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Abstract

In this note, we give an overview of (ordinary) Lie algebras, the universal enveloping algebra of a Lie
algebra, the Chevalley-Eilenberg (co)algebras of a Lie algebra, and Lie algebra (co)homology. We will
also discuss dg Lie algebras, L∞-algebras, and the Chevalley-Eilenberg (co)algebras of an L∞-algebra.
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1 Glossary and summary chart

Recall from last week that we plan to study field theories via various “realms” of study; the perspective
taken by CG in [2, 3] includes one realm given by L∞ algebras, which we view as homotopy Lie algebras.
The purpose of this note is to summarize the algebraic formalism of this realm, by defining L∞ algebras,
as well as Lie algebra cohomology.

Throughout this note, we primarily follow Appendix A.3 of [2] and Appendix A.1 of [3]. Fix K a field
of characteristic 0, and R a K-algebra. We’ll begin with a sequence of definitions relating to (co)associative
dg (co)algebras; this language underlies the language of L∞ algebras, so it should be somewhat familiar
before attempting the rest of the note.

Much of the information surrounding definitions of L∞ algebras is then summarized in a chart in
Subsection 1.2.

1.1 Glossary of dg algebras

Here we summarize some terms surrounding algebra in the differential-graded setting, which we’ll
often abbreviate into confusing initialisms.

Definition 1.1. A ga, or graded R-algebra, is a graded associative R-algebra, i.e. a Z-graded R-module
together A with a multiplication and unit map of graded R-modules

A⊗A→ A R→ A

which are together associative and unital.
A derivation of an algebra A is an R-linear morphism d : A→ A satisfying the Leibniz rule:

d(ab) = d(a)b+ ad(b).
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A dga, or differential graded R-algebra, or dga, is a ga equipped with a (graded) derivation d : A→ A of
degree 1 satisfying d ◦ d = 0;

A ga is also known as a monoid in the category of graded R-modules, and a dga is also known as a
monoid in the category of dg (differential graded) R-modules. We can impose commutativity internal to
those categories as well:

Definition 1.2. A cga, or graded commutative R-algebra is a ga A satisfying graded commutativity; for
x, y ∈ A homogeneous, a gca satisfies

xy = (−1)|x||y|yx.

A cdga, or differential graded commutative R-algebra is a dga whose underlying graded algebra is
graded commutative.

All of these definitions naturally dualize:

Definition 1.3. A gca, or graded R-coalgebra, is a graded coassociative R-coalgebra.
A coderivation of a graded coalgebra A is an R-linear graded morphism d : A → A satisfying the

co-Leibniz rule:
∆d = (d⊗ id +τ ◦ (d⊗ id) ◦ τ)∆

where τ : A2 → A2 is the map (x, y) 7→ (−1)|x||y|(y, x). A dgca, or differential graded R-coalgebra, is a
gca equipped with a (graded) derivation d : A→ A of degree −1 satisfying d ◦ d = 0.

A cgca, or cocommutative graded R-coalgebra is a cocommutative gca.
A cdgca, or cocommutative differential graded R-coalgebra is a dgca whose underlying gca is cocom-

mutative.

We define an adjoint to the forgetful functor from gcas to graded modules:

Definition 1.4. For V∗ a graded R-module, define the graded symmetric algebra Sym(V ) by

Sym(V∗) =
⊕
n

(
(V∗)

⊗n)
Sn

=
∨(⊕

V2n+1

)
⊗ S

(⊕
V2n

)
,

where Sn acts by the normal permutation representation on tensor powers times the Koszul sign rule,
and E(−) is the exterior algebra and S(−) is the symmetric algebra. Define the free cga on V∗ to be the
cga with underlying graded vector space given by Sym(V ), and where multiplication is defined by the
concatenation product

Symn(V∗)⊗ Symm(V∗) −→ Symn+m(V∗)

(x1 · · ·xn)⊗ (xn+1 · · ·xn+m) 7−→ (x1 · · ·xn+m).

Define the free cgca on V∗ to be the cgca with underlying graded vector space given by Sym(V ), and
where comultiplication is defined by the coconcatenation product

Symn(V∗) −→
⊕
i+j=n

Symi(V∗)⊗ Symj(V∗)

(x1 · · ·xn) 7−→
∑
σ∈Sn

∑
1≤k≤n−1

(
xσ(1) · · ·xσ(k)

)
⊗
(
xσ(k+1) · · ·xσ(n)

)
.

We say that a cdga is semifree if its underlying cga is free (ie. it is Sym(V ) for some graded R-module
V∗), and likewise we say that a cdgca is semifree if its underlying cgca is free.

1.2 A summary chart

Lie algebras dg Lie algebras L∞ algebras

idea

K-algebra satisfying:
� skew-symmetry
� jacobi identity

dg R-algebra satisfying:
� graded skew-symmetry
� graded jacobi identity

dg R-algebra satisfying:
� graded skew-symmetry
� strong homotopy jacobi identity

as
operad

algebras

algebra over Lie operad
in VecK.

algebra over Lie operad
in Ch•(R).

algebra over homotopy Lie operad
(cofibrant replacement of Lie operad

in Ch•(R)).
as
dg

coalgebras

semifree dg
cocommutative coalg.
generated in deg. 1.

* semifree dg cocommutative coalgebra.
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2 Review of Lie algebras and their homological algebra

2.1 The definition of a Lie algebra

Definition 2.1. Let K be a field of characteristic 0. A Lie algebra over K is a K-vector space g equipped
with a bilinear map [, ] : g⊗k g→ g, called its bracket, satisfying the following properties:

(i) (anticommutativity). For all x, y ∈ g, we have

[x, y] = − [y, x]

(ii) (jacobi identity). For all x, y, z ∈ g, we have

[x, [y, z]] = [[x, y] , z] + [y, [x, z]]

A homomorphism of Lie algebras is a linear map f : g→ h respecting the bracket:

f ([x, y]) = [f(x), f(y)]

We now give a family of examples of Lie algebras.

Example 2.2:

Let A be an associative algebra. Then, there is a Lie algebra F (A) whose underlying vector space is
the same as A, and whose bracket is given by

[x, y] = xy − yx.

Since there is an evident commutative triangle

AssAlgK LieAlgK

Set

F

forget
forget

F is a faithful functor, and we are also justified in referring to it as a forgetful functor, and referring to
F (A) simply as A when the meaning is clear. We will see in Subsection 2.2 that F has a left adjoint,
called the universal enveloping algebra.

The Lie algebra associated with the algebra of endomorphisms of a vector space V is denoted gl(V );
if V = kn with a specified basis, this is instead denoted gln.

We want to do homological algebra over Lie algebras, so we need to define modules over a Lie algebra.

Definition 2.3. Let g be a Lie algebra. A module over g or representation of g is a vector space M with
a homomorphism ρ : g→ gl(M) of Lie algebras. Equivalently, this is a bilinear map ρ : g⊗M →M such
that

ρ(x⊗ ρ(y ⊗m))− ρ(y ⊗ ρ(x⊗m)) = ρ([x, y]⊗m).

Usually we’ll suppress the notation ρ and simply write x ·m or [x,m]. A homomorphism of g-modules is
a linear map f : M → N compatible with the g-action:

[x, f(m)] = f([x,m]).

We denote by g−Mod the category of g modules.

Example 2.4:

The multiplication map g ⊗ g → g gives g the structure of a g-module; this is called the adjoint
representation of g.

Example 2.5:

gln acts on Kn by left-multiplication, so Kn is a gln-module.
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In order to define Lie algebra homology and cohomology, we’ll construct two natural functors, and
define homology and cohomology as derived functors of these, analogously to group homology and
cohomology. The first functor we construct is called the invariants:

(−)g : g−Mod→ VecK

M 7→ Mg := {m ∈M | [g,m] = 0}

These are a linear version of the invariants of a module over a group. Even closer to the group case, we
define the functor of coinvariants by

(−)g : g−Mod→ VecK

M 7→ Mg := M/gM = M/ {[x,m] | x ∈ g,m ∈ m} .

We will define cohomology as the right derived functor of the functor of invariants, and homology as
the left derived functor of the functor of coinvariants. In order to realize this concretely, we will take a
detour into universal enveloping algebras, which embed the representation theory of Lie algebras into the
representation theory of (infinite dimensional, noncommutative) associative algebras, where these derived
functors will be realized as Ext and Tor functors.

2.2 Universal enveloping algebras and Lie algebra cohomology

Definition 2.6. The universal enveloping algebra functor is the left adjoint U to the forgetful functor
from associative algebras to Lie algebras1

U : LieAlgk AssAlgk : F

a

Remark. The universal enveloping algebra has a natural Hopf algebra structure, and hence modules
over a Lie algebra have tensor products and duals. Further, modules M over g have exterior powers
ΛnM := (M⊗n)Sn = M⊗n/I, where I is the submodule generated by m1 ⊗ · · · ⊗mn, where mi = mj for
some i 6= j.

This adjoint embeds the representation theory of Lie algebras within the representation theory of
Hopf algebras via the natural isomorphism

Hom(g, gl(V )) ' Hom(Ug,EndV ).

Hence we may study the cohomology of g-modules via the cohomology of Ug-modules.

Example 2.7:

We give a Ug bimodule structure on K: first, we give it a trivial left action: x ·K = 0. Next, realizing
Ug/(g) = K yields a right action of Ug on K.

Note that
Mg = K⊗Ug M and Mg = HomUg(K,M).

Hence we may straightforwardly verify that the invariants are left exact, and the coinvariants are right
exact; furthermore, their derived functors have familiar names:

Definition 2.8. For M a g-module, the Lie algebra homology of M is

H∗(g,M) := TorUg
∗ (K,M)

and the Lie algebra cohomology of M is

H∗(g,M) := Ext∗Ug(K,M).

1This adjoint may be realized pointwise as a quotient of the tensor algebra: for Tg :=
⊕
n∈N g⊗n, define the two-sided ideal

I generated by elements of the form
a⊗ b− b⊗ a− [a, b] ∈ g⊕ g⊗2

Then, define
Ug := Tg/I.

Verifying the adjunction is straightforward from this definition. In fact, Tg is a Hopf algebra with comultiplication ∆(x) =
x⊗ 1 + 1⊗ x for x ∈ V and ∆(1) = 1⊗ 1, counit given by ε(x) = 0 for x ∈ V , and antipde given in degree 1 by S(x) = −x; this
preserves I, so it descends to a Hopf algebra structure on Ug.
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2.3 The Chevalley-Eilenberg complex for Lie algebras

Naturally, we now describe a popular choice of projective and injective resolution for K, which we
may use to explicitly compute (co)homology.

Recall that K is a quotient of Ug by g. We can define the resolution

(· · · → Λng⊗k Ug→ · · · → g⊗k Ug→ Ug)
'−→ k,

where the rightmost map is the quotient by (g), and the remaining maps are defined by

(y1 ∧ · · · ∧ yn)⊗ (x1 · · ·xn) 7→
n∑
k=1

(−1)n−k (y1 ∧ · · · ŷk · · · ∧ yn)⊗ (yk · x1 · · ·xm)

−
∑

1≤j<k≤n

(−1)j+k−1 ([yj , yk] ∧ y1 ∧ · · · ŷj · · · ŷk · · · ŷn)⊗ (x1 · · ·xm)

where ·̂ denotes omission. Taking the tensor product of or hom to this resolution yields complexes which
we use to compute homology and cohomology.

Note that our resolution has underlying graded vector space Symk(g[1]), where g is considered as a
graded vector space concentrated in degree 0 and [n] is the grading shift operatorn. Further note that the
dual to our resolution has underlying graded vector space Symk(g∨[−1]). We use this notation to define
complexes we use to compute (co)homology, named after Chevalley and Eilenberg, who first introduced
them.

Definition 2.9. The Chevalley-Eilenberg complex for the Lie algebra cohomology of the g-module M is

CLie
∗ (g,M) := (SymK(g[1])⊗K M,d)

where the differential d encodes the bracket of g on itself and on M :

d(y1 ∧ · · · ∧ yn ⊗m) =

n∑
k=1

(−1)n−ky1 ∧ · · · ŷk · · · ∧ yn ⊗ [yk,m]

−
∑

1≤j<k≤n

(−1)j+k−1 [yj , yk] ∧ y1 ∧ · · · ŷj · · · ŷk · · · ŷn ⊗m

We simply write CLie
∗ (g) := CLie

∗ (g, k).

Recall that the underlying graded vector space of CLie
∗ (g) has the structure of a cgca under cocon-

catenation. Note that the differential is the unique coderivation of degree -1 with action restricting to
g⊗2 → g given by the Lie bracket; in general, the co-Leibniz rule expresses coderivations of a (graded)
coalgebra in terms of cogenerators. Hence CLie

∗ (g) is a (semifree) cgdca.
Further, the property d2 = 0 boils down to the Jacobi identity; for instance, in the case n = 1, we have

d(y1 ∧ y2 ∧ y3) = [y1, y2] ∧ y3 + [y2, y3] ∧ y1 − [y1, y3] ∧ y2

so that
d2(y1 ∧ y2 ∧ y3) = [[y1, y2] , y3] + [[y2, y3] , y1]− [[y1, y3] , y2]

and the requirement d2 = 0 is equivalent to the Jacobi identity in degree 3 (which in turn could prove
that d2 = 0 in higher degree). This proves something strong: CLie

∗ (−) is (the objection function of) an
equivalence of categories between Lie algebras and semifree cdgcas which are generated in degree 1.

Now that we’re familiar with this language of defining coderivations on cogenerators, we can draw the
dual picture concisely:

Definition 2.10. The Chevalley-Eilenberg complex for the Lie algebra cohomology of the g-module M is

C∗Lie(g,M) :=
(
SymK(g∨[−1])⊗K M,d

)
where the differential d encodes the linear dual to the bracket of g on itself and on M ; fixing a linear
basis {ek} for g and writing

{
ek
}

for the dual basis, we have

d(ek ⊗m) =
∑
l

ek ∧ el ⊗ [el,m]−
∑
i<j

ek ([ei, ej ]) e
i ∧ ej ⊗m,

and d is extended to the rest of the complex as a derivation of cohomological degree 1. We simply write
C∗Lie(g) := C∗Lie(g, k).

Note that C∗Lie(g) is a commutative dg algebra under the concatenation product; as in the dual case,
C∗Lie(−) is the object function of an equivalence of categories between Lie algebras and semifree cdgas
which are generated in degree −1.
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3 Homotopical generalizations: dg Lie algebras and L∞
algebras

We’ll now introduce the appropriate notion of a homotopy Lie algebra. We extend Lie algebras to the
dg setting first, then use the grading and differential to weaken the Jacobi identity into holding only up
to coherent homotopy. For the remainder of this section, R is a commutative K-algebra.

3.1 Dg Lie algebras

The following definition says that a dg Lie algebra is an algebra over the Lie operad in the category of
R-chain complexes.

Definition 3.1. A dg Lie algebra over R is a dg R-module (g, d) together with a graded bilinear map
[, ] : g⊗R g→ g such that:

(i) (graded Leibniz rule).

d [x, y] = [dx, y] + (−1)|x| [x, dy] .

(ii) (graded antisymmetry).

[x, y] = (−1)|x||y|+1 [y, x] .

(iii) (graded Jacobi identity).

[x, [y, z]] = [[x, y] , z] + (−1)|x||y| [y, [x, z]] .

The graded Leibniz rule says that this map is compatible with the differential on g ⊗R g. Graded
antisymmetry is a translation of antisymmetry into the graded context (where twists are applied in odd
degrees). The graded Jacobi rule is a translation of the ordinary Jacobi rule to the graded context (again,
twisted in odd degree).

Homological algebra of dg Lie algebras is well studied, as it appears prominently in the study of
rational homotopy theory via the following example:

Example 3.2:

For X a space, the graded Abelian group π∗(X) can be embedded with a (functorial) product
[, ] : πk(X)⊕ πl(X)→ πk+l−1(X) as follows: construct Sk+l as a relative CW complex over Sk ∨ Sl
by attacking a single k + l-cell; the attaching map ϕ : Sk+l−1 → Sk ∨ Sl yields a pullback natural
transformation [

Sk,−
]
⊕
[
Sl,−

]
=
[
Sk ∨ Sl,−

]
ϕ∗
−−→

[
Sk+l−1,−

]
This map is bilinear, graded-symmetric, and satisfies the graded Jacobi rule.

We want to turn this into a dg Lie algebra structure: first, note that the grading is wrong; by
bilinearity, we have maps πk(X)⊗ πl(X)→ πk+l−1(X), but we want the degree of the codomain to be
the sum of the degrees of the domain. This is rectified by redefining the grading, so that the degree of
πk(X) is k − 1. With this grading, the map is instead graded skew-symmetric.

Tensoring all of this with Q yields a graded Q-Lie algebra. This is the object function of a functor,
which was proved by Quillen to yield an equivalence from the rational homotopy category (localization
of Top by π∗ ⊗Q-isomorphisms) to the homotopy category of dg Lie algebras (under dg Lie algebra
morphisms whose underlying chain maps are quasi-isomorphisms, i.e., the graded Lie algebras).

See [4] or other texts on rational homotopy theory for more on this example, and on dg Lie algebras
in general.

Similar to the endomorphism Lie algebra, we have an endomorphism dg Lie algebra:

Example 3.3:

Let (V, dV ) be a chain complex. The graded vector space End(V ) =
⊕

n Homn(V, V ), where Homn(V, V )
consists of endomorphisms which shift degree by n, can be endowed with a differential

dEndV = [dV ,−] : f 7→ dV ◦ f − (−1)|f |f ◦ dV .

This has a natural structure as a dg associative k-algebra, and the commutator bracket gives it a
structure as a dg k-Lie algebra.

We can form a chain and cochain form of the Chevalley-Eilenberg complex for dg Lie algebras, but to
avoid repetition, we’ll now introduce L∞-algebras, and define the Chevalley-Eilenberg complexes in that
setting.
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3.2 L∞-algebras.

Definition 3.4. Let Unshuff(i, n− i) ⊂ Sn, called the unshuffle permutations denote the subset of Sn
given by permutations σ who have an index i such that σ(1) < · · · < σ(i) and σ(i + 1) < · · · < σ(n).
Given such a permutation and a homogeneous element x1 ⊗ · · · ⊗ xn ∈ g⊗n, define the alternating Koszul
sign χ(σ, x1, . . . , xn) by the following on simple transpositions:

χ((i i+ 1), x1, . . . , xn) = (−1)|xi||xi+1|+1

and extend it by multiplying signs when composing permutations.

This is the appropriate sign rule to define our homotopical generalization of dg Lie algebras:

Definition 3.5. An L∞-algebra is a Z-graded, projective R-module g equipped with a sequence of
multilinear maps of cohomological degree 2− n

`n : g⊗n → g

satisfying the following properties:

(i) (graded antisymmetry) for each 1 ≤ i, i+ 1 ≤ n, we have

`n(x1, . . . , xi, xi+1, . . . , xn) = (−1)|xi||xi+1|+1`n(x1, . . . , xi+1, xi, . . . , xn).

(ii) (strong homotopy Jacobi identity):

0 =

n∑
i=1

(−1)i
∑

σ∈Unshuff(i,n−i)

χ(σ, x1, . . . , xn) · `n−i+1(`i(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)).

We’ll now unravel the strong homotopy Jacobi identity in low dimensions; call this identity in the
n-ary case the n-Jacobi rule. Then, the 1-Jacobi rule simply says

`1(`1(x)) = 0,

i.e. the map d := `1 is a differential.
Write [x1, . . . , xn] := `n(x1, . . . , xn). The 2-Jacobi rule states that

0 = [dx, y]− [dy, x] + d [x, y]

which recovers the graded Leibniz rule.
The 3-Jacobi rule says that

[[x1, x2] , x3] + [[x2, x3] , x1] + [[x3, x1] , x2] = d [x1, x2, x3] + [dx1, x2, x3] + [dx2, x1, x3] + [dx3, x1, x2] .

i.e. the Jacobi rule holds up to other brackets; if d = 0 or `3 = 0 then it holds on the nose.
The higher Jacobi rules are complicated, but can be shown to be implied by the 3-Jacobi rule in the

case that `n = 0 for n ≥ 3; hence dg Lie algebras are the same thing as L∞ algebras with vanishing higher
brackets. In particular, ordinary Lie algebras are the same thing as L∞ algebras concentrated at degree
zero.

3.3 The Chevalley-Eilenberg complexes for L∞-algebras

As in the Lie algebra case, we will define two Chevalley-Eilenberg complexes.

Definition 3.6. For g an L∞ algebra, the Chevalley-Eilenberg complex for homology CLie
∗ (g) is the cdgca

SymR(g[1]) =

∞⊕
n=0

(
(g[1])⊗n

)
Sn

equipped with the coderivation d whose restriction to cogenerators dn : Symn(g[1])→ g[1] are precisely
the higher brackets `n.

Before defining the other complex, we take a detour to define maps of L∞ algebras g h. Though
the perspective of L∞ algebras as homotopy Lie algebras, we won’t want to just define these on the nose,
but instead as homotopy coherent stacks of maps Symn(g)→ h. Luckily, the dgca structure on CLie

∗ (g)
summarizes all of the higher brackets in only one structure (the differential), so we have a convenient
language to succinctly define homotopy coherent maps of L∞ algebras:
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Definition 3.7. A map of L∞ algebras F : g h is given by a map of cdgcas F : CLie
∗ (g)→ CLie

∗ (h).

In order to define the cdga C∗Lie(g), we need to define the right notion of the dual, which we will take
graded R-linearly:

g∨ :=
⊕
n∈Z

HomR(gn, R)[n].

With this notation, we can define the other complex, with one special quirk:

Definition 3.8. The Chevalley-Eilenberg complex for cohomology C∗Lie(g) is the completed cdga

ŜymR(g∨[1]) =

∞∏
n=0

((
g[1]∨

)⊗n)
Sn

.

Here the completion is taken with respect to the ideal generated by g[1]∨.
As in [3], we adopt the philosophy that all commutative algebras are the functions on some “space,”

so we interpret C∗Lie(g) as the functions on some “space” Bg, and CLie
∗ (g) as distributions on Bg. The we

view the natural pairing between C∗Lie(g) and CLie
∗ (g) as the pairing between functions and distributions.

We denote by Der(g) the module C∗Lie(g, g[1]), i.e. the completion of SymR(g∨[1]) ⊗ g[1], called the
derivations of g. This complex is naturally a dg Lie algebra, and acts canonically on C∗Lieg by the Lie
derivative.

3.4 Revisiting Lie algebra cohomology

By examining the (classical) Chevalley-Eilenberg complex, we arrive at the following characterization
of cohomology of (ordinary) Lie algebras:

� Assume that g is finite dimensional. Then, C∗Lie(g) ' Hom(CLie
∗ (g),M), and hence

H1(g;M) = Der(g,M)/ Ider(g,M).

i.e. the first cohomology is the group of derivations g→M modulo the group of inner derivations,
which are given by bracketing by a single element.

� From a similar perspective, one may note that H2(g;M) is the group of equivalence classes of Lie
algebra extensions

0→M → h→ g→ 0

under the Baer sum.

� As we increase degree, a Lie algebra cochain supplies maps `n : g⊗n → M , which are assumed
to satisfy a version of the strong homotopy Jacobi identity on the nose. In fact, for n ≥ 3, this
descends to an isomorphism between Hn(g;M) and the set of isomorphism classes of L∞ algebra
structures on the graded vector space g⊕M [2− n]. For more detail, see [1] (noting that they use
an opposing sign convention).
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