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The basic cast of characters

This is a talk on chromatic homotopy theory, so:
I Fix a prime p and a height h.
I k is a perfect field of characteristic p.
I Γ is a formal group law of height h over k.



Automorphisms of formal group laws

Last time, Lucy told us about the Morava stabilizer group

G = Aut(k, Γ) = Aut(Γ) o Gal

of automorphisms of the formal group law Γ.



Lubin-Tate theories

We also have Lubin-Tate theories.

We briefly recall their construction:
I Lubin-Tate: the formal group law Γ admits a universal

deformation to a formal group law over W (k)Ju1, . . . , uh−1K.
I This is Landweber flat.
I Hence, the Landweber exact functor theorem gives a

even-periodic homology theory or spectrum E (k, Γ).



Action of the Morava stabilizer group

By construction, the Morava stabilizer group G acts on

π∗E (k, Γ) = W (k)Ju1, . . . , uh−1K[u±1].

Question
Does this lift to an action of G on the spectrum E (k, Γ)?



Homotopy fixed points of Morava E -theory

Why might we want an action of G on E := E (k, Γ)?

Theorem (Devinatz-Hopkins)
EhG ' S0

K(h).



Homotopy fixed points of Morava E -theory

I Let F < Aut(Γ) be a maximal finite subgroup. Then
EOh := EhF is a higher real K-theory.

I You can also get localizations of TMF .
I Also, we expect that S0

K(h) ' EhG can be approximated in
terms of EhF for various finite subgroups F < G.
I When h = 1, 2, there exist resolutions of S0

K(h) by certain E hF .
I Moreover, the homotopy groups of E hF are amenable to

calculation for example via homotopy fixed point spectral
sequences.



Lifting algebra maps to spectra

I We want to lift an action on homotopy groups to an action on
spectra.

I This problem is hard!



Solution?

“Make the problem harder!”



Making the problem harder

We refine the problem of lifting the action of G to the spectrum E
in two ways:
1. Demand that G acts on E via E∞-ring automorphisms.
2. Study the entire moduli space of E∞-ring realizations of E ,

i.e.,

ME∞(E ) =
{
E∞-rings A such that A ' E
as homotopy associative rings

}
.

Remark
Implicit in (1) is the claim that E is an E∞-ring. A priori, we only know
that E is a homotopy commutative ring from the Landweber
construction. Most of the work will be showing that it is in fact E∞.



The Goerss-Hopkins-Miller theorem

ME∞(E ) = {E∞-rings A ' E}

Our main theorem today:

Theorem (Goerss-Hopkins-Miller)

ME∞(E ) ' BG.

I In other words, there exists a unique E∞-ring structure on E ,
and AutE∞(E ) ∼= G.

I Our tool to prove this is Goerss-Hopkins obstruction theory.



Other approaches, or a history of Juvitop

There have been other approaches to endow Morava E -theory with
additional structure.
I A precursor is the Hopkins-Miller theorem, which studied

A∞-ring structures on E .
I Danny gave a Juvitop talk on this in Fall 2016!

I There are other E∞-obstruction theories developed to study
Morava E -theory, e.g., Robinson’s Γ-homology.
I Juvitop talk, Spring 2017!

I More recently, Lurie gave a different construction of
Lubin-Tate theory as the solution to a moduli problem in
spectral algebraic geometry. The E∞-structure in this case is
automatic.
I Hood gave a Juvitop talk on this in Spring 2018!



Outline for the technical part of this talk
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Why synthetic spectra?

We’ll follow a modern presentation of Goerss-Hopkins obstruction
theory set out by Hopkins-Lurie and Pstrągowski-VanKoughnett,
which situates moduli problems for commutative ring spectra in
the context of synthetic spectra.
I Synthetic spectra is a technique for working with resolutions.

Slogan
Goerss-Hopkins theory is (E∞-)Postnikov tower theory internal to
synthetic spectra.



Definition of synthetic spectra

I Let E be an Adams-type homology theory (think Morava
E -theory).

I Let Spfp
E be the category of finite spectra P such that E∗P is

a finitely generated projective E∗-module.
I Equip Spfp

E with a Grothendieck topology where {P → Q} is a
covering iff E∗P → E∗Q is surjective.

Definition
A (hypercomplete connective) synthetic spectrum is a
product-preserving hypercomplete sheaf of spaces on Spfp

E .
I Denote the category of synthetic spectra by SynE .



Basic features of SynE

I (SynE ,⊗,1) is a symmetric monoidal category, where
I ⊗ is given by Day convolution, and
I the monoidal unit 1 is the synthetic analogue

νS0
E := L(MapSp(−, S0

E )) of the E -local sphere.
I There is an autoequivalence of SynE , compatible with the

symmetric monoidal structure, defined by sending X to
X [1] = X ◦ Σ−1.
This gives rise to a second grading on SynE .



The comparison map τ

I There is a map
τ : ΣX [−1]→ X

for any X ∈ SynE induced by the adjoint of the comparison
map X (ΣP)→ ΩX (P) for P ∈ Spfp

E .
I We think of τ as a parameter controlling the behaviour of the

category SynE . Heuristically:

Synper
E

invert τ←−−−− SynE
kill τ−−−→ Syn♥E



More properties of SynE

Synper
E

invert τ←−−−− SynE
kill τ−−−→ Syn♥E

I Synper
E ' SpE as symmetric monoidal categories.

I Syn♥E ' ComodE∗E as symmetric monoidal categories.
We’ll also want:
I SynE is complete: every Postnikov tower converges.

Remark
This last property is not automatic. It holds when E is Lubin-Tate theory
using somewhat deep results related to vanishing lines in the E -based
Adams SS.
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Potential n-stages

Definition
A potential n-stage is an E∞-algebra R in Mod1≤n (SynE ) such
that 1≤0 ⊗1≤n R is discrete.
I Denote the category of potential n-stages byMn.
I Extension of scalars along 1≤n → 1≤n−1 induce maps
Mn →Mn−1.

I Hence we get a tower

M∞ → · · · →Mn →Mn−1 → · · · →M0.

I Under our completeness assumption,M∞ ' limMn.



Potential n-stages

Examples
I A potential 0-stage is just an ordinary commutative algebra in

E∗E -comodules.
I A potential ∞-stage is a E -local E∞-ring spectrum.
I Moreover, the mapM∞ →M0 sends R to E∗R.

I So these potential stages interpolate between algebra and
geometry.



Postnikov tower theory for commutative algebras

We want to relate Mod1≤n with Mod1≤n−1 .
I Note 1≤n is a square-zero extension of 1≤n−1, so that there is

a pullback square in CAlg of the form
1≤n 1≤n−1

1≤n−1 1≤n−1 ⊕ Σn+1π01[−n].

y
i

i0



Postnikov tower theory for module categories

Proposition
There is a pullback square of categories

Mod1≤n Mod1≤n−1

Mod1≤n−1 Mod1≤n−1⊕Σn+1π01[−n].

y
i∗

i∗0



Modules with sections

I Define a functor Θ : Mod1≤n−1 →Mod1≤n−1 by

Θ(M) = i∗i∗0M.

I The underlying spectrum of Θ(M) is
M ⊕ Σn+1(M ⊗1≤n−1 π01[−n]).

I Let p : 1≤n−1 ⊕ Σn+1π01[−n]→ 1≤n−1 be the projection.
The unit of the adjunction p∗ a p∗ induces a map

π : ΘM = i∗i∗0M → i∗p∗p∗i∗0M ' id∗ id∗M ' M.

Definition
ΘSect1≤n−1 is the category of 1≤n−1-modules equipped with a
section s : M → ΘM of π.



Modules with sections

Theorem
Mod1≤n ' ΘSect1≤n−1 as symmetric monoidal categories.

Proof.
I By the previous proposition,

Mod1≤n ' {(M,N ∈Mod1≤n−1 , α : i∗N ∼−→ i∗0M)}.

I Let α̂ : N → ΘM be adjoint to α.
I Fact: α : i∗N → i∗0M is an equivalence iff π ◦ α̂ is an

equivalence (because π ◦ α̂ = p∗α and p∗ is conservative).



Modules with sections

Theorem
Mod1≤n ' ΘSect1≤n−1 as symmetric monoidal categories.

Proof.
I Therefore, we have

Mod1≤n ' {(M,N, α : i∗N ∼−→ i∗0M)}
' {(M,N, α̂ : N → ΘM) | π ◦ α̂ is '}
→ ΘSect1≤n−1

sending (M,N, α̂) to (M, α̂ ◦ (π ◦ α̂)−1) ∈ ΘSect1≤n−1 .
I The fiber of this functor is identified with {N | N ' M},

which is contractible.



Case when R is a potential (n − 1)-stage

Lemma
Let R be a potential (n − 1)-stage. Then the map π : ΘR → R is
a square-zero extension of R by Σn+1π0R[−n].

Proof.
I The fiber of the map

π : ΘR ' R ⊕ Σn+1(R ⊗1≤n−1 π01[−n])→ R

is just Σn+1(R ⊗1≤n−1 π01[−n]).
I By definition of a potential (n − 1)-stage, this is concentrated

in a single degree.

I Consequently, a lift of R to a potential n-stage exists iff this
extension admits a section by the previous theorem.



Cotangent complexes

I Square-zero extensions are controlled by cotangent complexes.
I More precisely:

{square-zero extensions of R ∈ CAlgA by M ∈ModR}
' π0 MapModR (LR/A,ΣM).

I An extension is split iff the classifying map from the
cotangent complex is null.



Obstructions to lifting objects

Theorem (Goerss-Hopkins)
Let R be a potential (n − 1)-stage. There is an obstruction in the
André-Quillen cohomology group

Extn+2,n
Modπ0R (Syn♥E )(Lπ0R/π01, π0R)

which vanishes iff R can be lifted to a potential n-stage.

Proof.
I R lifts to a potential n-stage iff π : ΘR → R admits a section

iff the map
LR/1≤n−1 → Σn+2π0R[−n]

classifying the square-zero extension π is null.



Obstructions to lifting objects

Proof.
I Next, we describe the group of maps

LR/1≤n−1 → Σn+2π0R[−n] in terms of algebra.

π0 MapModR (SynE )(LR/1≤n−1 ,Σ
n+2π0R[−n])

' π0 MapModπ0R (Syn♥E )(π0R ⊗R LR/1≤n−1 ,Σ
n+2π0R[−n])

' π0 MapModπ0R (Syn♥E )(π01⊗1≤n−1 LR/1≤n−1 ,Σ
n+2π0R[−n])

' π0 MapModπ0R (Syn♥E )(Lπ0R/π01,Σn+2π0R[−n])

=: Extn+2,n
Modπ0R (Syn♥E )(Lπ0R/π01, π0R).



Obstructions to lifting objects

Corollary
Let A ∈ CAlg(ComodE∗E ). There exists an inductively defined
sequence of obstructions valued in André-Quillen cohomology
groups Extn+2,n

ModA(ComodE∗E )(LA/E∗ ,A) for n ≥ 1, which vanish iff
there is an E∞-ring spectrum R such that E∗R ∼= A as comodule
algebras.



Obstructions to lifting maps

There’s a version of this machinery for lifting maps too, which is
useful in determining the uniqueness of lifting objects.

Here is the setup:
I R,S potential n-stages.
I φ : uR → uS maps of corresponding potential (n − 1)-stages.

Question
Does φ lift to a map R → S?

A similar argument as before shows. . .



Obstructions to lifting maps
Theorem (Goerss-Hopkins)
Let R and S be potential n-stages and φ : uR → uS a map of
corresponding potential (n − 1)-stages. Then,
(a) There is an obstruction in Extn+1,n

Modπ0R (Syn♥E )(Lπ0R/π01, π0S)
which vanishes iff φ lifts to a map R → S.

(b) In this case, the space of lifts of φ is

Map
Modπ0R (Syn♥E )(Lπ0R/π01,Σ

nπ0S[−n]).

Corollary
Let R and S be E-local E∞-rings, and let A = E∗R and B = E∗S.
Given a map φ : A→ B of commutative algebras in
E∗E-comodules, there exists an inductively defined sequence of
obstructions valued in Extn+1,n

ModA(ComodE∗E )(LA/E∗ ,B) which vanishes
iff there is an E∞-ring map φ̃ : R → S such that E∗φ̃ = φ.



The mapping space spectral sequence

Corollary (Goerss-Hopkins)
Suppose we’re given a morphism φ : R → S of Synper

E . There is a
first quadrant spectral sequence converging conditionally to
πt−s(MapCAlg(SynE )(R,S)) with E1-page given by

E 0,0
1 = Map

CAlg(Syn♥E )(π0R, π0S),

E s,t
1 = Ext2s−t,s

Modπ0R (Syn♥E )(Lπ0R/π01, π0S), t ≥ s > 0,

where π0S is given the π0R-module structure via φ.

Proof sketch.
This is the Bousfield-Kan spectral sequence applied to the tower
{MapMs (R≤s ,S≤s)}.



The mapping space spectral sequence

Corollary
Let φ : R → S be a morphism of E-local E∞-rings. There is a first
quadrant spectral sequence converging conditionally to
πt−s(MapE∞(R, S), φ) with

E 0,0
1 = MapCAlg(ComodE∗E )(E∗R,E∗S),

E s,t
1 = Ext2s−t,s

ModE∗R (ComodE∗E )(LE∗R/E∗ ,E∗S), t ≥ s > 0,

where E∗S is given the E∗R-module structure via φ.
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The main theorem

Recall our main goal:

Theorem (Goerss-Hopkins-Miller)
Let E be Lubin-Tate theory and G the Morava stabilizer group.
LetME∞(E ) be the moduli space of E∞-rings that are equivalent
to E as homotopy associative rings. Then,ME∞(E ) ' BG.

Proof.
I Instead of realizing E∗ as an E∞-ring, we realize the comodule

algebra E∗E , i.e., find an E -local E∞-ring A such that
E∗A ∼= E∗E . This is enough by a universal coefficient spectral
sequence argument.



Proving the main theorem

Proof.
I Apply Goerss-Hopkins obstruction theory: the obstructions to

existence and uniqueness of lifts live in

Exts,t
ModE∗E (ComodE∗E )(LE∗E/E∗ ,E∗E ).

We want to show these groups vanish unless (s, t) = (0, 0).
I The free-forget adjunction from modules to comodules

induces an isomorphism

Ext∗,∗
ModE∗E (ComodE∗E )(LE∗E/E∗ ,E∗E ) ∼= Ext∗,∗ModE∗

(LE∗E/E∗ ,E∗).



Proving the main theorem

Proof.
I Want to show Ext∗,∗ModE∗

(LE∗E/E∗ ,E∗) ∼= 0.
I Filter the target E∗ by powers of its maximal ideal

m = (p, u1, . . . , uh−1). This gives rise to a spectral sequence
computing Ext∗,∗ModE∗

(LE∗E/E∗ ,E∗) with E2-term

Extp,∗
ModE∗/m

(LE∗E/E∗ ⊗
L
E∗ E∗/m,m

q/mq+1).

I Suffice to show that LE∗E/E∗ ⊗L
E∗ E∗/m ' 0.



Proving the main theorem

Proof.
I Want to show LE∗E/E∗ ⊗L

E∗ E∗/m ' 0.
I E∗E is flat over E∗; by flat base change,

LE∗E/E∗⊗
L
E∗E∗/m ' L(E∗E/m)/(E∗/m) ' E∗⊗E0L(E0E/m)/(E0/m).

I E0/m ∼= k is perfect, and so is E0E/m ∼= Homcts(G, k).

Claim
The cotangent complex of any morphism between perfect
Fp-algebras vanishes.
I So L(E0E/m)/(E0/m) ' 0.



The cotangent complex of perfect Fp-algebras

Claim
The cotangent complex of any morphism between perfect
Fp-algebras vanishes.

Proof.
The Frobenius automorphism induces an isomorphism on
cotangent complexes, but the map is given by

dx 7→ d(xp) = pxp−1 dx = 0.



Concluding the main theorem

Proof.
I Therefore, all obstructions to existence and uniqueness of an

E∞-ring structure on E vanish.
I There is a unique E∞-structure on E .
I Moreover,

AutE∞(E ) ∼= AutCAlg(ComodE∗E )(E∗E ) ∼= G.

Remark
In general, MapE∞(E (k1, Γ1),E (k2, Γ2)) is homotopy discrete, with
π0 = HomFGL((k1, Γ1), (k2, Γ2)).



The end

Thank you for listening!
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