
QUANTIZATION OF (FREE) FIELD THEORIES

JAE HEE LEE

1. Introduction

In this talk, we will discuss quantization of field theories à la Costello–Gwilliam,
via the machinery of BV quantization and factorization algebras. There are many
mathematical incarnations of the physical idea of quantizing a classical field theory,
and the one that Costello–Gwilliam addresses is the deformation quantization of
the Poisson algebra of observables.

We will start by briefly reviewing the physical idea of quantization, where the
quantum deformation parameter ~ appears naturally. Next, we will discuss the op-
eradic formalism used in Costello–Gwilliam to approach the quantization problem.
Finally, we will see an example of this formalism being applied to quantization of
a free field theory, as promised by the title of the talk.

2. Physics preliminaries: Quantization

This section is largely for physical motivation, and can be skipped for people who
are only interested in Costello–Gwilliam’s treatment of the problem. Moreover, I
will not provide clear mathematical definitions of the concepts involved.

We will very briefly review the physical idea of quantization. There are largely
two approaches to describing a quantization of a classical field theory. One is via
canonical quantization, which is closer to the Hamiltonian formalism of field theory.
The other is via path integrals, which is closer to the Lagrangian formalism of field
theory.

In the perturbative setting, the preferred approach is via path integrals. Recall
that the data of a classical field theory consists of

• A spacetime M ,
• Fields φ, which are formal variables taking values in sections of some fiber

bundles, and the corresponding space of field configurations F ,
• and the action functional

S = S(φ) =

∫
M

L(φ, ∂µφ, . . . )

which is a integral over the spacetime of the Lagrangian density L, which
is in turn some differential polynomial in φ.

Then one proceeds by variational calculus to compute the stationary points of S,
which are characterized as the solutions of an elliptic PDE (called the equation of
motion, or Euler–Lagrange equation). The path integral approach roughly entails
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that we put some (mathematically ill-defined) measure Dφ on the space F of field
configurations and consider the following “oscillatory integral”

Z =

∫
F
Dφ exp

(
i

~
S(φ)

)
=

∫
F
Dφ exp

(
i

~

∫
M

dx L(φ)

)
called the partition function.

The asymptotic analysis of oscillatory integrals, known as the stationary phase
approximation, formally tells us that this integral will have a dominant contri-
bution from the stationary points of S(φ) (the classical contribution), and some
corrections (in positive orders of ~) (the quantum contributions). There is a dia-
grammatic scheme, called Feynman diagrams, which allows one to enumerate these
contributions in terms of some graphs. The tree graphs correspond to the classical
contributions, and graphs with cycles (loops) correspond to the quantum contribu-
tions.

Remark 2.1. The reduction in terms of Feynman diagrams is a version of a per-
turbative series. By focusing on the critical points of the action functional and the
perturbative expansion in the vicinity of those critical points, we completely ignore
the non-perturbative effects (such as instantons and solitons), unless we introduce
some asymptotic summation methods.

The integrals over the tree diagrams are often convergent, but the integrals over
the loop diagrams are very likely divergent. Physicists developed a way to deal
with this divergence known as renormalization, which was made mathematically
rigorous by the work of Costello.

Remark 2.2. For quadratic Lagrangians (i.e. free theories), there are no loop terms
in the ~-perturbative expansion (in fact there are no trees with internal vertices
either), and hence the issues of renormalization are invisible in this case. This
property makes their quantization much easier.

The path integral approach is preferred by physicists because they immediately
give definitions and computation methods for correlation functions (expectations
of observables) which can be tested against experiments.

One can also consider the algebraic structures of the observables after quan-
tization. In this context, the preferred language is via Hamiltonian formalism.
Mathematically, we are looking at

• The phase space, which is the space of classical (i.e. physical) field config-
urations. This may be interpreted as the (derived) critical locus

Crit(S) = ΓdS ∩ 0F

in T ∗F .
• A (shifted) symplectic structure on the phase space, and the induced (shifted)

Poisson algebra structure on the algebra of functions on the phase space.

Remark 2.3 (Comparison with mechanics). More often, the phase space is described
as the cotangent bundle of the configuration space in the context of mechanics. The
field theory describing mechanics of a bosonic particle on a Riemannian manifold
(M, g) is the d = 1 (worldline) theory with φ : R → M as the fields (sections
of the nonlinear bundle R ×M → R). The classical phase space for this theory
can be parametrized by the initial condition of the physical configurations φphys
(for free theories with no potential, these are the parametrized geodesics). The
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initial conditions are naturally identified with the cotangent bundle T ∗M of the
underlying manifold M .

It is shown in [CG16a](Section 2.4) that indeed O(CritS) is quasi-isomorphic to
O(T ∗M), at least explicitly for M = R. In other words, the scalar field theory on
R is identified with the worldline theory of a particle on a line.

To quantize, one replaces the phase space with a Hilbert space H = L2(F) that
describes the half-densities on the space of all field configurations. The elements of
H (up to squaring and normalizing) carry the interpretation as probability density
functions over F . The observables (functions on classical phase space) are replaced
by (Hermitian) operators on H.

The space of operators on H carry the usual commutator bracket. If we denote
the quantization of the classical observable A by Â, the bracket is expected to be
related to the classical Poisson bracket by

[Â, B̂] = i~{A,B}+ o(~).

Hence, after quantization, the algebra of observables becomes an associative algebra
whose commutator bracket is a ~-multiple of the Poisson bracket on the algebra of
classical observables, up to higher order corrections in ~.

A strictly weaker algebraic approach to quantization then concerns a ~-deformation
of a Poisson algebra A over k to an associative algebra A~ over k[[~]], such that the
brackets satisfy the relation above. This algebraic problem is commonly referred
to as deformation quantization of quantum mechanics.

Remark 2.4. For canonically conjugate coordinates q, p = ∂L/∂q̇ in classical me-
chanics, the corresponding quantized operators form a Heisenberg Lie algebra to-
gether with ~ considered as a central element:

{q, p} = 1 =⇒ [q̂, p̂] = i~.

The Costello–Gwilliam approach generalizes this picture of quantum mechanics
to quantum field theory by considering

• The BV–BRST description of the classical phase space of a (gauged) field
theory via derived critical locus,
• The P0 factorization algebra structure on the classical observables Obscl,
• The BD0 factorization algebra structure on the quantum observables Obsq,

arising from a deformation of P0 structure on Obscl.

Applied to the d = 1 worldline theory of a particle in a linear space, this recovers
the usual deformation quantization for quantum mechanics. The key property for
this application is that Obsq for spacetime R (the wordline) is a locally constant
factorization algebra, hence defines a E1-algebra. [CG16a](Lemma 3.0.1)

3. Quantization of observables à la Costello–Gwilliam

We now discuss the quantization of observables following Costello–Gwilliam. As
mentioned in previous sections, the formalism of Costello–Gwilliam addresses the
deformation quantization problem for the Poisson algebra of observables.

We first describe the algebraic structure one puts on classical observables, namely
the P0 factorization algebra structure. Then we will describe the algebraic problem
of quantizing these, formulated operadically using BD0-algebras.
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3.1. The algebraic structure on classical observables of a field theory. We
first recall the algebraic structure on classical observables. Let M be our spacetime
and L be the elliptic L∞ algebra of a classical field theory.

Definition 3.1. The classical observables with support in U is the cdga

Obscl(U) = C∗(L(U)),

where C∗ denotes the Chevalley–Eilenberg cochains of an L∞ algebra. The factor-
ization algebra of classical observables Obscl assigns Obscl(U) to U .

The motivation for this definition is that L corresponds to the FMP associated
to the Euler–Lagrange equations of the theory. By Ishan’s talk, the Chevalley–
Eilenberg cochains of a L∞ algebra are identified with the functions on the corre-
sponding FMP.

It will be more convenient for us to write this definition in terms of the fields of
the theory. This amounts to replacing L with

E = L[1] = Tφ0BL.
Recall that L is a classical field theory in the sense that it is a local elliptic L∞ alge-
bra equipped with a (−3)-shifted symmetric pairing L ∼= L![−3] for the underlying
graded vector bundle for L. The data of the action functional define the coherent
differentials for L.

For E , the pairing on the underlying vector bundle

E ∼= E![−1] ⇐⇒ E ⊗ E → Dens[−1]

is now (−1)-shifted and antisymmetric, defining the (−1)-shifted symplectic struc-
ture on E. This symplectic structure naturally induces a (+1)-shifted Poisson
bracket {−,−} on the functions on E∨, and moreover on all local functionals on E
([CG16b] Section 4.5 for precise definition). The action functional S must satisfy
the classical master equation

{S, S} = 0

with respect to this bracket, which is equivalent data to the L∞ relations on E [−1] =
L. After this shift, we can rewrite the definition as follows.

Definition 3.2. The classical observables with support in U is the cdga

Obscl(U) = (O(E(U)), {S,−}).

Now we are ready to describe the precise algebraic structure one can put on
Obscl.

Definition 3.3. A factorization algebra F is a 1-shifted Poisson factorization
algebra if

• Each F(U) is a P0-algebra,
• The corestriction maps are maps of P0-algebras,
• The sections from disjoint open subsets Ui under the factorization algebra

maps

F(U1)⊗ · · · ⊗ F(Un)→ F(V )

Poisson commute in F(V ).

Remark 3.4. There is a general notion of structured factorization algebras for Hopf
operads, of which this definition is a special case. [CG16b], Section 2
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Proposition 3.5. The classical observables Obscl has the structure of a 1-shifted
Poisson factorization algebra.

Proof. We will treat the free field case. In the free field situation, we have a
simpler description of the classical observables:

Obscl(U) = O(E(U)) = Ŝym(E∨(U)),

where the dg structure on the symmetric algebra is simply the differential on E∨
extended as a derivation. In particular, to define a Poisson bracket structure on
Obscl(U), it suffices to define the pairing on E∨(U) and extend by Leibniz rule.

Now we identify, using the (−1)-shifted symplectic structure,

E(U)∨ = E !c(U) ∼= Ec(U)[1]

where Ec denotes the compactly supported distributional sections of E.
Recall that on Ec(U) we have a natural (−1)-shifted antisymmetric pairing arising

from the fiberwise pairing on the graded vector bundle E:

〈·, ·〉 : Ec(U)⊗ Ec(U)→ Dens[−1]

∫
M−→ R[−1],

〈φ, ψ〉 =

∫
x∈M
〈φ(x), ψ(x)〉loc.

After shifting, we obtain a (+1)-shifted antisymmetric pairing

{−,−} : Ec(U)[1]⊗ Ec(U)[1]→ Dens[1]→ R[1].

Hence, ignoring the functional analytic issue of comparing the distributional sec-
tions of E with the smooth sections of E, this completes the construction of the
(+1)-shifted Poisson bracket.

It remains to check that this Poisson bracket is compatible with the factorization
algebra maps, that is, the observables supported in disjoint opens must Poisson-
commute. This follows from the definition of our pairing in terms of integral over
M of the local pairing. �

Remark 3.6. In practice, due to the functional analytic issue that we glossed over,
it is not possible to define a P0 structure on Obscl(U), but in fact we can only define

it for the subalgebra of smooth observables Õbs
cl

(U) = O(E(U)). The inclusion

Õbs
cl

(U)→ Obscl(U)

is still a quasi-isomorphism.

3.2. Operadic formulation of the deformation quantization problem. As
in deformation quantization, where the Poisson operad interpolates the commuta-
tive operad and the E1 operad (i.e., “Poisson brackets want to be quantized”), a
1-shifted Poisson structure admits a natural notion of deformation quantization,
which we will describe now.

Definition 3.7. The P0 operad is the graded operad generated by a commutative
associate product − ∗ − of degree 0 and a Poisson bracket {−,−} of degree 1.

Definition 3.8. The E0 operad is the operad with E0(0) = R and E0(n) = 0 for
n > 0.
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That is, a E0-algebra in a symmetric monoidal category C is just an object A
with a distinguished morphism 1C → A.

As Pn-algebras (with (1−n)-shifted Poisson brackets) arise naturally as semiclas-
sical (homology) limits of En-algebras, P0 algebras are posing to be semiclassical
limits of E0 algebras.

Definition 3.9. The Beilinson–Drinfeld (BD) operad is the dg operad over
R[[~]] is

BD = P0 ⊗R R[[~]]

equipped with the differential

d(− ?−) = ~{−,−}

on BD(2).

In particular, for a flat dg R[[~]]-moduleM , a BD algebra structure onM amounts
to a

• A commutative associative product − ?− of degree 0,
• A Poisson bracket {−,−} of degree 1, internal differential d = dM being a

derivation for this bracket,
• and the relation

d(m ? n) = (dm) ? n+ (−1)|m|m ? (dn) + (−1)|m|~{m,n}.

being satisfied.

This is a natural operad that interpolates between P0 and E0, in the following
sense:

Lemma 3.10. There is an isomorphism of operad and a quasi-isomorphism of
operads over R((~)),

BD ⊗R[[~]] R ∼= P0, BD ⊗R[[~]] R((~)) ' E0 ⊗ R((~)),

respectively.

Now a deformation quantization problem for the classical observables admits the
following interpretation as a lifting problem:

Definition 3.11. A BD quantization of a P0 factorization algebra F is a BD
factorization algebra F~ and a quasi-isomorphism

F~ ⊗R[[~]] R ' F

of P0 factorization algebras.

Now we can state the theorem of Costello–Gwilliam.

Theorem 3.12 (Costello–Gwilliam). Given a classical free field theory, its P0

factorization algebra of classical observables Obscl admits a BD quantization Obsq.

We will prove this theorem in the next section.

Remark 3.13. There is a weaker notion of quantization of P0-algebras, which asks
for a

• E0-algebra over k[[~]] such that modulo ~ recovers the original P0-algebra
with
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• Correspondence (at a cohomological level) between the Poisson bracket and
the bracket measuring the failure to lift the product structure to the E0

algebra.

At this level, the quantization theorem is completely proven for all classical field
theories (with a choice of BV quantization), while the full BD quantization theorem
is only proved for free theories (for more details, see [CG16b] Section 2.3 and 2.4).
Note that the data of a BV quantization is invisible in the free field case, as there
is no issue of renormalization.

4. Example: Quantizing a free scalar field theory

A free field theory is a field theory with no interaction. In the Lagrangian
description of a field theory, such a theory is characterized by having a Lagrangian
density that is quadratic in the field variables. That is, the Lagrangian density is
given by a sum of a kinetic term and a mass term. Free scalar field theory is the free
theory describing a (for now, single) scalar field. It is the field-theoretic analogue
of the mechanics of simple harmonic oscillators.

Quantization is easier for free theories because the interaction terms are absent.
In particular, any discussion of renormalization group flow (which is crucial for
regularizing the contributions from loop Feynman diagrams) can be completely
avoided (hence we will see no BV quantizations appearing).

As emphasized in the proof of the existence of a P0 factorization algebra structure
on Obscl, the relevant algebraic characterization of a free field theory for us is that
the associated L∞ algebra is abelian (no brackets `n for n ≥ 2). In particular, the
dg structure on

Obscl(U) := O(E(U)) = Ŝym(E∨(U))

is simply extended (as a derivation) from the differential on E∨(U), with no higher
Taylor coefficients (in the sense of Natalie’s talk).

4.1. The quantization procedure. We will now proceed quantizing this classi-
cal algebra of observables via a factorizing envelope construction for a Heisenberg
algebra. This can be seen as the mathematical incarnation of the usual canonical
quantization procedure (valid for free theories) replacing the canonically conjugate
(local) observables by the corresponding generators of the Heisenberg algebra.

Recall that we have a P0-algebra

Obscl(U) =
(

Ŝym(E !c(U)), d
)

(again, we are ignoring the functional analytic issue here). For a free field, the
(+1)-Poisson bracket is determined on the level of generators (in degree 1) by the
natural pairing

{−,−} : E !c(U)⊗ E !c(U)→ R[1],

which is in turn induced from the (−1)-shifted pairing

〈·, ·〉 : Ec(U)⊗ Ec(U)→ Dens[−1]

∫
M−→ R[−1],

〈φ, ψ〉 =

∫
x∈M
〈φ(x), ψ(x)〉loc.
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We now construct the quantum theory be defining the Heisenberg algebra Heis(U)
from the central extension of dg Lie algebras

0 C · ~[−1] Heis(U) E !c(U)[−1] 0,

with the Lie bracket
[φ+ ~a, ψ + ~b] = ~〈φ, ψ〉

of degree 0. Then we take the corresponding factorizing envelope as our definition
of the quantum observables:

Obsq(U) :=
(
Ĉ∗(Heis(U)), dCE

)
.

Proposition 4.1. Associating U 7→ Obsq(U) is a BD factorization algebra quan-

tizing Obscl.

Proof. The quantum observables are given in terms of factorizing envelope, which
is a completed Chevalley–Eilenberg chain complex:

Obsq(U) = Ĉ∗(Heis(U)) = Ŝym(Heis(U)[1]).

As a graded vector space,

Ŝym(Heis(U)[1]) = Ŝym(C~⊕ E∨(U)) = Ŝym(E∨(U))[[~]] = Obscl(U)[[~]].

The quantum observables supported in U has a

• Product structure of degree 0 as a symmetric algebra,
• Poisson bracket of degree 1 extended as a derivation from the Lie bracket

on Heis(U).

Since C~[−1] is central, the Poisson bracket reduces modulo ~ to the Poisson bracket
on classical observables. Moreover, the BD axiom

d(ab) = (da)b+ (−1)|a|a(db) + ~{a, b}
follows from definition (the Chevalley–Eilenberg differential is the sum of the inter-
nal differential and the Lie bracket).

Compatibility with the factorization algebra maps can be checked. �
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