Goerss-Hopkins obstruction theory

Jun Hou Fung

April 22, 2020

The basic cast of characters

This is a talk on chromatic homotopy theory, so:

- Fix a prime p and a height h.
- k is a perfect field of characteristic p.
- \blacktriangleright Γ is a formal group law of height *h* over *k*.

Automorphisms of formal group laws

Last time, Lucy told us about the Morava stabilizer group

$$\mathbb{G} = \operatorname{Aut}(k, \Gamma) = \operatorname{Aut}(\Gamma) \rtimes \operatorname{Gal}$$

of automorphisms of the formal group law $\Gamma.$

We also have Lubin-Tate theories.

We briefly recall their construction:

- Lubin-Tate: the formal group law Γ admits a universal deformation to a formal group law over W(k) [[u₁,..., u_{h-1}]].
- ► This is Landweber flat.
- Hence, the Landweber exact functor theorem gives a even-periodic homology theory or spectrum E(k, Γ).

Action of the Morava stabilizer group

By construction, the Morava stabilizer group ${\mathbb G}$ acts on

$$\pi_* E(k, \Gamma) = W(k) \llbracket u_1, \ldots, u_{h-1} \rrbracket [u^{\pm 1}].$$

Question

Does this lift to an action of \mathbb{G} on the spectrum $E(k, \Gamma)$?

Homotopy fixed points of Morava E-theory

Why might we want an action of \mathbb{G} on $E := E(k, \Gamma)$?

```
Theorem (Devinatz-Hopkins)
E^{h\mathbb{G}} \simeq S^0_{\mathcal{K}(h)}.
```

Homotopy fixed points of Morava E-theory

- Let F < Aut(Γ) be a maximal finite subgroup. Then EO_h := E^{hF} is a higher real K-theory.
- You can also get localizations of TMF.
- Also, we expect that S⁰_{K(h)} ≃ E^h^G can be approximated in terms of E^{hF} for various finite subgroups F < G.</p>
 - When h = 1, 2, there exist resolutions of $S^0_{K(h)}$ by certain E^{hF} .
 - Moreover, the homotopy groups of E^{hF} are amenable to calculation for example via homotopy fixed point spectral sequences.

Lifting algebra maps to spectra

- We want to lift an action on homotopy groups to an action on spectra.
- ► This problem is hard!

Solution?

"Make the problem harder!"

Making the problem harder

We refine the problem of lifting the action of $\mathbb G$ to the spectrum E in two ways:

- 1. Demand that \mathbb{G} acts on E via \mathbb{E}_{∞} -ring automorphisms.
- 2. Study the entire moduli space of \mathbb{E}_{∞} -ring realizations of E, i.e.,

$$\mathcal{M}_{\mathbb{E}_{\infty}}(E) = \left\{ egin{array}{c} \mathbb{E}_{\infty} ext{-rings } A ext{ such that } A \simeq E \ ext{as homotopy associative rings} \end{array}
ight\}$$

Remark

Implicit in (1) is the claim that E is an \mathbb{E}_{∞} -ring. A priori, we only know that E is a homotopy commutative ring from the Landweber construction. Most of the work will be showing that it is in fact \mathbb{E}_{∞} .

The Goerss-Hopkins-Miller theorem

$$\mathcal{M}_{\mathbb{E}_{\infty}}(E) = \{\mathbb{E}_{\infty}\text{-rings } A \simeq E\}$$

Our main theorem today:

Theorem (Goerss-Hopkins-Miller)

$$\mathcal{M}_{\mathbb{E}_{\infty}}(E) \simeq B\mathbb{G}.$$

- In other words, there exists a unique E_∞-ring structure on E, and Aut_{E_∞}(E) ≃ G.
- Our tool to prove this is Goerss-Hopkins obstruction theory.

Other approaches, or a history of Juvitop

There have been other approaches to endow Morava E-theory with additional structure.

- A precursor is the Hopkins-Miller theorem, which studied \mathbb{A}_{∞} -ring structures on *E*.
 - Danny gave a Juvitop talk on this in Fall 2016!
- There are other E_∞-obstruction theories developed to study Morava E-theory, e.g., Robinson's Γ-homology.

Juvitop talk, Spring 2017!

- More recently, Lurie gave a different construction of Lubin-Tate theory as the solution to a moduli problem in spectral algebraic geometry. The ℝ_∞-structure in this case is automatic.
 - Hood gave a Juvitop talk on this in Spring 2018!

Outline for the technical part of this talk

Primer on synthetic spectra

Goerss-Hopkins obstruction theory

Application to Morava E-theory

Why synthetic spectra?

We'll follow a modern presentation of Goerss-Hopkins obstruction theory set out by Hopkins-Lurie and Pstrągowski-VanKoughnett, which situates moduli problems for commutative ring spectra in the context of synthetic spectra.

Synthetic spectra is a technique for working with *resolutions*.

Slogan

Goerss-Hopkins theory is $(\mathbb{E}_{\infty}$ -)Postnikov tower theory internal to synthetic spectra.

Definition of synthetic spectra

- Let E be an Adams-type homology theory (think Morava E-theory).
- Let Sp^{fp}_E be the category of finite spectra P such that E_{*}P is a finitely generated projective E_{*}-module.
- Equip Sp_E^{fp} with a Grothendieck topology where $\{P \to Q\}$ is a covering iff $E_*P \to E_*Q$ is surjective.

Definition

A (hypercomplete connective) synthetic spectrum is a product-preserving hypercomplete sheaf of spaces on $Sp_E^{\rm fp}$.

• Denote the category of synthetic spectra by Syn_E .

Basic features of Syn_E

- (Syn_E, ⊗, 1) is a symmetric monoidal category, where
 ⊗ is given by Day convolution, and
 the monoidal unit 1 is the synthetic analogue νS_E⁰ := L(Map_{Sp}(-, S_E⁰)) of the E-local sphere.
 There is an autoequivalence of Syn_E, compatible with the
 - symmetric monoidal structure, defined by sending X to $X[1] = X \circ \Sigma^{-1}$.

This gives rise to a second grading on Syn_E .

The comparison map au

There is a map

$$\tau: \Sigma X[-1] \to X$$

for any $X \in Syn_E$ induced by the adjoint of the comparison map $X(\Sigma P) \rightarrow \Omega X(P)$ for $P \in Sp_E^{\text{fp}}$.

We think of τ as a parameter controlling the behaviour of the category Syn_E. Heuristically:

$$Syn_E^{\text{per}} \xleftarrow{\text{invert } \tau} Syn_E \xrightarrow{\text{kill } \tau} Syn_E^{\heartsuit}$$

More properties of Syn_E

$$\operatorname{Syn}_E^{\operatorname{per}} \xleftarrow{\operatorname{invert} \tau} \operatorname{Syn}_E \xrightarrow{\operatorname{kill} \tau} \operatorname{Syn}_E^{\heartsuit}$$

• $Syn_E^{per} \simeq Sp_E$ as symmetric monoidal categories.

▶ $Syn_E^{\heartsuit} \simeq Comod_{E_*E}$ as symmetric monoidal categories.

We'll also want:

Syn_E is complete: every Postnikov tower converges.

Remark

This last property is not automatic. It holds when E is Lubin-Tate theory using somewhat deep results related to vanishing lines in the E-based Adams SS.

Primer on synthetic spectra

Goerss-Hopkins obstruction theory

Application to Morava *E*-theory

Potential *n*-stages

Definition

A potential *n*-stage is an \mathbb{E}_{∞} -algebra R in $\mathcal{M}od_{\mathbb{I}_{\leq n}}(Syn_E)$ such that $\mathbb{I}_{\leq 0} \otimes_{\mathbb{I}_{\leq n}} R$ is discrete.

- Denote the category of potential *n*-stages by \mathcal{M}_n .
- ▶ Extension of scalars along $1_{\leq n} \to 1_{\leq n-1}$ induce maps $\mathcal{M}_n \to \mathcal{M}_{n-1}$.
- Hence we get a tower

$$\mathcal{M}_{\infty} \to \cdots \to \mathcal{M}_n \to \mathcal{M}_{n-1} \to \cdots \to \mathcal{M}_0.$$

• Under our completeness assumption, $\mathcal{M}_{\infty} \simeq \lim \mathcal{M}_n$.

Potential *n*-stages

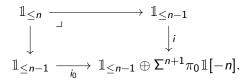
Examples

- A potential 0-stage is just an ordinary commutative algebra in *E_{*}E*-comodules.
- A potential ∞ -stage is a *E*-local \mathbb{E}_{∞} -ring spectrum.
- Moreover, the map $\mathcal{M}_{\infty} \to \mathcal{M}_0$ sends R to E_*R .
- So these potential stages interpolate between algebra and geometry.

Postnikov tower theory for commutative algebras

We want to relate $\mathcal{M}od_{\mathbb{I}_{< n}}$ with $\mathcal{M}od_{\mathbb{I}_{< n-1}}$.

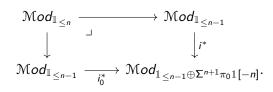
Note 1≤n is a square-zero extension of 1≤n-1, so that there is a pullback square in CAlg of the form



Postnikov tower theory for module categories

Proposition

There is a pullback square of categories



Modules with sections

▶ Define a functor $\Theta : Mod_{1 \le n-1} \to Mod_{1 \le n-1}$ by

$$\Theta(M)=i_*i_0^*M.$$

- The underlying spectrum of $\Theta(M)$ is $M \oplus \Sigma^{n+1}(M \otimes_{\mathbb{I}_{\leq n-1}} \pi_0 \mathbb{1}[-n]).$
- ► Let $p : \mathbb{1}_{\leq n-1} \oplus \Sigma^{n+1} \pi_0 \mathbb{1}[-n] \to \mathbb{1}_{\leq n-1}$ be the projection. The unit of the adjunction $p^* \dashv p_*$ induces a map

$$\pi: \Theta M = i_* i_0^* M \to i_* p_* p^* i_0^* M \simeq \operatorname{id}_* \operatorname{id}^* M \simeq M.$$

Definition

 $\Theta Sect_{\mathbb{1}_{\leq n-1}}$ is the category of $\mathbb{1}_{\leq n-1}$ -modules equipped with a section $s: M \to \Theta M$ of π .

Modules with sections

Theorem

 $\mathfrak{M}\textit{od}_{\mathbb{1}_{\leq n}} \simeq \Theta \mathbb{S}\textit{ect}_{\mathbb{1}_{\leq n-1}} \text{ as symmetric monoidal categories.}$

Proof.

By the previous proposition,

$$\mathfrak{M}od_{\mathbb{I}_{\leq n}} \simeq \{(M, N \in \mathfrak{M}od_{\mathbb{I}_{\leq n-1}}, \alpha : i^*N \xrightarrow{\sim} i_0^*M)\}.$$

• Let
$$\hat{\alpha} : N \to \Theta M$$
 be adjoint to α .

► Fact: $\alpha : i^*N \to i_0^*M$ is an equivalence iff $\pi \circ \hat{\alpha}$ is an equivalence (because $\pi \circ \hat{\alpha} = p^*\alpha$ and p^* is conservative).

Modules with sections

Theorem $Mod_{1 \le n} \simeq \Theta Sect_{1 \le n-1}$ as symmetric monoidal categories. Proof.

Therefore, we have

$$\mathcal{M}od_{\mathbb{I}_{\leq n}} \simeq \{ (M, N, \alpha : i^*N \xrightarrow{\sim} i_0^*M) \}$$

 $\simeq \{ (M, N, \hat{\alpha} : N \to \Theta M) \mid \pi \circ \hat{\alpha} \text{ is } \simeq \}$
 $\to \Theta Sect_{\mathbb{I}_{\leq n-1}}$

sending $(M, N, \hat{\alpha})$ to $(M, \hat{\alpha} \circ (\pi \circ \hat{\alpha})^{-1}) \in \Theta Sect_{\mathbb{I}_{\leq n-1}}$.

The fiber of this functor is identified with {N | N ~ M}, which is contractible.

Case when R is a potential (n-1)-stage

Lemma

Let R be a potential (n-1)-stage. Then the map $\pi : \Theta R \to R$ is a square-zero extension of R by $\Sigma^{n+1}\pi_0 R[-n]$.

Proof.

The fiber of the map

$$\pi: \Theta R \simeq R \oplus \Sigma^{n+1}(R \otimes_{\mathbb{1}_{\leq n-1}} \pi_0 \mathbb{1}[-n]) o R$$

is just $\Sigma^{n+1}(R \otimes_{\mathbb{I}_{\leq n-1}} \pi_0 \mathbb{1}[-n]).$

- ▶ By definition of a potential (n − 1)-stage, this is concentrated in a single degree.
- Consequently, a lift of R to a potential n-stage exists iff this extension admits a section by the previous theorem.

Cotangent complexes

Square-zero extensions are controlled by cotangent complexes.More precisely:

 $\{ \text{square-zero extensions of } R \in \mathbb{C}Alg_A \text{ by } M \in \mathbb{M}od_R \} \\ \simeq \pi_0 \operatorname{Map}_{\mathbb{M}od_R}(\mathbb{L}_{R/A}, \Sigma M).$

An extension is split iff the classifying map from the cotangent complex is null.

Obstructions to lifting objects

Theorem (Goerss-Hopkins)

Let R be a potential (n - 1)-stage. There is an obstruction in the André-Quillen cohomology group

$$\mathsf{Ext}^{n+2,n}_{\mathfrak{M}od_{\pi_0R}(\mathrm{Syn}_E^\heartsuit)}(\mathbb{L}_{\pi_0R/\pi_0\mathbb{1}},\pi_0R)$$

which vanishes iff R can be lifted to a potential n-stage.

Proof.

▶ *R* lifts to a potential *n*-stage iff $\pi : \Theta R \to R$ admits a section iff the map

$$\mathbb{L}_{R/\mathbb{I}_{\leq n-1}} \to \Sigma^{n+2} \pi_0 R[-n]$$

classifying the square-zero extension π is null.

Obstructions to lifting objects

Proof.

► Next, we describe the group of maps $\mathbb{L}_{R/\mathbb{I}_{\leq n-1}} \rightarrow \Sigma^{n+2} \pi_0 R[-n]$ in terms of algebra.

$$\pi_{0} \operatorname{Map}_{\mathcal{M}od_{R}(Syn_{E})}(\mathbb{L}_{R/\mathbb{1}_{\leq n-1}}, \Sigma^{n+2}\pi_{0}R[-n])$$

$$\simeq \pi_{0} \operatorname{Map}_{\mathcal{M}od_{\pi_{0}R}(Syn_{E}^{\heartsuit})}(\pi_{0}R \otimes_{R} \mathbb{L}_{R/\mathbb{1}_{\leq n-1}}, \Sigma^{n+2}\pi_{0}R[-n])$$

$$\simeq \pi_{0} \operatorname{Map}_{\mathcal{M}od_{\pi_{0}R}(Syn_{E}^{\heartsuit})}(\pi_{0}\mathbb{1} \otimes_{\mathbb{1}_{\leq n-1}} \mathbb{L}_{R/\mathbb{1}_{\leq n-1}}, \Sigma^{n+2}\pi_{0}R[-n])$$

$$\simeq \pi_{0} \operatorname{Map}_{\mathcal{M}od_{\pi_{0}R}(Syn_{E}^{\heartsuit})}(\mathbb{L}_{\pi_{0}R/\pi_{0}\mathbb{1}}, \Sigma^{n+2}\pi_{0}R[-n])$$

$$=: \operatorname{Ext}_{\mathcal{M}od_{\pi_{0}R}(Syn_{E}^{\heartsuit})}^{n+2,n}(\mathbb{L}_{\pi_{0}R/\pi_{0}\mathbb{1}}, \pi_{0}R).$$

Obstructions to lifting objects

Corollary

Let $A \in CAlg(Comod_{E_*E})$. There exists an inductively defined sequence of obstructions valued in André-Quillen cohomology groups $\operatorname{Ext}_{Mod_A(Comod_{E_*E})}^{n+2,n}(\mathbb{L}_{A/E_*}, A)$ for $n \ge 1$, which vanish iff there is an \mathbb{E}_{∞} -ring spectrum R such that $E_*R \cong A$ as comodule algebras.

Obstructions to lifting maps

There's a version of this machinery for lifting maps too, which is useful in determining the uniqueness of lifting objects.

Here is the setup:

- R, S potential n-stages.
- $\phi: uR \rightarrow uS$ maps of corresponding potential (n-1)-stages.

Question

Does ϕ lift to a map $R \rightarrow S$?

A similar argument as before shows...

Obstructions to lifting maps

Theorem (Goerss-Hopkins)

Let R and S be potential n-stages and $\phi : uR \rightarrow uS$ a map of corresponding potential (n-1)-stages. Then,

- (a) There is an obstruction in $\operatorname{Ext}_{\operatorname{Mod}_{\pi_0R}(\operatorname{Syn}_E^{\heartsuit})}^{n+1,n}(\mathbb{L}_{\pi_0R/\pi_0\mathbb{I}},\pi_0S)$ which vanishes iff ϕ lifts to a map $R \to S$.
- (b) In this case, the space of lifts of ϕ is

$$\operatorname{Map}_{\operatorname{Mod}_{\pi_0R}(\operatorname{Syn}_E^{\heartsuit})}(\mathbb{L}_{\pi_0R/\pi_0\mathbb{1}}, \Sigma^n\pi_0S[-n]).$$

Corollary

Let R and S be E-local \mathbb{E}_{∞} -rings, and let $A = E_*R$ and $B = E_*S$. Given a map $\phi : A \to B$ of commutative algebras in E_*E -comodules, there exists an inductively defined sequence of obstructions valued in $\operatorname{Ext}_{\operatorname{Mod}_A(\operatorname{Comod}_{E_*E})}^{n+1,n}(\mathbb{L}_{A/E_*}, B)$ which vanishes iff there is an \mathbb{E}_{∞} -ring map $\tilde{\phi} : R \to S$ such that $E_*\tilde{\phi} = \phi$.

The mapping space spectral sequence

Corollary (Goerss-Hopkins)

Suppose we're given a morphism $\phi : R \to S$ of Syn_E^{per} . There is a first quadrant spectral sequence converging conditionally to $\pi_{t-s}(\operatorname{Map}_{\mathbb{C}Alg(Syn_E)}(R,S))$ with E_1 -page given by

$$\begin{split} & \mathsf{E}_{1}^{0,0} = \mathsf{Map}_{\mathbb{C}Alg(\mathbb{S}yn_{E}^{\heartsuit})}(\pi_{0}R,\pi_{0}S), \\ & \mathsf{E}_{1}^{s,t} = \mathsf{Ext}_{\mathcal{M}od_{\pi_{0}R}(\mathbb{S}yn_{E}^{\heartsuit})}^{2s-t,s}(\mathbb{L}_{\pi_{0}R/\pi_{0}\mathbb{1}},\pi_{0}S), \quad t \geq s > 0, \end{split}$$

where $\pi_0 S$ is given the $\pi_0 R$ -module structure via ϕ .

Proof sketch.

This is the Bousfield-Kan spectral sequence applied to the tower $\{\operatorname{Map}_{\mathcal{M}_s}(R_{\leq s}, S_{\leq s})\}.$

The mapping space spectral sequence

Corollary

Let $\phi : R \to S$ be a morphism of E-local \mathbb{E}_{∞} -rings. There is a first quadrant spectral sequence converging conditionally to $\pi_{t-s}(\operatorname{Map}_{\mathbb{E}_{\infty}}(R,S),\phi)$ with

$$\begin{split} & \mathsf{E}_{1}^{0,0} = \mathsf{Map}_{\mathcal{CAlg}(\mathcal{C}omod_{E_{*}E})}(E_{*}R, E_{*}S), \\ & \mathsf{E}_{1}^{s,t} = \mathsf{Ext}_{\mathcal{M}od_{E_{*}R}(\mathcal{C}omod_{E_{*}E})}^{2s-t,s}(\mathbb{L}_{E_{*}R/E_{*}}, E_{*}S), \quad t \geq s > 0, \end{split}$$

where E_*S is given the E_*R -module structure via ϕ .

Primer on synthetic spectra

Goerss-Hopkins obstruction theory

Application to Morava E-theory

The main theorem

Recall our main goal:

Theorem (Goerss-Hopkins-Miller)

Let E be Lubin-Tate theory and \mathbb{G} the Morava stabilizer group. Let $\mathcal{M}_{\mathbb{E}_{\infty}}(E)$ be the moduli space of \mathbb{E}_{∞} -rings that are equivalent to E as homotopy associative rings. Then, $\mathcal{M}_{\mathbb{E}_{\infty}}(E) \simeq B\mathbb{G}$.

Proof.

Instead of realizing E_{*} as an E_∞-ring, we realize the comodule algebra E_{*}E, i.e., find an E-local E_∞-ring A such that E_{*}A ≅ E_{*}E. This is enough by a universal coefficient spectral sequence argument.

Proving the main theorem

Proof.

 Apply Goerss-Hopkins obstruction theory: the obstructions to existence and uniqueness of lifts live in

$$\operatorname{Ext}_{\operatorname{Mod}_{E_*E}(\operatorname{Comod}_{E_*E})}^{s,t}(\mathbb{L}_{E_*E/E_*}, E_*E).$$

We want to show these groups vanish unless (s, t) = (0, 0).

The free-forget adjunction from modules to comodules induces an isomorphism

 $\mathsf{Ext}^{*,*}_{\mathcal{M}od_{E_*E}(\mathbb{C}omod_{E_*E})}(\mathbb{L}_{E_*E/E_*}, E_*E) \cong \mathsf{Ext}^{*,*}_{\mathcal{M}od_{E_*}}(\mathbb{L}_{E_*E/E_*}, E_*).$

Proving the main theorem

Proof.

- Want to show $\operatorname{Ext}_{\operatorname{Mod}_{E_*}}^{*,*}(\mathbb{L}_{E_*E/E_*}, E_*) \cong 0.$
- ► Filter the target E_{*} by powers of its maximal ideal m = (p, u₁,..., u_{h-1}). This gives rise to a spectral sequence computing Ext^{*,*}_{Mod_{E*}} (L_{E*E/E*}, E_{*}) with E₂-term

$$\mathsf{Ext}^{p,*}_{\mathfrak{M}od_{E_*/\mathfrak{m}}}(\mathbb{L}_{E_*E/E_*}\otimes_{E_*}^{\mathbb{L}} E_*/\mathfrak{m},\mathfrak{m}^q/\mathfrak{m}^{q+1}).$$

• Suffice to show that $\mathbb{L}_{E_*E/E_*} \otimes_{E_*}^{\mathbb{L}} E_*/\mathfrak{m} \simeq 0.$

Proving the main theorem

Proof.

- ▶ Want to show $\mathbb{L}_{E_*E/E_*} \otimes_{E_*}^{\mathbb{L}} E_*/\mathfrak{m} \simeq 0.$
- E_*E is flat over E_* ; by flat base change,

$$\mathbb{L}_{E_*E/E_*} \otimes_{E_*}^{\mathbb{L}} E_*/\mathfrak{m} \simeq \mathbb{L}_{(E_*E/\mathfrak{m})/(E_*/\mathfrak{m})} \simeq E_* \otimes_{E_0} \mathbb{L}_{(E_0E/\mathfrak{m})/(E_0/\mathfrak{m})}.$$

•
$$E_0/\mathfrak{m} \cong k$$
 is perfect, and so is $E_0E/\mathfrak{m} \cong \operatorname{Hom}_{\operatorname{cts}}(\mathbb{G}, k)$.

Claim

The cotangent complex of any morphism between perfect \mathbb{F}_p -algebras vanishes.

► So
$$\mathbb{L}_{(E_0 E/\mathfrak{m})/(E_0/\mathfrak{m})} \simeq 0.$$

The cotangent complex of perfect \mathbb{F}_p -algebras

Claim

The cotangent complex of any morphism between perfect \mathbb{F}_p -algebras vanishes.

Proof.

The Frobenius automorphism induces an isomorphism on cotangent complexes, but the map is given by

$$dx\mapsto d(x^p)=px^{p-1}\,dx=0.$$

Concluding the main theorem

Proof.

- Therefore, all obstructions to existence and uniqueness of an \mathbb{E}_{∞} -ring structure on E vanish.
- There is a unique \mathbb{E}_{∞} -structure on E.
- Moreover,

$$\operatorname{Aut}_{\mathbb{E}_{\infty}}(E) \cong \operatorname{Aut}_{\operatorname{CAlg}(\operatorname{Comod}_{E_*E})}(E_*E) \cong \mathbb{G}.$$

Remark

In general, $\operatorname{Map}_{\mathbb{E}_{\infty}}(E(k_1,\Gamma_1), E(k_2,\Gamma_2))$ is homotopy discrete, with $\pi_0 = \operatorname{Hom}_{FGL}((k_1,\Gamma_1), (k_2,\Gamma_2)).$

The end

Thank you for listening!