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1. Introduction

The cobordism hypothesis gives a classification of extended topological field theo-
ries on manifolds with certain structures.

Fix a space X with a rank n vector bundle ξ. Let BordX,ξn denote the symmetric
monoidal (∞, n) category, where i-morphisms for i ≤ n are manifolds M i with
corners with an (X, ξ) structure. This means we think of the manifold as a bordism
between manifolds between i− 1-dimensional manifolds, and the (X, ξ) structure is
a map M i → X and an identification of Rn−i plus the tangent bundle of M with ξ.
For i > n, the morphisms are diffeomorphisms, isotopies between diffeomorphisms,
etc. We can think of X as the classifying space BG of a (topological) groupoid, so
that lifting a morphism from BO(n) to BG = X can be thought of as giving a G
structure on a rank n bundle.

Let X̃ be the frame bundle on X coming from the map to BO(n). The cobordism
hypothesis is:

Theorem 1.1 (Baez-Dolan, Hopkins-Lurie). Fun⊗(BordX,ξn , C) = MapsO(n)(X̃, C
∼=),

where C is a symmetric monoidal (∞, n)-category with duals, and C
∼= is the groupoid

of invertible maps.
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The isomorphism can be thought of as being given by evaluation at the space
of connected 0-dimensional manifolds equipped with a trivialization of the tangent
space stabilized to dimension n (which is parameterized by X̃). The O(n) action on
C
∼= comes from the case when X is a point.
A special case of this result is the result due to Galatius-Madsen-Tillmann-Weiss

which describes invertible field theories. Just as before we have a map BG→ BO(n),
and we consider the Thom spectrum MTG of the negative of the canonical bundle.

Theorem 1.2 (GMTW). Fun⊗(BordBGn , X) = Maps(ΣnMTG,X), where X is a
spectrum.

Note that we can take n → ∞ to get BordX,ξ∞ , an (∞,∞) category of bordisms.
This is a category that is stable in two ways: We have already stabilized with respect
to dimension, meaning that we only care about the stable tangent bundles of mani-
folds. We have also stabilized with respect to embedding dimension, we can think of
the manifolds involved as embedded in R∞. This is reflected on the categorical side
by having the category be symmetric monoidal.

Note that given a compatible family of maps to BO(n), we can let n go to ∞, to
describe the geometric realization of the∞,∞-bordism category as a Thom spectrum
where the group has been stabilized eg MTO, MTU . This looks similar to the result
of Pontryagin-Thom, but is subtly different: the definition of bordism category for
field theories involves manifolds with structures on their stable tangent bundles, but
the definition of standard cobordism spectra like MO and MU involves manifolds
with structures on their stable normal bundles. In many cases these two coincide:
MO = MTO,MSO = MTSO,MU = MTU,MSpin = MTSpin, but not always:
MPin+ = MTPin−.

There is also a way to destabilize the cobordism hypthesis with respect to embed-
ding dimension. This yields the tangle hypothesis, which is essentially the same as
the cobordism hypothesis, except all manifolds involved are embedded, and the cate-
gories aren’t symmetric monoidal, but rather k-fold monoidal (ie have k deloopings).

2. Outline

Here is an outline of the steps of the proof:

• First we reformulate the cobordism hypothesis in an inductive way. Let X, ξ
be a space with a principleO(n)-bundle ξ as in the construction of the bordism
category. Let X0 be the sphere bundle of associated to the bundle, with a
map f to X. f ∗ξ splits canonically as R⊕ξ0, where ξ0 is the bundle of vectors
orthogonal to the vector on the sphere. Adding the trivial copy of R gives an
inclusion BordX0,ξ0

n−1 → BordX,ξn . We will reformulate the universal property

of BordX,ξn in terms of how to extend functors along this inclusion. The
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universal property will say that we need to specify what the field theory does
on a disk of dimension n with a nondegeneracy condition on the morphism
corresponding to the disk.
• The next step is only for simplicity (rather than necessity): we will reduce to

proving the cobordism hypothesis for the unoriented bordism category Bordn.
It isn’t too surprising that we can do this, since the unoriented bordism
category is universal in the sense that its choice of X, ξ is universal, however
the actual implementation is a bit more subtle.
• Since the inclusions Bordn → Bordn+1 are highly connected (their k mor-

phisms agree for small k) and lots of duals exist, it is possible to capture
the data of the inclusions in terms of (∞, 1)-categorical data, which is nice
because (∞, 1)-categories are easier to work with.
• The most important step in the proof will use a version of Morse theory due

to Igusa to prove the cobordism hypothesis for another category Bordffn . In
particular, we can understand bordisms in terms of handle attachments and
cancellations, which will give generators and relations for Bordffn in terms of
Bordn−1. The difference between Bordffn and Bordn is nonexistent, and is can
be thought of as the irrelevence of the choice of Morse function.
• The last step of the proof is one that really shouldn’t have to be there, namely

proving that Bordffn is equivalent to Bordn. Doing this involves understanding
an obstruction theory for (∞, n)-categories, knowing from some Morse theory
that they are equivalent in a range of dimensions, and doing cohomological
computations to show that the two agree in general. The reason this step
shouldn’t have to be there is that it is equivalent to a conjecture about to
Igusa’s Morse theory. If an independent proof of that conjecture existed, this
step could be avoided. Nevertheless, this step is interesting, as one has to try
to do stable homotopy theory with (∞, n)-categories.

3. Inductive formulation

Recall that there is an map BordX0,ξ0
n−1 → BordX,ξn , where X0 is the unit sphere

bundle of ξ. Let C be as in the cobordism hypothesis, and consider a field theory
on BordX0,ξ0

n−1 we would like to extend along BordX,ξn . For each x ∈ X, the unit disk
of ξ at x, Dn

x is a bordism from φ to Sn−1x , the fibre of X0 → X at x. The sphere
Sn−1x can be broken into two hemispheres, making it the composite D+ ◦ D−. We
say that Dn

x : φ→ D+ ◦D− exhibits D+ as right adjoint to D−. This is a condition
that doesn’t depend on the way we broke up Sn−1x into hemispheres.

Theorem 3.1. Let Z0 : BordX0,ξ0
n−1 → C be symmetric monoidal, and C an (∞, n)-

category with duals. Then the following data are equivalent:

• An extension Z of Z0 to BordX,ξn .
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• Families of nondegenerate morphisms 1→ Z0(S
n−1
x ) parameterized by X.

Proposition 3.2. Theorem 3.1 in dimensions ≤ n and Theorem 1.1 in dimensions
< n imply Theorem 1.1 in dimension n.

Proof. It suffices to assume that X is a point, because Theorem 3.1 implies that the
left hand side of the cobordism hypothesis sends colimits of spaces over BO(n) to
limits. But spaces over BO(n) is generated under colimits by a point.

When X is a point, X0, ξ is Sn−1 with its tangent bundle. Thus we need to show
that giving the data of Z0 as well as a nondegenerate morphism η : 1→ Z0(S

n−1) is
equivalent to giving an object of C.

By Theorem 1.1 in dimension n− 1, giving the data of Z0 is equivalent to giving
an O(n− 1)-equivariant map from O(n) to C

∼=. The action comes from the fibration
O(n − 1) → O(n) → Sn−1. We can break up O(n) into the fibres at the north and
south poles, and everything in between. O(n) also is acted on by O(n− 1) from the
right. While this action doesn’t preserve the fibres, it preserves the north and south
pole, and relates fibres along each Sn−2 slice of the rest of the sphere. From this
description, we get that an O(n− 1)-equivariant map from O(n) is the same as two
O(n− 1)-equivariant maps from O(n− 1) (corresponding to the north pole with the
inverse right action and south pole with usual action), and an O(n− 2)-equivariant
homotopy from the first to the second conjugated by the map in O(n− 1) reflecting
along a direction.

By Theorem 1.1, this is equivalent to two functors Z− → C,Z+ → Cop out of
Bord∗n−1, where Cop is the opposite on the level of n − 1-morphisms, along with an

isomorphism of their restrictions to BordS
n−2

n−2 (the underlying (∞, n − 2)-categories
of C and Cop agree).

By Theorem 3.1 in dimension n − 1, this is equivalent to giving one functor

Z ′ : BordS
n−2

n−2 → C and a nondegenerate morphism f : 1 → Z ′(Sn−2) and g :
1 → Z ′(Sn−2) in C and Cop respectively. Thus we can think of g as a morphism
Z ′(Sn−2)→ 1. But the composite g ◦ f is exactly the Z0(S

n−1), and so the data of η
and g are redundant since they exhibit f as a right adjoint of g, and right adjoints
are essentially unique. Thus we are left with just the data of f and Z ′.

Via Theorem 3.1 again, this is equivalent to the data of functor Z− : Bord∗n−1 → C,
which by Theorem 1.1 in dimension n− 1 is equivalent to just an object of C. �

4. Reduction to Unoriented Case

Bordn = BordBO(n)
n will be the unoriented bordism category.

The right hand side of the cobordism hypothesis is MapsO(n)(X̃, C
∼=), which is

the same as MapsO(n)(EO(n), (C
∼=)X̃ . So naively, we could try to reduce to the

unoriented case by replacing C by a category CX,ξ such that (CX,ξ)
∼= = (C

∼=)X̃ ,
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and such that Fun⊗(BordX.ξn , C) = Fun⊗(Bordn, C
X,ξ), and the general case would

follow immediately.
This strategy doesn’t work exactly, but a relative version of it does: There is a

fibration of symmetric monoidal (∞, n)-categories Famn(C) → Famn = Famn(∗)
and a map (X, ξ) : Fun⊗(Bordn, Famn) such that lifts of (X, ξ) to Famn(C) are the

same as elements of Fun⊗(Bord(X,ξ)
n , C). This is summarized in the below diagram.

Bordn Famn(C)

Famn(∗)
(X,ξ)

⇐⇒
BordX,ξn C

∗

The objects category Famn(C) are C-values local systems of functors from a
space. n-morphisms are n-fold correspondences between such local systems (the
correspondences make sure that Famn(C) has duals), and the symmetric monoidal
structure is the product.

In particular Famn(∗) is the category whose objects are topological spaces and n-
morphisms are n-fold correspondences between topological spaces. We can produce
the functor (X, ξ) by sending a k-morphism Mk to the classifying space for (X, ξ)-
structures on Mk.

From this correspondence, it should not be surprising that one can use the cobor-
dism hypothesis for Bordn to deduce the inductive form of it for BordX,ξn .

5. Unfolding of Higher Categories

The next step is to reinterpret the data of the categories Bordn in terms of (∞, 1)-
categories. All categories and functors here are symmstric monoidal unless otherwise
specified. We have currently reduced the cobordism hypothesis to a statement about
the sequence Bord1 → Bord2 → Bord3 → . . . . To see that the data might be describ-
able in terms of (∞, 1)-categories, we can observe that the inclusion of Bordn into
Bordn+1 is that it is n-connected, which is a notion analogous to the corresponding
notion for spaces. In this case it amounts to the observation that the k-morphisms
for k ≤ n are the same in each category. Thus there aren’t as many levels of non-
invertible morphisms where they differ, so this data should be able to be captured
using a lower level of category.

The sequence Bordn is an example of what is called a skeletal sequence of
categories, which is a way of formalizing the fact that certain adjoints exist and
that each inclusion is sufficiently connected. We can replace Bordn with a sequence
of symmetric monoidal (∞, 1) categories Cobun∂ (n) that form a categorical chain
complex: In otherwords there are symmetric monoidal coCartesian fibrations d :
Cobun∂ (n)→ Cobun∂ (n−1) and isomorphisms of d2 with the constant map to the unit
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in a coherent way. Cobun∂ (n) is the category of manifolds with boundary of dimension
n − 1 with boundary with maps given by the space of cobordisms (not necessarily
trivial on the boundary). The map between them is given by taking the boundary.

Let’s see how this replacement works for n = 1. Bord1 = Cobun∂ (1). The map
Bord1 → Bord2 is essentially surjective, and for any X, Y in Bord2, the category
MapsBord2(X, Y ) is equivalent to MapsBord2(1, Y ⊗X∨). This means that to recover
the map to Bord2 we just need to remember Y 7→MapsBord2(1, Y ) as a lax monoidal
functor Bord1 → Cat(∞,1). But by a version of the Grothendieck construction, this
is equivalent to a coCartesion fibration to Bord1, and one can show this gives ex-
actly something equivalent to Cobun∂ (2). This example can be spiced up to give a
general correspondence between skeletal sequences and categorical chain complexes
(for which the definitions have only been sketched here).

A similar construction for (∞, n)-categories gives the following:

Proposition 5.1. The following data are equivalent for a symmetric monoidal (∞, n−
1) category with duals:

• n − 2-connected symmetric monoidal functors Bn−1 → Bn, Bn a symmetric
monoidal (∞, n) category
• Lax symmetric monoidal functors Ωn−2Bn−1 → Cat∞,1
• Symmetric monoidal coCartesian fibrations C → Ωn−2Bn−1.

6. The Index Filtration

Ωn−2 Bordn−1 is the category Cobunt (n − 1) of closed unoriented manifolds of di-
mension n−2 and bordisms between them. The map Bordn−1 → Bordn corresponds
via the above proposition to the map Cobunt (n− 1) sending an n− 2 manifold M to
the category B(M), where the objects are n − 1-manifolds equipped with a diffeo-
morphism of their boundary with M , and the maps are bordisms that are trivial on
the boundary between such manifolds. To analyse this category, we will use Morse
theory.

Let’s recall the basic idea of Morse theory: Suppose you have a compact manifold
N and you choose a smooth Morse (i.e generic) function f from N to the real numbers
R. Morse means that its derivative vanishes at isolated points such that the Hessian
is nondegenerate. We can consider the process of building up N from its descending
manifolds Nd

r which is the preimage under f of (−∞, r]. The diffeomorphism type
of Nd

r is empty for small r and N for large r, and only changes when a critical
point of f happens (because apart from that f is a proper submersion). By the
nondegeneracy hypothesis, the diffeomorphism type changes at the critical points in
a very predictable way, namely by handle attachments.

A d-handle H in dimension n is a copy of Dn−d × Dd with an attaching map
φ : Dn−d × Sd−1 → N onto a manifold with boundary N . We can glue the handle
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H ∪φ N along φ and smooth the corners to obtain another smooth manifold with
boundary, a process we refer to as attaching a handle. Every time we pass a critical
point, our manifold changes by a handle attachment, and moreover the attaching
data is determined by local data of the critical point. For example d is the index of
the Hessian as a symmstric bilinear form over the reals.

The perspective we want to take is that choosing a Morse function really is a
way of presenting N as a bordism. For example, by choosing a Morse function with
critical points who take on distinct values we obtain the result that every bordism is
a composite of handle attachments, as we can break up N into f−1([ai, ai+1]), where
only one critical point occurs within each interval. When we attach a d-handle, we
do surgery on the boundary of the manifold, replacing a copy of Dn−d × Sd−1 with
Sn−d−1 ×Dd.

A more refined version of Morse theory, called Cerf theory, explains how to move
between different Morse functions f0, f1 via a family ft that fail to be Morse at finitely
many values in predictable ways. One can describe all the possible moves entirely at
the level of handles. the two possible moves are essentially changing the time when
a handle is attached, isotoping the attaching map φ of a handle, and cancelling or
uncancelling a pair of d and d− 1 handles whose cores intersect geometrically once.

However what we really want is even more sophisticated than Cerf theory: we want
an understanding of the whole space of ways to present a bordism, not just generic
paths between bordisms. To do this we use Igusa’s theory of framed functions. A
framed function is like a Morse function with slightly worse singularities allowed
(those that occur when cancelling handles), and a identification of the negative in-
dex part of the Hessian at each critical point with a standard negative definite form.
We can replace B(M) with B(M)ff where the 1-morphisms in B(M)ff are equipped
with framed functions. There is a natural map B(M)ff to B(M) that forgets the
structure. By the category unfolding equivalence, the assignment M 7→ B(M) corre-
sponds to a map Bordn−1 → Bordfn f , and moreover we get a map Bordfn f → Bordn.

The point is to use Igusa’s theory to prove that the cobordism hypothesis holds
for the map Bordn−1 toBordffn , and then show that Bordffn and Bordn agree.

Bordffn is good because it is as if each morphism comes with a presentation in
terms of handle attachments. To study it, we will filter between Bordn and Bordffn
via a category Fk, which will unfold to the assignment M 7→ Bk(M) where Bk(M)
is the category of bordisms for which all ciritcal points are index ≤ k. For k ≥ n
this is just Bff (M) and for k < 0, there are no critical points so all the bordisms
are trivial. Thus the Fk interpolate between Bordn−1 and Bordffn , and are called the
index filtration. It will turn out that only index 0 and index 1 are important with
respect to mapping into fully dualizable categories.
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Given this filtration, the main things proven about it are essentially a version of
handle calculus:

• The functor B0 : Ωn−2 Bordn−1 → Cat(∞,1) is freely generated as a lax sym-
metric monoidal functor by the O(n)-equivariant morphism given by a disk
in Bk(φ). Note that there is no nondegeneracy condition as well as no dual-
izability condition on the target. This is quite reasonable to expect, since for
index 0, we can only add in disks that are disjoint to the rest of the bordism,
and this is a well defined operation up to a O(n) action. This implies that
F0 is freely generated as a symmetric monoidal (∞, n)-category from Bordn
by a morphism given by a disk.
• For k > 0, the functor Bk : Ωn−2 Bordn−1 → Cat(∞,1) is generated from Bk−1

by an O(n− k)-equivariant 1-morphism (handle attachment of index k) sub-
ject to one relation i.e O(n− k)-equivariant 2-morphism (handle cancellation
between index k and k − 1).
• The next claim is that if C is symmetric monoidal Fun⊗(F1, C)→ Fun⊗(F0, C)

is fully faithful with essential image the functors such that the morphism cor-
responding to the disk is nondegenerate. This quite reasonably follows from
the previous, since the only relation obtained when adding a 1-handle is can-
cellation with 0-handles, and we can copy the proof of the (1, 1)-categorical
cobordism hypothesis in dimension 1 using 0 and 1-handles to see that this
just adds in the relation that the disk is nondegenerate.
• The final claim is that if C additionally has all duals, then for k ≥ 1,
Fun⊗(Fk+1, C) → Fun⊗(Fk, C) is an equivalence for k ≥ 1. This follows
from the same claim as before, but the reason is more subtle, and involves
thinking more carefully about how the unfolding of categories works. The
point is that the handle cancellations of k− 1 and k-handles impose another
nondegeneracy condition, that is redundant when mapping to C, since duals
are essentially unique. Alternatively, the rest of the handles can be thought
of as being there to make the category Bordn itself have duals.

7. Obstruction theory

We know at this point that Bordffn has the right universal property, but we need
to know that our choice of framed function didn’t matter. It is true that given a
bordism, the space of framed functions is contractible. However, this fact is actually
equivalent to the fact that Bordffn → Bordn is an equivalence, and as of yet doesn’t
have an independent proof. Nevertheless, Igusa did show some connectivity bounds
on the space of framed functions.

The reason we can show that Bordffn → Bordn is an equivalence is because of
the connectivity bound that Igusa showed as well as some cohomology computations
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generalizing work of GMTW. The goal is to set up an obstruction theory for (∞, n)
categories that generalizes the Postnikov tower, and use it to show the equivalence.
To see why we would need both a connectivity bound as well as cohomology com-
putations, we can make an analogy with the case n = 0: it is not true that a map
of spaces that is an equivalence if it is just an equivalence on homology. One also
needs to check that it is an equivalence on the fundamental groupoid, which is a
connectivity statement.

Here, we will use a generalization of the Postnikov tower, namely the (m,n)-
truncation of an (∞, n)-category (or the homotopy m-category). The analog of
Eilenberg-Maclane spaces and cohomology will arise from the category Loc(C) of
local systems on C, which for an (∞, n) category has an inductive definition. For
example n = 0 it is just a functor into abelian groups, and for n = 1 we require
a functor from Maps(x, y) into abelian groups as well as a map local systems on
Maps(x, y) ×Maps(y, z) from the product of the pullbacks of the local system on
Maps(x, y) and Maps(y, z) to the pullback of the local system on Maps(x, z).

The definition of cohomology on a local system is also inductive, and can be
thought of as the homotopy classes of sections of a fibration of (∞, n)-categories
whose fibres are Eilenberg-MacLane spaces. There are a few subtleties, for example
that we really would like to work with a local system compatible with the symmetric
monoidal structure (since we are essentially doing stable homotopy theory for n-
categories).

The resulting obstruction theory says that a map C → C ′ of symmetric monoidal
(∞, n)-categories is an equivalence iff it is an equivalence on homotopy (n + 1, n)-
categories and induces an isomorphism on cohomology in any local system. In the
case of interest, the first claim comes from a reult of Igusa on connectivity of the
space of framed functions on a bordism. The cobordism hypothesis can be used to
identify the relative cohomology of the pair (Bordn,Bordn−1) with a degree shifted
cohomology of BO(n) for appropriate coefficient systems. This result is then true
for Bordffn , so it suffices to show it is also true for Bordn.

This relative cohomology for constant local systems is also the relative cohomology
of the pair (ΣnMTO(n),Σn−1MTO(n−1)). But the cofibre of these spectra is indeed
Σ∞+n

+ BO(n), by cohomology calculations in the work of GMTW. The paper claims
that their methods can be generalized to show that the relative cohomology agrees
for arbitrary coefficient systems, which completes the proof.
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