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1. Lazard’s ring and consequences

Here a formal group law over a ring R means a one-dimensional commutative
formal group law over R. Lazard’s ring, denoted L, is the ring with the universal
formal group law, i.e. it represents the functor FGL sending a ring to the set of all
formal group laws. We are interested in it because in the connection between formal
group laws and complex oriented theories, L is MU∗, and the universal formal group
law is exactly the one on MU . Lazard’s theorem states that L is a polynomial ring
Z[t1, t2, . . . ] on infinitely many generators.

One way to produce formal group laws is to change coordinates: i.e. one can take
a formal group law f(x, y), and an invertible power series g(t) = t+ b1t

2 + b2t
3 + . . . ,

g(f(g−1(x), g−1(y))) is a formal group law. The universal way of doing this produces
a formal group law over the ring C = Z[b1, b2, . . . ], i.e. a map L → C. In fact, C
with its formal group law is H∗(MU), and the map from L is the Hurewicz map!

An important observation is that L and C come with a natural grading, so that
L → C is a graded map. Namely, L also represents formal group laws on Z-graded
rings. A formal group law on a Z-graded ring is one where f(x, y) =

∑
i,j cijx

iyj has

cij in degree (2(i+ j − 1)). This is so that if x, y each have degree −2, then f(x, y)
also has degree −2. The factor of 2 is to agree with topological gradings.

Let I, J be the ideals of elements of positive degree on L,C respectively. Then the
main idea leading to understanding Lazard’s ring is to linearize the problem:

Lemma 1.1. The map L→ C induces a map I/I2 → J/J2 that is an isomorphism
in degree 2n when n + 1 6= pk for any prime p, k > 0, and is the inclusion of a
subgroup of index p otherwise.

Let ti be homogeneous in I and project to the generator of I/I2 in degree 2i.

Corollary 1.2. L is Z[t1, t2, . . . ]. Moreover L⊗Q maps isomorphically to C ⊗Q.

Proof. L is generated by the ti since L is Z in degree 0, I/I2 is generated by ti, and
the ti are in positive degree. To see that there are no relations, note that the since
the map I/I2 → J/J2 is rationally an isomorphism, which again since the generators
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are in different degrees implies that the map L ⊗ Q → C ⊗ Q is an isomorphism.
Now the fact that there are no relations among the ti follows from graded dimension
counting of C ⊗Q and Z[t1, t2, . . . ]. �

We should expect that the map rationally L⊗Q ∼= C⊗Q since the Hurewicz map is
a rationally an isomorphism for spectra. However, it has the following consequence:

Corollary 1.3. Let R be a Q-algebra. Then for any two formal group laws over R,
there is a unique strict isomorphism between them.

Later, the isomorphism will be made explicit.

2. The computation

Here Lemma 1.1 is proven. To understand the map I/I2 → J/J2 in degree 2n, we
will understand the functors they corepresent. Let M be an abelian group.

Hom((I/I2)2n,M) = Hom((I/I2)+2n,M
+
2n) = Hom(L,M+

2n) = FGL(M+
2n)

Here M+
m is the functor that takes an abelian group M to the ring which has a Z

in degree 0, M in degree m, and trivial multiplication apart from the action of Z
on M and itself. Thus we need to understand formal group laws on M+

2n. These
are given by f(x, y) = ci,jx

iyj, ci,j ∈ M , but because of the grading, ci,j = 0 unless
i + j = n + 1. Thus let us call ci,j just ci for short. Then c0 = 0 by the identity
law, and commutativity tells us ci = cn+1−i. Associativity amounts to the identity
ci+j

(
i+j
i

)
= cj+k

(
j+k
j

)
whenever i+ j + k = n+ 1.

There are “obvious” solutions of these equations, namely those coming from the
map I/I2 → J/J2. These are given by changing coordinates from the additive formal
group via the power series g = t + mtn+1. These give the solutions ci =

(
n+1
i

)
m for

1 ≤ i ≤ n. Are these all the solutions? Well, let dn be the gcd of
(
n+1
i

)
for 1 ≤ i ≤ n.

Then ci =
(n+1

i )
dn

m are solutions. So what is dn? Recall that to compute binomial
coefficients mod p, we simply multiply the binomial coefficients of the coefficients in
the p-adic expansions of the numerators and denominators. From this we get:

Lemma 2.1. p|
(
i+j
i

)
iff i+ j can be added in base p without carrying.

If n+ 1 is not a power of p, we can write n+ 1 = i+ j where the nonzero digits of
i, j in base p are distinct, so p doesn’t divide

(
n+1
i

)
. If n+ 1 = pk, then regardless of

which i we choose, we will have to carry, so p divides the gcd of the
(
n+1
i

)
. In fact,

the p-adic valuation of
(

pk

pk−1

)
is 1, so the gcd is p. Summarizing:

Lemma 2.2. dn is 1 if n+ 1 isn’t a prime power, and is p if n+ 1 = pk.

Proposition 2.3. ci =
(n+1

i )
dn

m gives an isomorphism φ : M ∼= Hom((I/I2)2n,M).
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Proof. To show it is an isomorphism, it suffices to check locally at a prime p, so
assume M be a Z(p)-module. Each ci gives a map ci : Hom((I/I2)2n,M) → M . By

choosing i so that
(
n+1
i

)
has the smallest p-adic valuation, the composite ci ◦ φ is

multiplication by an unit, so φ is injective. To show surjectivity, it suffices to show
that this ci is injective. If n + 1 6= pk, then we can take i = 1, and otherwise take
i = pk−1. From Lemma 2.1 and the associativity constraint, we obtain that cj = 0
implies ck+j = 0 whenever k + j can be added without carrying. Moreover, cj = 0
implies cn+1−j = 0. These together show that ci = 0 implies everything is 0. �

Thus (I/I2)2n is Z, and the map to (J/J2)2n = Z is multiplication by dn.

3. Height

We saw that there is essentially one formal group for a Q-algebra, but what about
in characteristic p? Tensoring our map L → C with Z/pZ, we see that (I/I2)2n →
(J/J2)2n is an isomorphism unless n + 1 = pk, when it is the zero map. The lack
of injectivity and surjectivity suggests that not only are distinct formal group laws
(surjectivity), but they can also have nontrivial strict automorphisms (injectivity),
and that this failure is focused on the degrees of prime power.

The multiplicative formal group law x+ y+ xy and the additive formal group law
x+y are isomorphic over Q via ex−1. This doesn’t have integral coefficients, so they
are not isomorphic over Z by triviality of automorphism groups over Q. However
this doesn’t tell us about if they are isomorphic over Z/pZ.

To construct an invariant of formal group laws mod p, we can first construct an
invariant of maps F between formal group laws. First we should observe that a formal
group law f has a unique translation invariant 1-form ωf of the form (1 + O(t))dt,
spanning the invariant forms as an R-module. For example, for the additive formal
group law it is dt, and for the multiplicative one it is dt

1+t
.

Lemma 3.1. Given a formal group law f over R, there is a unique translation
invariant 1-form ωf of the form (1 +O(t))dt.

Proof. For a form g(t)dt =
∑
git

idt to be invariant, we ask that f ∗(g(t)dt) :=
g(f(x, y))( df

dx
dx + df

dy
dy) = g(x)dx + g(y)dy. Setting x = dy = 0, dx = 1, we get

g(y) df
dx

(0, y) = g(1) This gives a formula for g(y) in terms of g(1), showing the
unique solution g, and that the unique solution generates the invariant forms as an
R-module. To see that the formula works, it suffices to show it on the universal
formal group law on L. But the formal group law on L ⊗ Q has an invariant form
since it is isomorphic to the additive formal group law, and the form must be given
by the formula by uniqueness. One could equally well compute that the formula
gives an invariant form. �
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One can construct explicitly the isomorphism between a formal group law and the
additive formal group law by integrating the invariant differential form. Namely if∑

i git
idt is the invariant form, then

∑
i

gi
i+1
ti+1, called the logarithm, is the strict

isomorphism to the additive formal group law. To see this, if ωf is the invariant
form, we can integrate the equation ωf (f(x, y)) = ωf (x) + ωf (y) with respect to x
to get logf (f(x, y)) = logf (x) + c(y) for some constant of integration c, which by
symmetry has to be logf (y). Thus logf is a homomorphism to the additive formal
group law, and has an inverse as it is an invertible power series. For example, MU ’s

logarithm is
∑

n
[CPn]
n+1

tn which lets you compute the logarithm for any other complex
oriented theory since MU is universal.

Now given a morphism F between formal group laws f, f ′, we have F ∗(ωf ′) is an
invariant form on f , so is λωf , where λ is the linear term of F . Assume we are in
characteristic p and λ = 0. Then since 0 = F ∗(ωf ′) = (1 + O(t))dF , we must have
dF = 0, which means F (t) = F1(t

p) for some power series F1. But if fp is the formal
group law obtained from f by applying Frobenius to the coefficient ring, then F1 is
a morphism from fp to f ′, so we can repeat this argument to obtain:

Proposition 3.2. Given a nonzero morphism F between two formal group laws f, f ′

in characteristic p, there is a unique k such that F (t) = Fk(tp
k
), where Fk = λt+O(t2)

with λ 6= 0.

We call this k the height of the morphism F , denoted htF . We declare the 0
morphism to have infinite height. One easily sees from definition that if G,F are
composable, then htG + htF = htG◦F . If λ is invertible, then the kernel of the map
F on R[[x]] is R[[x]]/(F ) which is a group scheme of rank phtF .

Since our formal group laws f are commutative, the n-series of f , [n], defined by
[1] = t, [n+ 1] = f([n](t), t) is an endomorphism that looks like nt+O(t2). Thus in
characteristic p, [p] is an endomorphism of height ≥ 1; this is called the height of
the formal group law f , and is easily seen to be an invariant.

For example, the additive group law is infinite height, and the multiplicative group
law is height 1 since [p] = (1 + t)p − 1 = tp.

Every elliptic curve E induces a formal group Ê in the formal neighborhood of the
identity via its addition law. From this point of view, the height of a map of formal
group is an analog of the inseparable degree of an isogeny. More precisely,

Proposition 3.3. If E1 → E2 is an isogeny of elliptic curves, then the p-adic valu-
ation of the inseparable degree of the map is the height of Ê1 → Ê2.

Since the degree of [p] on an elliptic curve is p2, we see that there are two possible
heights, 1 or 2. These two cases are called ordinary and supersingular. We see
that in the super singular case, since the extension is purely inseparable, there are
no nontrivial geometric p-torsion.


