The Landweber Exact Functor Theorem

Kevin Chang

Juvitop

April 8, 2020

Kevin Chang The Landweber Exact Functor Theorem

- *Topological Modular Forms*, Chapter 4 (Douglas, Francis, Henriques, Hill)
- COCTALOS, Lecture 20 (Hopkins)
- Lecture 15 (Lurie)

• Recall: Complex oriented cohomology theories \implies formal group laws.

A B M A B M

э

- Recall: Complex oriented cohomology theories \implies formal group laws.
- Q: Can we go the other way? (i.e. FGLs \implies spectra)

- Recall: Complex oriented cohomology theories \implies formal group laws.
- Q: Can we go the other way? (i.e. FGLs \implies spectra)
- A: It depends.

• Let $MU_* \to R$ classify a FGL, and consider $X \mapsto MU_*(X) \otimes_{MU_*} R$.

- Let $MU_* \to R$ classify a FGL, and consider $X \mapsto MU_*(X) \otimes_{MU_*} R$.
- This automatically satisfies all the homology axioms except exactness.

- Let $MU_* \to R$ classify a FGL, and consider $X \mapsto MU_*(X) \otimes_{MU_*} R$.
- This automatically satisfies all the homology axioms except exactness.
- Flatness? Nah, too strong. $MU_* \cong \mathbb{Z}[t_n | n \in \mathbb{N}]$ is massive.

- Let $MU_* \to R$ classify a FGL, and consider $X \mapsto MU_*(X) \otimes_{MU_*} R$.
- This automatically satisfies all the homology axioms except exactness.
- Flatness? Nah, too strong. $MU_* \cong \mathbb{Z}[t_n | n \in \mathbb{N}]$ is massive.
- Recall that $MU_*(X)$ is an (MU_*, MU_*MU) -comodule. Thus, it suffices to consider flatness wrt comodules.

The Landweber exact functor theorem

Definition

$$[p]_{MU_*}(x) = \sum_{k=0}^{\infty} a_k x^{k+1}$$
. Define $v_i := a_{p^i-1}$ and $I_{p,n} := (p, v_1, \dots, v_{n-1})$.

э

The Landweber exact functor theorem

Definition

$$[p]_{MU_*}(x) = \sum_{k=0}^{\infty} a_k x^{k+1}$$
. Define $v_i := a_{p^i-1}$ and $I_{p,n} := (p, v_1, \dots, v_{n-1})$.

Definition

An FGL *F* classified by $MU_* \rightarrow R$ is **Landweber exact** if $M \mapsto M \otimes_{MU_*} R$ is an exact functor from (MU_*, MU_*MU) -comodules to *R*-modules.

The Landweber exact functor theorem

Definition

$$[p]_{MU_*}(x) = \sum_{k=0}^{\infty} a_k x^{k+1}$$
. Define $v_i := a_{p^i-1}$ and $I_{p,n} := (p, v_1, \dots, v_{n-1})$.

Definition

An FGL *F* classified by $MU_* \to R$ is **Landweber exact** if $M \mapsto M \otimes_{MU_*} R$ is an exact functor from (MU_*, MU_*MU) -comodules to *R*-modules.

LEFT (Classical)

Let $MU_* \rightarrow R$ classify a FGL F. If

$$v_n: R/I_{p,n} \to R/I_{p,n}$$

is injective for all p, n, then F is Landweber exact.

글 🖌 🖌 글 🕨 👘

 $v_n: R/I_{p,n} \to R/I_{p,n}$ injective $\forall p, n \implies$ Landweber exact.

Theorem (Morava, Landweber)

The invariant prime ideals of MU_* are the $I_{p,n}$'s. (Invariant ideal = subcomodule of MU_*)

Landweber filtration theorem

Every coherent (MU_* , MU_*MU)-comodule M has a finite filtration whose subquotients are iso to $MU_*/I_{p,n}$.

 $v_n: R/I_{p,n} \to R/I_{p,n}$ injective $\forall p, n \implies$ Landweber exact.

Theorem (Morava, Landweber)

The invariant prime ideals of MU_* are the $I_{p,n}$'s. (Invariant ideal = subcomodule of MU_*)

Landweber filtration theorem

Every coherent (MU_* , MU_*MU)-comodule M has a finite filtration whose subquotients are iso to $MU_*/I_{p,n}$.

For coherent comodules, it suffices to prove

$$\operatorname{Tor}_{1}^{MU_{*}}(MU_{*}/I_{p,n},R)=0.$$

 $v_n: R/I_{p,n} \to R/I_{p,n}$ injective $\forall p, n \implies$ Landweber exact.

Done for coherent comodules if $\text{Tor}_1^{MU_*}(MU_*/I_{p,n}, R) = 0$. Base case (n = 0):

$$0
ightarrow {\sf Tor}_1^{{\it MU}_*}({\it MU}_*/p,{\it R})
ightarrow {\it R} frac{
ho}{
ightarrow} {\it R}
ightarrow {\it R}/p
ightarrow 0$$

 $v_n: R/I_{p,n} \to R/I_{p,n}$ injective $\forall p, n \implies$ Landweber exact.

Done for coherent comodules if $\text{Tor}_1^{MU_*}(MU_*/I_{p,n}, R) = 0$. Base case (n = 0):

$$0
ightarrow {\sf Tor}_1^{{\it MU}_*}({\it MU}_*/{\it p},{\it R})
ightarrow {\it R} \xrightarrow{\it p} {\it R}
ightarrow {\it R}/{\it p}
ightarrow 0$$

Inductive step (assume $\operatorname{Tor}_{1}^{MU_{*}}(MU_{*}/I_{p,n},R) = 0$):

$$0 \to \mathsf{Tor}_1^{MU_*}(MU_*/I_{p,n+1},R) \to R/I_{p,n} \xrightarrow{v_n} R/I_{p,n} \to R/I_{p,n+1} \to 0$$

 $v_n: R/I_{p,n} \to R/I_{p,n}$ injective $\forall p, n \implies$ Landweber exact.

Done for coherent comodules! But what about general comodules?

 $v_n : R/I_{p,n} \to R/I_{p,n}$ injective $\forall p, n \implies$ Landweber exact.

Done for coherent comodules! But what about general comodules?

Landweber's original proof (that we get a homology theory)

Note that $MU_*(X)$ is coherent for finite complexes X. Thus, $X \mapsto MU_*(X) \otimes_{MU_*} R$ is a homology theory.

 $v_n: R/I_{p,n} \to R/I_{p,n}$ injective $\forall p, n \implies$ Landweber exact.

Done for coherent comodules! But what about general comodules?

Landweber's original proof (that we get a homology theory)

Note that $MU_*(X)$ is coherent for finite complexes X. Thus, $X \mapsto MU_*(X) \otimes_{MU_*} R$ is a homology theory.

0r...

Theorem (Miller, Ravenel)

Every (MU_*, MU_*MU) -comodule is a union of coherent subcomodules.

• Let's start with a non-application.

æ

э

- Let's start with a non-application.
- Consider the additive formal group law $F_a(x, y) = x + y$ over \mathbb{Z} .

- Let's start with a non-application.
- Consider the additive formal group law $F_a(x, y) = x + y$ over \mathbb{Z} .

•
$$[p]_{F_a}(x) = px \implies v_n = 0 \ \forall n > 0.$$

- Let's start with a non-application.
- Consider the additive formal group law $F_a(x, y) = x + y$ over \mathbb{Z} .
- $[p]_{F_a}(x) = px \implies v_n = 0 \ \forall n > 0.$
- Multiplication by v₁ is not injective on Z/p, so F_a is not Landweber exact.

- Let's start with a non-application.
- Consider the additive formal group law $F_a(x, y) = x + y$ over \mathbb{Z} .
- $[p]_{F_a}(x) = px \implies v_n = 0 \ \forall n > 0.$
- Multiplication by v₁ is not injective on Z/p, so F_a is not Landweber exact.
- We cannot get $H\mathbb{Z}$ from Landweber exactness.

Example

The additive formal group law over \mathbb{Q} is Landweber exact (*p* is invertible):

$$MU_*(X) \otimes_{MU_*} \mathbb{Q} \cong H_*(X; \mathbb{Q}).$$

Example

The multiplicative formal group law over $\mathbb{Z}[\beta, \beta^{-1}]$ ($|\beta| = -2$):

$$F_m(x,y) = x + y + \beta xy$$

$$[p]_{F_m}(x) \equiv \beta^{p-1} x^p \pmod{p}$$

We get K-theory from Landweber exactness (Todd genus):

$$MU_*(X) \otimes_{MU_*} \mathbb{Z}[\beta, \beta^{-1}] \cong K_*(X).$$

Applications

Definition

A FGL over a torsion-free $\mathbb{Z}_{(p)}$ -algebra is *p*-**typical** if its logarithm is of the form $\sum_{i} l_i x^{p^i}$. (Definition for non-torsion-free $\mathbb{Z}_{(p)}$ -algebras is more complicated.)

• • = • • = •

Applications

Definition

A FGL over a torsion-free $\mathbb{Z}_{(p)}$ -algebra is *p*-**typical** if its logarithm is of the form $\sum_{i} l_{i} x^{p^{i}}$. (Definition for non-torsion-free $\mathbb{Z}_{(p)}$ -algebras is more complicated.)

Example

Let *ϵ* : *MU*_{(*p*)*} → *MU*_{(*p*)*} (Quillen's idempotent) classify the *p*-typicalization of the universal FGL. Let *BP** := im *ϵ*.

Applications

Definition

A FGL over a torsion-free $\mathbb{Z}_{(p)}$ -algebra is *p*-**typical** if its logarithm is of the form $\sum_{i} l_{i} x^{p^{i}}$. (Definition for non-torsion-free $\mathbb{Z}_{(p)}$ -algebras is more complicated.)

Example

- Let ε : MU_{(p)*} → MU_{(p)*} (Quillen's idempotent) classify the p-typicalization of the universal FGL. Let BP_{*} := im ε.
- $BP_* \cong \mathbb{Z}_{(p)}[v_n | n \in \mathbb{N}] \implies$ Landweber exact.

何 ト イヨ ト イヨ ト

Definition

A FGL over a torsion-free $\mathbb{Z}_{(p)}$ -algebra is *p*-**typical** if its logarithm is of the form $\sum_{i} l_{i} x^{p^{i}}$. (Definition for non-torsion-free $\mathbb{Z}_{(p)}$ -algebras is more complicated.)

Example

- Let ε : MU_{(p)*} → MU_{(p)*} (Quillen's idempotent) classify the p-typicalization of the universal FGL. Let BP_{*} := im ε.
- $BP_* \cong \mathbb{Z}_{(p)}[v_n | n \in \mathbb{N}] \implies$ Landweber exact.
- This constructs the Brown Peterson spectrum BP.

• • • • • • • •

Definition

A FGL over a torsion-free $\mathbb{Z}_{(p)}$ -algebra is *p*-**typical** if its logarithm is of the form $\sum_{i} l_{i} x^{p^{i}}$. (Definition for non-torsion-free $\mathbb{Z}_{(p)}$ -algebras is more complicated.)

Example

- Let ε : MU_{(p)*} → MU_{(p)*} (Quillen's idempotent) classify the p-typicalization of the universal FGL. Let BP_{*} := im ε.
- $BP_* \cong \mathbb{Z}_{(p)}[v_n | n \in \mathbb{N}] \implies$ Landweber exact.
- This constructs the Brown Peterson spectrum BP.

Theorem

 (BP_*, BP_*BP) classifies *p*-typical FGLs and strict isos between *p*-typical FGLs.

・ 戸 ト ・ ヨ ト ・ ヨ ト

We have lots of FGL examples, but what about FGs?

э

We have lots of FGL examples, but what about FGs?

Example

An elliptic curve over R produces a FG over R but not necessarily a FGL.

We have lots of FGL examples, but what about FGs?

Example

An elliptic curve over R produces a FG over R but not necessarily a FGL.

Q: When do FGs give us homology theories?

Definition

A morphism $\mathcal{F} : \mathcal{M} \to \mathcal{N}$ is **representable** if for all Spec $A \to \mathcal{N}$, the pullback $\mathcal{M} \times_{\mathcal{N}}$ Spec A is equivalent to an affine scheme Spec P.

Definition

A morphism $\mathcal{F} : \mathcal{M} \to \mathcal{N}$ is **representable** if for all Spec $A \to \mathcal{N}$, the pullback $\mathcal{M} \times_{\mathcal{N}}$ Spec A is equivalent to an affine scheme Spec P.

Definition

A representable morphism is **flat** (resp. a **covering**) if all pullbacks to affine schemes are flat (resp. coverings).

Proposition

To check representability/flatness/faithful flatness of $\mathcal{N} \to \mathcal{M}_{(\mathcal{A},\Gamma)}$, it is enough to check on the pullback by Spec $\mathcal{A} \to \mathcal{M}_{(\mathcal{A},\Gamma)}$.

To check representability/flatness/faithful flatness of $\mathcal{N} \to \mathcal{M}_{(\mathcal{A},\Gamma)}$, it is enough to check on the pullback by Spec $\mathcal{A} \to \mathcal{M}_{(\mathcal{A},\Gamma)}$.

Proposition

The category of quasi-coherent sheaves on $\mathcal{M}_{(A,\Gamma)}$ is equivalent to the category of (A, Γ) -comodules.

To check representability/flatness/faithful flatness of $\mathcal{N} \to \mathcal{M}_{(\mathcal{A},\Gamma)}$, it is enough to check on the pullback by Spec $\mathcal{A} \to \mathcal{M}_{(\mathcal{A},\Gamma)}$.

Proposition

The category of quasi-coherent sheaves on $\mathcal{M}_{(A,\Gamma)}$ is equivalent to the category of (A, Γ) -comodules.

Proposition

$$\begin{aligned} \mathcal{F}: \operatorname{Spec} R \to \mathcal{M}_{(A,\Gamma)} \text{ flat } \iff \\ \mathcal{F}^*: \operatorname{QCoh}(\mathcal{M}_{(A,\Gamma)}) \to \operatorname{QCoh}(\operatorname{Spec} R) \text{ exact.} \end{aligned}$$

 $\begin{array}{l} \mathcal{F}: \operatorname{Spec} R \to \mathcal{M}^s_{FG} \text{ flat } \iff \mathcal{F} \text{ Landweber exact FG} \\ \Longrightarrow X \mapsto \mathcal{F}^* MU_*(X) \text{ homology theory.} \end{array}$

< ∃ >

 $\begin{array}{l} \mathcal{F}: \operatorname{Spec} R \to \mathcal{M}^s_{FG} \text{ flat } \iff \mathcal{F} \text{ Landweber exact FG} \\ \Longrightarrow X \mapsto \mathcal{F}^* MU_*(X) \text{ homology theory.} \end{array}$

• Periodify: $MP := \bigvee_{i \in \mathbb{Z}} \Sigma^{2i} MU$.

 $\begin{array}{l} \mathcal{F}: \operatorname{Spec} R \to \mathcal{M}^s_{FG} \text{ flat } \iff \mathcal{F} \text{ Landweber exact FG} \\ \Longrightarrow X \mapsto \mathcal{F}^* MU_*(X) \text{ homology theory.} \end{array}$

• Periodify:
$$MP := \bigvee_{i \in \mathbb{Z}} \Sigma^{2i} MU$$
.

• Replace (MU_*, MU_*MU) with (MP_0, MP_0MP) .

- $\begin{array}{l} \mathcal{F}: \operatorname{Spec} R \to \mathcal{M}^s_{FG} \text{ flat } \iff \mathcal{F} \text{ Landweber exact FG} \\ \Longrightarrow X \mapsto \mathcal{F}^* MU_*(X) \text{ homology theory.} \end{array}$
 - Periodify: $MP := \bigvee_{i \in \mathbb{Z}} \Sigma^{2i} MU$.
 - Replace (*MU*_{*}, *MU*_{*}*MU*) with (*MP*₀, *MP*₀*MP*).
 - $\mathcal{M}_{FG}^{s} \cong \mathcal{M}_{(MU_*, MU_*MU)}$ with $\mathcal{M}_{FG} \cong \mathcal{M}_{(MP_0, MP_0MP)}$.

- $\begin{array}{l} \mathcal{F}: \operatorname{Spec} R \to \mathcal{M}^s_{FG} \text{ flat } \iff \mathcal{F} \text{ Landweber exact FG} \\ \Longrightarrow X \mapsto \mathcal{F}^* MU_*(X) \text{ homology theory.} \end{array}$
 - Periodify: $MP := \bigvee_{i \in \mathbb{Z}} \Sigma^{2i} MU$.
 - Replace (MU_*, MU_*MU) with (MP_0, MP_0MP) .
 - $\mathcal{M}_{FG}^{s} \cong \mathcal{M}_{(MU_*, MU_*MU)}$ with $\mathcal{M}_{FG} \cong \mathcal{M}_{(MP_0, MP_0MP)}$.
 - Degree-2 FGLs with degree-0 FGLs.

- $\begin{array}{l} \mathcal{F}: \operatorname{Spec} R \to \mathcal{M}^s_{FG} \text{ flat } \iff \mathcal{F} \text{ Landweber exact FG} \\ \Longrightarrow X \mapsto \mathcal{F}^* MU_*(X) \text{ homology theory.} \end{array}$
 - Periodify: $MP := \bigvee_{i \in \mathbb{Z}} \Sigma^{2i} MU$.
 - Replace (MU_*, MU_*MU) with (MP_0, MP_0MP) .
 - $\mathcal{M}_{FG}^{s} \cong \mathcal{M}_{(MU_*, MU_*MU)}$ with $\mathcal{M}_{FG} \cong \mathcal{M}_{(MP_0, MP_0MP)}$.
 - Degree-2 FGLs with degree-0 FGLs.

Corollary

 $\mathcal{F}: \operatorname{Spec} R \to \mathcal{M}_{FG} \text{ flat } \iff \mathcal{F} \text{ Landweber exact FG} \\ \Longrightarrow X \mapsto \mathcal{F}^* MP_*(X) \text{ homology theory.}$

何 ト イヨ ト イヨ ト

Corollary

$$\mathcal{F}: \operatorname{Spec} R \to \mathcal{M}_{FG}$$
 flat $\implies X \mapsto \mathcal{F}^*MP_*(X)$ homology theory.

Corollary

 \exists presheaf on flat site of \mathcal{M}_{FG} valued in homology theories.

Corollary

$$\mathcal{F}: \operatorname{Spec} R \to \mathcal{M}_{FG} \text{ flat } \implies X \mapsto \mathcal{F}^*MP_*(X) \text{ homology theory.}$$

Corollary

 \exists presheaf on flat site of \mathcal{M}_{FG} valued in homology theories.

With more work...

LEFT (Stacky) (?)

 \exists presheaf on flat site of \mathcal{M}_{FG} valued in Ho(Spectra).

Corollary

$$\mathcal{F}: \operatorname{Spec} R o \mathcal{M}_{FG}$$
 flat $\implies X \mapsto \mathcal{F}^*MP_*(X)$ homology theory.

Corollary

 \exists presheaf on flat site of \mathcal{M}_{FG} valued in homology theories.

With more work...

LEFT (Stacky) (?)

 \exists presheaf on flat site of \mathcal{M}_{FG} valued in Ho(Spectra).

Remark

To prove this, need to show spectra are determined up to unique homotopy equivalence (no phantom maps, see Lurie Lecture 17).

LEFT (Stacky) (?)

 \exists presheaf on flat site of \mathcal{M}_{FG} valued in Ho(Spectra).

Example

Want Hopf algebroid representing Weierstrass equations and isos.

$$egin{aligned} &\mathcal{A}\coloneqq \mathbb{Z}[a_1,a_2,a_3,a_4,a_6,\Delta^{-1}] \ &\Gamma\coloneqq \mathcal{A}[u^{\pm 1},r,s,t] \ &\mathcal{M}_{e\!\prime\!\prime}\coloneqq \mathcal{M}_{(\mathcal{A},\Gamma)}. \end{aligned}$$

 \mathcal{M}_{ell} is the moduli stack of elliptic curves.

LEFT (Stacky) (?)

 \exists presheaf on flat site of \mathcal{M}_{FG} valued in Ho(Spectra).

Example

Want Hopf algebroid representing Weierstrass equations and isos.

$$egin{aligned} &\mathcal{A}\coloneqq \mathbb{Z}[a_1,a_2,a_3,a_4,a_6,\Delta^{-1}] \ &\Gamma\coloneqq \mathcal{A}[u^{\pm 1},r,s,t] \ &\mathcal{M}_{ell}\coloneqq \mathcal{M}_{(\mathcal{A},\Gamma)}. \end{aligned}$$

 $\mathcal{M}_{\textit{ell}}$ is the moduli stack of elliptic curves.

Theorem (Hopkins, Miller)

 $\mathcal{M}_{\textit{ell}} \rightarrow \mathcal{M}_{\textit{FG}}$ is flat.

LEFT (Stacky) (?)

 \exists presheaf on flat site of \mathcal{M}_{FG} valued in Ho(Spectra).

Theorem (Hopkins, Miller)

 $\mathcal{M}_{\textit{ell}} \rightarrow \mathcal{M}_{\textit{FG}}$ is flat.

Corollary

 $\mathcal{C}: \operatorname{Spec} R \to \mathcal{M}_{ell} \text{ flat} \implies \text{homology theory } Ell^{\mathcal{C}}_*.$

(* E) * E)

LEFT (Stacky) (?)

 \exists presheaf on flat site of \mathcal{M}_{FG} valued in Ho(Spectra).

Theorem (Hopkins, Miller)

 $\mathcal{M}_{\textit{ell}} \rightarrow \mathcal{M}_{\textit{FG}}$ is flat.

Corollary

$$\mathcal{C}: \operatorname{Spec} R \to \mathcal{M}_{ell} \text{ flat } \Longrightarrow \text{ homology theory } Ell^{\mathcal{C}}_*.$$

Corollary

 \exists presheaf on flat site of \mathcal{M}_{ell} valued in Ho(Spectra).

LEFT (Stacky) (?)

 \exists presheaf on flat site of \mathcal{M}_{FG} valued in Ho(Spectra).

Theorem (Hopkins, Miller)

 $\mathcal{M}_{\textit{ell}} \rightarrow \mathcal{M}_{\textit{FG}}$ is flat.

Corollary

$$\mathcal{C}: \operatorname{Spec} R \to \mathcal{M}_{ell} \text{ flat } \Longrightarrow \text{ homology theory } Ell^{\mathcal{C}}_*.$$

Corollary

 \exists presheaf on flat site of \mathcal{M}_{ell} valued in Ho(Spectra).

LEFT (Stacky) (?)

 \exists presheaf on flat site of \mathcal{M}_{FG} valued in Ho(Spectra).

Theorem (Hopkins, Miller)

 $\mathcal{M}_{\textit{ell}} \rightarrow \mathcal{M}_{\textit{FG}}$ is flat.

Corollary

$$\mathcal{C}: \operatorname{Spec} R \to \mathcal{M}_{ell} \text{ flat } \Longrightarrow \text{ homology theory } Ell^{\mathcal{C}}_*.$$

Corollary

 \exists presheaf on flat site of \mathcal{M}_{ell} valued in Ho(Spectra).

• Can we do better than Ho(Spectra)?

周 🕨 🖌 🖻 🕨 🖌 🗐 🕨

LEFT (Stacky) (?)

 \exists presheaf on flat site of \mathcal{M}_{FG} valued in Ho(Spectra).

Theorem (Hopkins, Miller)

 $\mathcal{M}_{\textit{ell}} \rightarrow \mathcal{M}_{\textit{FG}}$ is flat.

Corollary

$$\mathcal{C}: \operatorname{Spec} R \to \mathcal{M}_{ell} \text{ flat } \Longrightarrow \text{ homology theory } Ell^{\mathcal{C}}_*.$$

Corollary

 \exists presheaf on flat site of \mathcal{M}_{ell} valued in Ho(Spectra).

- Can we do better than Ho(Spectra)?
- Q: Can we turn flat $\mathcal{N} \to \mathcal{M}_{FG}$ into a homology theory?