,w)$$

defines a Hermitian form on V. Then condition (b) says H is positive definite.

Riemann forms

Theorem

A complex torus V/L is (the analytification of) an abelian variety over \mathbb{C} iff L admits a Riemann form. Equivalently, there is a positive-definite Hermitian form H on V such that $\Im H(L,L) \subset \mathbb{Q}$.

In this case $H_1(A(\mathbb{C})^{\mathrm{an}};\mathbb{Z})\cong L$ has a skew-symmetric form. This is a class in

$$H^2(A(\mathbb{C})^{\mathrm{an}};\mathbb{Z})\cong \Lambda^2 L^*.$$

When the form is a Riemann form, this class is $c_1(\mathcal{L})$ for an ample line bundle \mathcal{L} on A.

The dual abelian variety

Let $t_a : A \to A$ denote translation by $a \in A(\mathbb{C})$. The *dual abelian* variety A^{\vee} of A is the variety classifying line bundles on A, trivialized at 0, such that $t_a^* \mathcal{L} \cong \mathcal{L}$. (This is the *Picard scheme* of A.)

By the classifying property, $A \times A^{\vee}$ has a universal line bundle \mathcal{P} , the *Poincare bundle*.

Dualization gives an equivalence $AbVar^{op} \rightarrow AbVar$ and satisfies $A^{\vee\vee} \cong A$.

In the complex case, $A \cong V/L$. We can take A^{\vee} to be V^*/L^* .

Polarizations

Proposition

Let \mathcal{L} be an ample line bundle on an abelian variety A. Then

$$\lambda_{\mathcal{L}}: A \to A^{\vee}$$

$$x\mapsto t_x^*\mathcal{L}\otimes\mathcal{L}^{-1}$$

is an isogeny.

Recall that an *isogeny* is a surjection of algebraic groups with finite kernel.

An isogeny of the form $\lambda_{\mathcal{L}}$ for some ample \mathcal{L} is called a *polarization* of A.

An isogeny with kernel 0 is an isomorphism, and in this case we call $\lambda_{\mathcal{L}}$ a principle polarization.

Polarizations

There are surjective maps:

Line bundles on
$$A$$
 \downarrow
Self-dual morphisms $A o A^{\lor}$
 \downarrow
Skew-symmetric bilinear forms on $H_1(A(\mathbb{C})^{\mathrm{an}};\mathbb{Z})$

The composite is the Chern class $c_1(\mathcal{L}) \in H^2(\mathcal{A}(\mathbb{C})^{\mathrm{an}};\mathbb{Z})$.

Polarizations

This upgrades to:

Ample line bundles on
$$A$$

 \Downarrow
Polarizations $A \rightarrow A^{\vee}$ (up to isogeny)
 \updownarrow
Riemann forms on $H_1(A(\mathbb{C})^{\mathrm{an}}; \mathbb{Z})$
(up to overall rational factor)

Define a correspondence between abelian varieties A and B to be a line bundle on $A \times B$ with trivializations on $A \times \{0\}$ and $\{0\} \times B$ that agree at the origin.

Then polarizations are furthermore in bijection with symmetric correspondences on $A \times A$ which pull back on the diagonal to an ample bundle on A.

This is a "symmetric positive-definite bilinear form" on A.

The moduli stack of abelian varieties

The moduli stack of principally polarized abelian varieties \mathcal{A}_g classifies complex abelian varieties A of dimension g, equipped with a principle polarization $\lambda : A \to A^{\vee}$.

The moduli stack of abelian varieties

A complex PPAV is specified by a full-rank lattice $L \subset \mathbb{C}^g$ with an identification $\lambda : \mathbb{C}^g/L \xrightarrow{\sim} (\mathbb{C}^g)^*/L^*$. By principleness this gives $L \xrightarrow{\sim} L^*$. Choosing L to contain the real basis $e_1, ..., e_g$ of \mathbb{C}^g , then L and λ are specified by the lift of λ ,

$$\tau: \mathbb{C}^{g} \to (\mathbb{C}^{g})^{*}$$

which, by the properties of the Riemann form, satisfies

$$\tau^{T} = \tau$$
 and $\Im \tau$ is positive definite.

Let \mathbb{H}_g denote the space of such τ (the *Siegel upper half-space*). Change of basis preserving the Riemann form preserves the underlying variety and polarization, so

$$\mathcal{A}_g(\mathbb{C}) \cong \mathbb{H}_g/\mathrm{Sp}_{2g}(\mathbb{Z})$$

The map to K-theory

Let \mathcal{L}_{λ} be the pullback of the Poincare bundle under the graph morphism $A \to A \times A^{\vee}$. The map

$$\begin{array}{rcl} \mathcal{A}_g(\mathbb{C}) & \longrightarrow & \mathcal{SP}(\mathbb{Z}) \\ (\mathcal{A}, \lambda) & \longmapsto & (\mathcal{H}_1(\mathcal{A}(\mathbb{C})^{\mathrm{an}}; \mathbb{Z}), c_1(\mathcal{L}_\lambda)) \end{array}$$

extends to a map of groupoids.

So we get

$$|\mathcal{A}_g(\mathbb{C})| \to |\mathcal{SP}(\mathbb{Z})| \to \Omega^\infty \mathrm{KSp}(\mathbb{Z})$$

and adjointly

$$\Sigma^{\infty}_+ |\mathcal{A}_g(\mathbb{C})| \to \mathrm{KSp}(\mathbb{Z}).$$

We wish to show this map is surjective on (mod q) homotopy. In fact, there is a nice subgroupoid of $\mathcal{A}_g(\mathbb{C})$ for which this is true.

Complex multiplication

We wish to construct maps $\Sigma^{\infty}_{+}(B(\mathbb{Z}/q)) \to \mathrm{KSp}(\mathbb{Z})$ (to get "CM classes" in $\mathrm{KSp}_{*}(\mathbb{Z};\mathbb{Z}/q)$ as images of the Bott element).

We get these from maps $B(\mathbb{Z}/q) o \mathcal{A}_g(\mathbb{C})$, equiv. \mathbb{Z}/q actions on PPAVs.

Such an action can be realized in PPAVs admitting an action of $\mathcal{O}_q \doteq \mathbb{Z}[\zeta_q]$. These are principally polarized abelian varieties with *complex multiplication*.

Complex multiplication

Definition

Let A be an abelian variety of dimension g. If $End(A) \otimes \mathbb{Q}$ has a commutative \mathbb{Q} -subalgebra of dimension 2g, then A is said to have complex multiplication.

What do these look like?

CM orders and CM fields

Definition

A *CM* field *E* is a number field which is a totally imaginary extension of a totally real field E_+ . ($E = E_+(\sqrt{d})$, where every algebra map $E_+ \to \mathbb{C}$ has real image and takes *d* to a negative number.)

A CM algebra is a product of CM fields.

A *CM order* is an order in a CM algebra which is stable under complex conjugation.

An order in *E* is a full rank integral sublattice; a free \mathbb{Z} -subalgebra \mathcal{O} such that $\mathcal{O} \otimes \mathbb{Q} \cong E$.

If A has complex multiplication, then End(A) is a CM order.

Constructing CM abelian varieties

A PPAV with complex multiplication is specified by the following data:

- 1. \mathcal{O} a CM order (with CM algebra E)
- 2. \mathfrak{a} an \mathcal{O} -submodule of E such that $\mathfrak{a} \otimes \mathbb{Q} \cong E$
- 3. $\Phi:\mathcal{O}\otimes\mathbb{R}\xrightarrow{\sim}\mathbb{C}^g$ an algebra isomorphism
- 4. A purely imaginary element u in E

(1-3) give $\mathcal{O}\otimes \mathbb{R}/\mathfrak{a}$ the structure of a complex torus. Then (4) induces a Riemann form on \mathfrak{a} by

$$\mathfrak{a}\times\mathfrak{a}\to\mathbb{Q}$$

$$(x,y)\mapsto \operatorname{Tr}_{E|\mathbb{Q}}(\overline{x}uy).$$

Realizing the CM classes

If we fix a CM order \mathcal{O} in a CM *field* E and an isomorphism $\Phi: \mathcal{O} \otimes \mathbb{R} \xrightarrow{\sim} \mathbb{C}^g$, then the remaining data can be assembled into a groupoid \mathcal{P}_F^- with objects

 \mathcal{O} -lattices in E with a Riemann form.

This is equivalent to the groupoid of rank 1 projective \mathcal{O} -modules with skew-Hermitian form valued in $\text{Hom}_{\mathbb{Z}}(\mathcal{O},\mathbb{Z})$. On a lattice which is an ideal of \mathcal{O} , the skew-Hermitian form is given by

$$(x, y) \mapsto [z \mapsto \operatorname{Tr}_{E|\mathbb{Q}}(\overline{x}uyz)].$$

Using the skew-Hermitian notation from previous talks, we have

$$\mathcal{P}^-_{\mathcal{E}}\cong\mathcal{P}(\mathcal{O},\mathsf{Hom}_{\mathbb{Z}}(\mathcal{O},\mathbb{Z}),f\mapsto(x\mapsto-\overline{f(\overline{x})})$$

Realizing the CM classes

The CM theory then gives a functor

$$\mathrm{ST}:\mathcal{P}_E^-\to\mathcal{A}_g(\mathbb{C}).$$

The composite map with $\mathcal{A}_g(\mathbb{C}) \to \mathcal{SP}(\mathbb{Z})$:

$$\mathcal{P}_E^- o \mathcal{SP}(\mathbb{Z})$$

is of particular interest. On the full subgroupoid of \mathcal{O} -lattices with integral-valued Riemann form, this simply realizes the lattice as a \mathbb{Z} -module and the Riemann form as a skew-symmetric form.

A lemma (for next week)

Specialize to $\mathcal{O} = \mathbb{Z}[\zeta_q]$, the ring of integers of $K_q = \mathbb{Q}(\zeta_q)$. Fix an isomorphism $\Phi : \mathcal{O} \otimes \mathbb{R} \xrightarrow{\sim} \mathbb{C}^g$.

Lemma

Let b be a fractional ideal of \mathcal{O} . Then there exist lattices $\mathfrak{a}_1, \mathfrak{a}_2 \in \mathcal{P}^-_{K_q}$ such that

$$[\mathfrak{a}_1\mathfrak{a}_2] = [\mathfrak{b}\overline{\mathfrak{b}}^{-1}]$$

in the ideal class group of \mathcal{O} . This is used for...

Conclusion

Proposition (Next week) Take $E = K_q$. The map

$$\mathcal{P}_E^- o \mathcal{SP}(\mathbb{Z})$$

induces maps

$$\pi^{s}_{4k-2}(|\mathcal{P}^{-}_{E}|;\mathbb{Z}/q) \to \mathrm{KSp}_{4k-2}(\mathbb{Z};\mathbb{Z}/q)$$

which are surjective for all $k \ge 1$.