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1. Formal moduli problems

The purpose of deformation theory is to study the local behaviour of moduli problems. In
a moduli problem, one studies smoothly varying families of some kind of geometric object.
We focus here on moduli problems over a field k of characteristic zero.

As a very simple example, one can consider the moduli problem of one dimensional vector
spaces with n labelled points, not all of which are zero. A family of such objects over a
variety X is the same as giving a line bundle on X with n sections that don’t simultaneously
vanish. The moduli problem associated to this is the functor F : CAlg♥ → Set, where
CAlg♥ is the category of (discrete) commutative k-algebras, and the functor takes R to the
set of line bundles with n non simultaneously vanishing sections. This moduli problem has
an associated moduli space, namely Pn−1. This means that the functor F is represented by
Pn−1, i.e F is naturally isomorphic to Hom(Spec(R),Pn−1).

In general, we think of a moduli problem as being represented by some kind of geometric
object, such as a stack. For example, we can consider the moduli problem of families of
elliptic curves. It is a bad idea to encode this moduli problem as a Set-valued functor,
because elliptic curves have automorphisms. Instead, we make our functor at least valued
in Gpd, the category of groupoids, which in particular allows us to recover the isomorphism
classes of elliptic curves as π0. The groupoid valued functor is much better behaved: for
example it satisfied descent and is represented by a Deligne-Mumford stack. We might as
well have our moduli problems be valued in S, the category of spaces, since this is the
category of ∞-groupoids, and in particular contains Gpd and Set fully faithfully in it.

To motivate how we will study the local behaviour of moduli problems, consider a k-
variety X, with functor of points X : CAlg♥ → S, and let p ∈ X(k). We can form the
completion of X at p, i.e the functor X∧p : CAlg♥ → S, whose value on R is the subset of
maps Spec(R) → X such that the image on the Zariski spectra is contained in {p}. This
functor sees all of the local behaviour of X near p. Any map in X∧p (R) is given by a map of
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rings OX,p → R that sends the maximal ideal m to nilpotent elements1. Since m is finitely
generated, this means that some large power mn is sent to zero. Thus the map factors
through OX,p/m

n for n � 0, which is an Artinian local ring that is finite dimensional with
residue field k. Thus we see in particular that the functor X∧p is actuallly determined by its

restriction to the subcategory CAlg♥art of Artinian local finite dimensional rings with residue
field k.

To give an example of what kind of results are proven in deformation theory, we can
consider the moduli problem of deformations of X, some smooth proper variety over k. This
functor F : CAlg♥art → S sends R to the groupoid of lifts of X to a smooth proper R-scheme2.
Some facts about this functor are:

(1) π0F (Λ[ε0]) = H1(X;TX).
(2) π1F (Λ[ε0]) = H0(X;TX).
(3) Given an object in F (Λ[ε0]), there is an obstruction in H2(X;TX) that vanishes iff it

can be lifted to F (k[ε0]/ε3).

In other words, isomorphism classes of first order deformations ofX correspond toH1(X;TX),
automorphisms of first order deformations correspond to H0(X;TX), and the obstructionn to
lifting a first order deformationn of X to a second order deformation of X lies in H2(X;TX).

These facts, especially (3), can be explained via spectral algebraic geometry. To do so we
need to extend the functor F to the subcategory CAlgart of CAlg consisting of connective,
bounded above commutative k-algebras with πi finite dimensional over k, π0 local Artinian
with residue field k.

Our functor F : CAlgart → S now sends R to the space of smooth proper spectral schemes
over R lifting X. F now satisfies the following properties:

(F1) F (k) = ∗
(F2) F preserves pullback diagrams of the form

R0 R1

R2 R3

y
g

f

with f and g surjective on π0.

Via the pullback squares

Λ[εn] k

k Λ[εn+1]

where Λ[εn] is the trivial square zero extension in degree n, we learn that F (Λ[εn]) =
ΩF (Λ[εn+1]). Thus F (Λ[εn]) fit togehter to form a spectrum TF satisfying Ω∞−nTF =
F (Λ[εn+1]). TF is the tangent complex of F .

1Indeed, this is equivalent to the image being contained in p since m consists of functions that vanish
at p, and the nilpotent elements are those that vanish on all of R, so the condition says that if a function
vanishes at p, its pullback to Spec(R) vanishes everywhere.

2The lift is equipped with an isomorphism of its reduction to k with X.
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Now, (1) − (3) are all exaplained by the fact that πiTF = H1−i(X;TX). Indeed this
immediately explaines (1) and (2) given the definition of TF . For (3), there is a pullback
square

k[ε0]/ε30 Λ[ε0]

k Λ[δ1]

y

coming from the fact that k[ε0]/ε30 is a square zero extension of Λ[ε0]. Applying F gives the
pullback square of spaces

F (k[ε0]/ε30) F (Λ[ε0])

∗ F (Λ[δ1])

So if we have a class in π0F (Λ[ε0]), we learn from the fibre square above that the obstruction
to lifting it to F (k[ε0]/ε30) lies in π0F (Λ[δ1]) = H2(X;TX), explaining (3). Note to give this
explanation we needed to use Λ[δ1], which is not discrete.

The notion of a formal moduli problem axiomitizes the properties of this example.

Definition 1.1. A formal moduli problem (or FMP) is a functor F : CAlgart → S
satisfying (F1) and (F2) above.

2. Lie algebras and FMPs

Let FMP be the category of formal moduli problems, and let Lie be the category of Lie
algebras over k (i.e dglas with quasi-isomorphisms inverted). The main result about formal
moduli problems is is the following:

Theorem 2.1 (Lurie, Pridham). There is an equivalence FMP ' Lie.

As currently stated, the equivalence is not explicit, but it can be made explicit in multiple
ways, as will be explained. Roughly, we’d like to think of every formal moduli problem as
being represented by a pro-Artinian spectral stack, and the above result says that every such
stack can be recovered from the tangent complex of its loop space, which is a Lie algebra.

More precisely, we can first observe as in the previous section, that given a formal moduli
problem F , F (Λ[εn]) fit together to form the tangent complex TF . In fact, Σ−1TF can be
given the structure of a Lie algebra, and is the one corresponding to F . We might expect
this, since the construction F 7→ TF commutes with limits, so Σ−1TF = TΩF , and ΩF is a
group in the category FMP, so it’s tangent space Σ−1TF ought to be a Lie algebra.

Furthermore, it isn’t hard to see that if F → F ′ is a map of formal moduli problems
inducing an equivalence on tangent complexes, then it is an equivalence. This is because
every object in CAlgart is built out of k from finitely many square zero extensions, which are
classified by a pullback square for which we can apply (F2). This way we can inductively
show that F → F ′ is an equivalence for every R ∈ CAlgart. Thus it makes sense that TF ,
along with all the extra structure it carries, retains all the information of F .

One way to construct the functor Lie → FMP, which we suggestively call g 7→ Bg, is to
use Koszul duality.
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We have a functor

C∗(−) : Lieop → CAlgaug

sending g to its Chevalley-Eilenberg cochains, which is canonically augmented because of
the map g → 0. The inclusion CAlgart → CAlg canonically lifts to CAlgart, since any
augmentation of R ∈ CAlgart must factor through the truncation π0R which is Artinian
local with residue field k, so is uniquely augmented over k.
C∗(−) has a left adjoint which we denote D : CAlgaug → Lieop. This adjunction is fairly

close to an equivalence: Lie is equivalent via the bar construction (i.e Chevalley-Eilenberg
chains) to coaugmented cocommutative coalgebras over k, and D is the composite of this
equivalence with the functor of taking k-linear duals.

Then given g ∈ Lie, the composite

CAlgart CAlgaug Lieop SD

gives the formal moduli problem Bg.
A more explicit way to describe the formal moduli problem is via Maurer-Cartan elements.

Given a dgla g, we can define MC0(g) to be the set of elements x ∈ g−1 satisfying the Maurer-
Cartan equation3:

dx+
1

2
[x, x] = 0

As a warning MC0(g) is not a homotopy invariant of g! But we can make a homotopy
invariant version of it, as we now explain.

Given a dgla g and a (possibly nonunital) cdga R, g ⊗ R inherits the structure of a dgla
by viewing it as g base changed to a Lie algebra over R. In otherwords, the Lie bracket is
given by [x⊗ a, y ⊗ b] = (−1)|ay|[x, y]⊗ ab.

Let Ω∗(∆n) be the polynomial de Rham complex of the n-simplex: i.e it is the free cdga
generated by t0, . . . , tn in degree 0 with the equation

∑n
0 ti = 1. Ω∗(∆n) fit together as

n varies to form a simplicial cdga. Then we can define a simplicial set MC∗(g) as having
n-simplicies given by MC0(g⊗ Ω∗(∆n). This is a homotopy invariant functor of g.

Now we can say what the formal moduli problem associated to a dgla g is: it assigns an
artinian local cdga R with maximal ideal m to the simplicial set MC∗(g⊗m).

3. An example

Here we give an example of what Costello-Gwilliam call an elliptic formal moduli problem.
This is a sheaf of formal moduli problems on a manifold such that the associated Lie algebra
can be locally presented using a complex of elliptic operators. This example models the free
scalar field theory.

Consider a Riemannian manifold M , and consider the complex 0→ C∞(M)
∆−→ C∞(M),

where 0 is in degree 0, and ∆ is the Laplacian. We make this a dgla by giving it trivial Lie

3The name Mauer-Cartan element is related to the fact that on a Lie group, there is a canonically defined
Maurer-Cartan form, which is a 1-form with values in the Lie algebra, and satisfies the Maurer-Cartan
equation. In other words, the Maurer-Cartan form is a Maurer-Cartan element of the de Rham complex
with coefficients in the Lie algebra. The Maurer-Cartan form is the form defining a principal connection on
G, thought of as a principal G-bundle over a point, and the Maurer-Cartan equation is the vanishing of the
curvature of this connection.
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bracket. We claim that this corresponds to the formal moduli problem classifying deforma-
tions of the function 0 as a harmonic function. To see this, we will explicitly describe and
interpret MC0(g ⊗m) and MC1(g ⊗m) for m the maximal ideal of an Artinian local cdga
R.

Because the Lie bracket is trivial, MC0(g ⊗m) is the kernel of the differential in degree
−1, i.e the map

C∞(M)⊗m1 ⊕ C∞(M)⊗m0
(−dR,∆)−−−−−→ C∞(M)⊗m0

In otherwords, we have a function f ∈ C∗(M) ⊗ R0 that vanishes modulo the maximal
ideal (i.e a deformation of the zero function) and a homotopy g ∈ C∗(M) ⊗ R1 satisfying
∆f = dRg (i.e a witness to ∆f being nulhomotopic).

Next, we consider MC1(g ⊗ m). Here there are four pieces of data, which must satisfy
three equations.

f(t) ∈ C∞(M)⊗m0[t]

g(t) ∈ C∞(M)⊗m1[t]

h1 ∈ C∞(M)⊗m1[t]dt

h2 ∈ C∞(M)⊗m2[t]dt

The first equation these satisfy is ∆f(t) = dRg(t). This is interpreted as above, meaning
f(t) is a family of deformations and g(t) is a family of nulhomotopies of their Laplacians.

The second equation they satisfy is dRh1 = df
dt
dt. In otherwords, the homology class of f

remains constant as a function of t, as witnessed by h1.
To understand the last equation, we first note that because ∆, d

dt
dt, dR all commute up to

signs, the first two equations imply that dR(dg
dt
dt+ ∆h1) = 0. h2 is a witness of the fact that

dg
dt
dt+ ∆h1 is actually exact: the last equation is dg

dt
dt+ ∆h1 = dRh2.

In general, MCn(g ⊗m) consists of higher homotopies and higher coherence data of de-
formations.
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