The Cobordism Hypothesis

September 30, 2020

Abstract

A talk at the MIT Juvitop seminar.

1 The Cobordism Hypothesis

 $\operatorname{Fun}^{\otimes}(\operatorname{Bord}_{n}^{\operatorname{fr}}, \mathcal{C}) \xrightarrow{\sim} (\mathcal{C}^{\operatorname{nd}})^{\sim} :=$ the maximal ∞ -groupoid on the *n*-dualizable objects of \mathcal{C} .

 $F \mapsto F(\mathrm{pt})$

2 Refreshments

Categories will be (∞ , something), often (∞ , n). Monoidal categories will be symmetric. An object X in a monoidal category C is k-dualizable if there exisits

- 1. (level 0) $\mathbf{1} \xrightarrow{\text{coev}} X \otimes X^{\vee}, X^{\vee} \otimes X \xrightarrow{\text{ev}} \mathbf{1}$ satisfying Zorro,
- 2. (level 1) $id_1 \xrightarrow{\epsilon} \operatorname{coev}^T \circ \operatorname{coev}$, $\operatorname{coev} \circ \operatorname{coev}^T \xrightarrow{\eta} id_{X \otimes X^{\vee}}$, same for ev, satisfying Zorro,
- 3. (level 2) etc, etc
- 4. ...
- 5. (level k-1) etc, etc.

Lemma 2.0.1. ("Overdualizability") IF k > n then k-dualizability is the same as invertibility.

Proof. The level n condition tells us that we have adjunctions with units and counits that are equivalences (i.e. isomorphisms in the homotopy category), i.e. the level (n-1) adjunctions were actually equivalences themselves. BUt those are ten units and counits of the level (n-2) adjunctions...

2.1 A consequence of "overdualizability"

Let's consider maps out of

 $\operatorname{Free}_{n}^{nd}(\operatorname{pt}) := \operatorname{the} \operatorname{free} \operatorname{sym.} \operatorname{mon.} (\infty, n)$ -category on one *n*-dualizable object.

into a category \mathcal{C} . I.e. let's think about

$$\operatorname{Fun}^{\otimes}(\operatorname{Free}_{n}^{n\mathfrak{q}}(\operatorname{pt}), \mathcal{C}).$$

Symmetric monoidality implies that $pt \mapsto an n$ -dualizable object of C. Given two functors F and G, a morphism $\eta : F \to G$ is a symmetric monoidal functor

 $\eta : \operatorname{Free}_n^{nd}(\operatorname{pt}) \to \operatorname{Path}(\mathcal{C}).$

Since Path(C) is one categorical dimension lower, if C was (∞, n) then η lands in the *n*-dualizable objects of an $(\infty, n-1)$ -category. So η is invertible!

Warning 2.1.1. The symmetric monoidal structure on Path(C) that's being used above, and the one in which η is invertible is the monoidal structure coming from *tensoring* 1-morphisms in C. It is not the same as the usual monoidal structure coming from *composing* 1-morphisms in C.

Luckily, Zorro's equation implies that invertibility for the \otimes -monoidal structure implies invertibility for the composition monoidal structure.

Example 2.1.2. (level 1) $X \in \operatorname{Free}_n^{nd}(\operatorname{pt})$. If η_X stands for the component of a map $\eta : F \to G$, then $\eta_{X^{\vee}}$ is its \otimes -inverse and $(\eta_{X^{\vee}})^{\vee}$ is its composition inverse:

Upshot: If \mathcal{C} is (∞, n) then by "overdualizability, Fun^{\otimes}</sup>(Freend_n(pt), \mathcal{C}) is an ∞ -groupoid! Moreover, it only sees the *n*-dualizable objects of \mathcal{C} , and by freeness it's exactly that:

$$\operatorname{Fun}^{\otimes}(\operatorname{Free}_{n}^{nd}(\mathrm{pt}),\mathcal{C})\simeq(\mathcal{C}^{nd})^{\sim}.$$

So we can reformulate the cobordism hypothesis from above as follows.

2.2 The Cobordism Hypothesis, Framed

The Cobordism Hypothesis, Framed: There is an equivalence of symmetric monoidal (∞, n) -categories Bord_n^{fr} \simeq Free_nnd(pt).

3 Symmetries

Geometrically, Bord^{fr}_n carries an O(n) action by rotation of the framing. So the Cobordism Hypothesis implies that O(n) acts on $(\mathcal{C}^{nd})^{\sim}$ for any sym. monoidal category!

3.1 Comparison with stable homotopy

If instead of $(\mathcal{C}^{nd})^{\sim}$ we take " $GL_1\mathcal{C} := \mathcal{C}^{\times} = (\mathcal{C}^{\infty d})^{\sim}$, then that is a Picard ∞ -groupoid, which is the same as an infinite loop space or "connective spectrum." Such an object X is acted on by the monoid $\Omega^{\infty}S^{\infty}$: X comes with a sequence of "deloopings" $X_0 = X, X_1, X_2, ..., X_i \simeq \Omega X_{i+1}, X \simeq \Omega^n X_n$, so $\Omega^n S^n$ acts by precomposition and the colimit acts on the colimit.

There is a "J-homomorphism" $O(n) \to \Omega^{n+1}S^{n+1}$ sending an orthogonal matrix to its action on the one-point compactification of \mathbb{R}^n , and in the situation that $(\mathcal{C}^{nd})^{\sim} \simeq \mathcal{C}^{\times} = (\mathcal{C}^{\infty d})^{\sim}$ the Cobordism Hypothesis O(n) action is the same as this one.

Remark 3.1.1. So in a sense, the space of framed *n*-dimensional fully extended TFTs with fixed target C is a kind of unstable/truncated version of an infinite loop space or "connective spectrum." Another comment on that at the end...

3.2 Changing the symmetry group

We are motivated in two ways.

1. Geometrically/physically we have a lot of relevant/interesting less structured bordism categories

Bord_n^(X,\xi) := {manifolds M^d with a map $M^d \xrightarrow{f} X$ and an isomorphism $TM \oplus \mathbb{R}^{n-d} \simeq f^*\xi$, bordisms of those}.

2. For any topological space Y, not just Y = pt, we can consider the category $\operatorname{Free}_n^{nd}(Y)$, with

$$\operatorname{Fun}^{\otimes}(\operatorname{Free}_{n}^{nd}(\mathrm{pt}), \mathcal{C}) \simeq \operatorname{Hom}_{\operatorname{Spaces}}(Y, (\mathcal{C}^{nd})^{\sim})$$

Combining that with the O(n) action and a love for equivariant homotopy theory leads you to conder O(n)-spaces Y and equivariant maps.

It turns out you get the best answer you could hope for.

3.3 Cobordism Hypothesis, arbitrarily structured

The Cobordism Hypothesis, Framed: Let $O(n) \hookrightarrow Fr(\xi) \to X$ be the frame bundle of $\xi \to X$. Note that the fiber of the pullback of ξ is canonically trivial over every point $p \in Fr(\xi)$) so that each point defined an object in the (X, ξ) -structured bordism category. There is an equivalence of symmetric monoidal $(\infty, 0)$ -categories

$$\operatorname{Fun}^{\otimes}(\operatorname{Bord}_{n}^{(X,\xi)}, \mathcal{C}) \to \operatorname{Hom}_{\operatorname{Spaces}}(\operatorname{Fr}(\xi), (\mathcal{C}^{\operatorname{nd}})^{\sim})^{O(n)}$$
$$F \mapsto \left(\operatorname{Fr}(\xi) \ni p \mapsto F(\operatorname{pt} \to p \in \operatorname{Fr}(\xi))\right).$$

3.4 Important special cases

- 1. $(X,\xi) = (BG,\xi_{\rho})$ for a group G and a continuous representation $G \xrightarrow{\rho} O(n)$ with ξ_{ρ} the associated vector bundle.
- 2. Contained in the special case above are the even more special cases G = 1, G = O(n) with $\rho = id$, and G = SO(n) with $\rho =$ inclusion, which recover framed, unoriented, and oriented bordism.

In that case we just write Bord_n^G and hope that the representation ρ is understood, and the Cobordism Hypothesis says

$$\operatorname{Fun}^{\otimes}(\operatorname{Bord}_{n}^{G}, \mathcal{C}) \to \operatorname{Hom}_{\operatorname{Spaces}}(EG \times_{G} O(n), (\mathcal{C}^{\operatorname{nd}})^{\sim})^{O(n)} \simeq \operatorname{Hom}_{\operatorname{Spaces}}(EG, (\mathcal{C}^{\operatorname{nd}})^{\sim})^{G} \simeq ((\mathcal{C}^{\operatorname{nd}})^{\sim})^{hG}$$

The last thing is called the "homotopy fixed points."

3.5 From the Cobordism Hypothesis toward GMTW

Suppose that \mathcal{C} is a Picard ∞ -groupoid. Then all maps $\operatorname{Bord}_n^G \to \mathcal{C}$ factor through the Picard ∞ -groupoid quotient $\operatorname{Bord}_n^G \twoheadrightarrow |\operatorname{Bord}_n^G|$. So the Cobordism Hypothesis says that

$$\operatorname{Hom}_{\Omega^{\infty}}(|\operatorname{Bord}_{n}^{G}|, \mathcal{C}) \simeq \operatorname{Fun}^{\otimes}(\operatorname{Bord}_{n}^{G}, \mathcal{C}) \xrightarrow{\sim} \mathcal{C}^{hG}.$$

In other words, $|\text{Bord}_n^G|$ is the infinite loop space corepresenting the functor "take the homotopy *G*-fixe points." That thing has a name: The infinite loop homotopy quotient of $\Omega^{\infty}S^{\infty}$. How do we understand that thing? Well first,

$$\mathcal{C}^{hG} \simeq \operatorname{Hom}_{\operatorname{Spaces}}(EG, \mathcal{C})^G \simeq \operatorname{Hom}_{\Omega^{\infty}}(\Omega^{\infty}\Sigma^{\infty}(EG), \mathcal{C})^G$$

Now $\Omega^{\infty}\Sigma^{\infty}(EG)$ has two actions of G: one from before and a new one from the "J-homomorphism" $G \to O(n) \to \Omega^{\infty}S^{\infty}$. But those two G actions become indentified on \mathcal{C} , so we find ourselves faces with

 $\operatorname{Hom}_{\Omega^{\infty}}(\operatorname{coequalizer} of the G \operatorname{actions}, \mathcal{C})$

Writing $\Omega^{\infty} \Sigma^{\infty}(EG)$ as $\Omega^{\infty} S^{\infty} \wedge EG$ we get

$$\operatorname{Hom}_{\Omega^{\infty}}(\Omega^{\infty}S^{\infty}\wedge_{G}EG,\mathcal{C}).$$

Now $\Omega^{\infty}S^{\infty} \wedge_G EG$ is the stable spherical fibration associated to a certain map $BG \xrightarrow{\phi} B\Omega_1^{\infty}S^{\infty} = "BGL_1\Omega^{\infty}S^{\infty}$." Homotopy theorists call that spherical fibration the "Thom spectrum" associated to the map ϕ . Finally, if you stare at it long enough I clam you'll find that

$$\phi = -\rho = BG \xrightarrow{B\rho} BO(n) \hookrightarrow BO \xrightarrow{-1} BO \xrightarrow{J} B\Omega_1^{\infty} S^{\infty}.$$

All in all, the Cobordism Hypothesis gives an isomorphism of infinite loop spaces $|\text{Bord}_n^G| \simeq \text{Thom}(-\rho \to BG)$.

3.6 A final comment

We saw above how $\operatorname{Fun}^{\otimes}(\operatorname{Bord}_n^{\operatorname{fr}}, \mathcal{C}) \xrightarrow{\sim} (\mathcal{C}^{nd})^{\sim}$ is a kind of unstable/truncated version of an infinite loop space, in the sense that O(n) acts as it does through $\Omega^{\infty}S^{\infty}$, if the latter does act. A natural question to ask is: Is there anything more than O(n) that acts on all $(\mathcal{C}^{nd})^{\sim}$? The answer is yes, PL(n) does. And, when $n \neq 4$, PL(n) is actually it.

That has a weird consequence: $(\mathcal{C}^{nd})^{\sim}$ differs from C^{\times} only by the existence of dualizable-but-not-necessarily-invertible objects. Just that tiny difference collapses the symmetries that act from $\Omega^{\infty}S^{\infty}$ to PL(n), and the ∞ -groupoid $(\mathcal{C}^{nd})^{\sim}$ knows something about n!