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1 Introduction

In this talk, we review Noether’s theorem in Hamiltonian mechanics
(symplectic geometry) and motivate Noether’s theorem in classical field the-
ory. Then we state and sketched a proof of Noether’s theorem in classical
field theory via Costello-Gwilliam’s BV formalism.

2 Noether’s Theorem in Hamiltonian Mechanics

The slogan we always heard about Noether’s theorem is the following:
“continuous symmetry gives conserved quantities”. We first review how this
works in Hamiltonian mechanics and discuss some less-discussed part about
Noether’s theorem.

In Hamiltonian mechanics, we have a phase space (X, w), which is a sym-
plectic manifold (normally the cotangent space of the configuration space),
and the energy function H : X — R. Let SympVect(X) be the subspace of
symplectic vector fields, that is, vector fields on X that preserves w. The
observables O(X) is the space of functions on X. They form a Poisson
algebra due to w.

Continuous symmetry means actions of lie algebra. Let g be a lie algebra.

Definition 2.1. An action of g on (X,w, H) is

1. a map of lie algebra g — SympVect(X). That is, each element of g
gives a infinitesimal action that preserves the symplectic structure.

2. The image of g preserves H. That is, the energy H is also preserved.

Noether’s theorem says that we should get conserved quantities, since
conserved quantities are really just functions, we expect a map g — O(X).



How can we construct such a map? Notice that SympVect(X) ~ QL(X)
the space of closed vector fields on X by contracting with w. Assuming that
H'(X,R) =0, then Q},(X) = Ql,(X), all closed forms are exact.

Note that we have a short exact sequence

0—-R=HX;R) = OX) = QL (X)=0 (2.2)

Thus we are trying to lift a map g — Q.,(X) to g — O(X). Note that
this isn’t always possible, there is an obstruction in H!(g;RR). However, an
central extension g of g lifts, where g is simply the pullback:

g g
l l (2.3)

O(X) —— QL (X).

_

We see that we get conserved quantities, at the cost of doing a central
extension.

Remark 2.4. Actually, getting a central extension is a good thing! The
obstruction in H'(g;R), should not be viewed as an obstruction to lift,
but rather invariants of the system. Think about Virasoro algebra (central
charge) and Kac-Moody algebras (the level). Physically, these invariants
help us distinguished systems (and their phases).

It seems like we got our Noether’s theorem, however, there is more struc-
ture than that: since g acts on the system, it acts on the space of observables
O(X). Recall that O(X) has a Poisson structure and acts on itself. The
real meat of the theorem is the compatibility of the map g — O(X) and the
two actions:

Theorem 2.5. The action of g on O(X) agrees with the action of g through
the map g — O(X).

Note that the central R of g is from the constant functions on X, and
they acts trivial with repsect to the Poisson structure, thus the action on g
on O(X) factors through g.

This also tells us how we should also think about Noether’s theorem: the
action of g on the system can be expressed in terms of the (local) observables
of the system.



3 Noether’s theorem in BV formalism

Now that we understand what Noether’s theorem really is, let’s go to
classical field theory in BV’s setting. Recall that a classical field theory on
spacetime manifold X is a (local) Lo, algebra M with a —3-shifted invariant
pairing. Our continuous symmetry is going to be an L, algebra L.

First we have to figure out what does it mean for £ to act on the classical
field theory M. Ignore the pairing for now, what does it mean for an L.,
algebra to act on another?

Well, an action on £ on M should be a map £ — Der(M), where
Der(M) is the Lo, algebra of derivations (think about ordinary lie algebras).
Equivalently, this is equivalent to giving a semi-direct product structure on
L & M, that is, a Ly, structre on £ @& M, which we will write as £ x M,
together with a short exact sequence of L., algebras:

0>L—>LxM—->M=0 (3.1)

We will take this as our definition.
Now we only need to define what does it mean for an action to be com-
patible with the invariant pairing:

Definition 3.2. An action on £ on M preserves the pairing if for every
ai,...,a; € L and By, ..., B; € M, we have that

< liﬂ-,l(al...aT...ﬁl...ijl), ﬁj > (3.3)
is totally anti-symmetric under permutation of f3;.

Note that («g,...) means the action of «; on the £.
There are equivalent definitions:

Lemma 3.4. The following are equivalent:
1. an Ly action of L on M.
2. An element S* € Act(L, M) satisfying the Mauer-Cartan equation:
(de + dp)SE 4+ 1/2{S*, 85} =0 (3.5)

3. The sum S** = S 4 S ¢ C:ed,loc
classical master equation:

dp S +1/2{S*, S*} = 0. (3.6)

(L& M)/Cogr0.(L) satisfying the

SecC:

red.loc(M) is the action functional associated to M.



The third condition tells us that an action of £ on M is equivalent
to extending M to a sheaf of classical field theory over the formal moduli
problem BL.

The fact that S only satisfies the classical master equation up to

Cr (L) tells us that there is an a € C* (L) with

red,loc red,loc
deStt+1/2{S*, S Y =a®1 (3.7)
in C*_;10.(L & M). This gives us an obstruction class 0 € HY(C*_;,,.(L)).

Now we are ready to state the Noether’s theorem:

Theorem 3.8. If L acts on M, there exists an central extension L of L (by
R[—1]) with a map of Py algebras

:ed,loc(‘c) - ObS(M) (39)
such that the action of L on Obs(M) agrees with this map (up to homotopy).

Remark 3.10. The lift £ is the one corresponding to the obstruction class
S Hl(C;"edJoc(E)). The fact that the central R is in degree —1 is because
everything here is —1-shifted (as oppose to the 0-shifted case of Hamiltonian

mechanics).

Proof. The idea is that S™ twisted by a on C*,,,. (L @ M) satisfies the
classical master equation, and that precisely encodes a map of L, algebras

L— M. O
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