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1 Introduction

In this talk, we review Noether’s theorem in Hamiltonian mechanics
(symplectic geometry) and motivate Noether’s theorem in classical field the-
ory. Then we state and sketched a proof of Noether’s theorem in classical
field theory via Costello-Gwilliam’s BV formalism.

2 Noether’s Theorem in Hamiltonian Mechanics

The slogan we always heard about Noether’s theorem is the following:
“continuous symmetry gives conserved quantities”. We first review how this
works in Hamiltonian mechanics and discuss some less-discussed part about
Noether’s theorem.

In Hamiltonian mechanics, we have a phase space (X,ω), which is a sym-
plectic manifold (normally the cotangent space of the configuration space),
and the energy function H : X → R. Let SympV ect(X) be the subspace of
symplectic vector fields, that is, vector fields on X that preserves ω. The
observables O(X) is the space of functions on X. They form a Poisson
algebra due to ω.

Continuous symmetry means actions of lie algebra. Let g be a lie algebra.

Definition 2.1. An action of g on (X,ω,H) is

1. a map of lie algebra g → SympV ect(X). That is, each element of g
gives a infinitesimal action that preserves the symplectic structure.

2. The image of g preserves H. That is, the energy H is also preserved.

Noether’s theorem says that we should get conserved quantities, since
conserved quantities are really just functions, we expect a map g → O(X).
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How can we construct such a map? Notice that SympV ect(X) ≃ Ω1
cl(X)

the space of closed vector fields on X by contracting with ω. Assuming that
H1(X,R) = 0, then Ω1

cl(X) = Ω1
ex(X), all closed forms are exact.

Note that we have a short exact sequence

0 → R = H0(X;R) → O(X) → Ω1
ex(X) → 0 (2.2)

Thus we are trying to lift a map g → Ω1
ex(X) to g → O(X). Note that

this isn’t always possible, there is an obstruction in H1(g;R). However, an
central extension g̃ of g lifts, where g̃ is simply the pullback:

g̃ g

O(X) Ω1
ex(X).

(2.3)

We see that we get conserved quantities, at the cost of doing a central
extension.

Remark 2.4. Actually, getting a central extension is a good thing! The
obstruction in H1(g;R), should not be viewed as an obstruction to lift,
but rather invariants of the system. Think about Virasoro algebra (central
charge) and Kac-Moody algebras (the level). Physically, these invariants
help us distinguished systems (and their phases).

It seems like we got our Noether’s theorem, however, there is more struc-
ture than that: since g acts on the system, it acts on the space of observables
O(X). Recall that O(X) has a Poisson structure and acts on itself. The
real meat of the theorem is the compatibility of the map g̃ → O(X) and the
two actions:

Theorem 2.5. The action of g on O(X) agrees with the action of g through
the map g̃ → O(X).

Note that the central R of g̃ is from the constant functions on X, and
they acts trivial with repsect to the Poisson structure, thus the action on g̃
on O(X) factors through g.

This also tells us how we should also think about Noether’s theorem: the
action of g on the system can be expressed in terms of the (local) observables
of the system.
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3 Noether’s theorem in BV formalism

Now that we understand what Noether’s theorem really is, let’s go to
classical field theory in BV’s setting. Recall that a classical field theory on
spacetime manifold X is a (local) L∞ algebra M with a −3-shifted invariant
pairing. Our continuous symmetry is going to be an L∞ algebra L.

First we have to figure out what does it mean for L to act on the classical
field theory M. Ignore the pairing for now, what does it mean for an L∞
algebra to act on another?

Well, an action on L on M should be a map L → Der(M), where
Der(M) is the L∞ algebra of derivations (think about ordinary lie algebras).
Equivalently, this is equivalent to giving a semi-direct product structure on
L ⊕ M, that is, a L∞ structre on L ⊕ M, which we will write as L ⋉ M,
together with a short exact sequence of L∞ algebras:

0 → L → L⋉M → M → 0 (3.1)

We will take this as our definition.
Now we only need to define what does it mean for an action to be com-

patible with the invariant pairing:

Definition 3.2. An action on L on M preserves the pairing if for every
α1, ..., αi ∈ L and β1, ..., βj ∈ M, we have that

< li+j−1(α1...αr...β1...βj−1), βj > (3.3)

is totally anti-symmetric under permutation of βj .

Note that (α1, ...) means the action of αi on the β.
There are equivalent definitions:

Lemma 3.4. The following are equivalent:

1. an L∞ action of L on M.

2. An element SL ∈ Act(L,M) satisfying the Mauer-Cartan equation:

(dL + dM)SL + 1/2{SL, SL} = 0 (3.5)

.

3. The sum Stot = S + SL ∈ C∗
red,loc(L ⊕ M)/C∗

red,loc(L) satisfying the
classical master equation:

dLS
tot + 1/2{SL, SL} = 0. (3.6)

S ∈ C∗
red,loc(M) is the action functional associated to M.
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The third condition tells us that an action of L on M is equivalent
to extending M to a sheaf of classical field theory over the formal moduli
problem BL.

The fact that Stot only satisfies the classical master equation up to
C∗
red,loc(L) tells us that there is an α ∈ C∗

red,loc(L) with

dLS
tot + 1/2{SL, SL} = α⊗ 1 (3.7)

in C∗
red,loc(L ⊕M). This gives us an obstruction class o ∈ H1(C∗

red,loc(L)).
Now we are ready to state the Noether’s theorem:

Theorem 3.8. If L acts on M, there exists an central extension L̃ of L (by
R[−1]) with a map of P0 algebras

C∗
red,loc(L̃) → Obs(M) (3.9)

such that the action of L on Obs(M) agrees with this map (up to homotopy).

Remark 3.10. The lift L̃ is the one corresponding to the obstruction class
o ∈ H1(C∗

red,loc(L)). The fact that the central R is in degree −1 is because
everything here is −1-shifted (as oppose to the 0-shifted case of Hamiltonian
mechanics).

Proof. The idea is that Stot twisted by α on C∗
red,loc(L̃ ⊕ M) satisfies the

classical master equation, and that precisely encodes a map of L∞ algebras
L → M.
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