FULLY DUALIZABLE OBJECTS

JACKSON VAN DYKE

Contents

1. Dualizable objects	1
1.1. Vector spaces	1
1.2. Rewriting finite dimensionality	2
1.3. 0-dualizability	3
2. Dualizable 1-morphisms	3
2.1. Cat	3
2.2. Rewriting adjunction	4
2.3. Adjunction in a 2-category	5
3. Full dualizability	5
3.1. Definition	5
3.2. Examples	6
3.3. k -adjoints as 1-adjoints	6
References	7

1. DUALIZABLE OBJECTS

1.1. Vector spaces. Let

$Z: \operatorname{Cob}(1) \to \operatorname{Vect}_k$

be a 1-dimensional topological field theory. This sends every closed, oriented 0-manifold to a vector space. Every such manifold is a disjoint union of points, either positively or negatively oriented,¹ written + and - respectively.

Therefore, for some k vector space V, we have:

$$Z\left(+\right)=V.$$

Since the following map:

$$Z\left(\begin{array}{c} +\bullet \\ & -\bullet \end{array}\right): Z\left(+\right) \otimes Z\left(-\right) \to k$$

is a perfect pairing, the assignment to Q is isomorphic to the linear dual V^{\vee} :

$$Z\left(-\right) = V^{\vee} = Z\left(+\right)^{\vee} .$$

Date: September 23, 2020.

¹There are only two oriented manifolds which consist of only a single point up to orientation-preserving diffeomorphism.

Recall specifying finite-dimensional V is sufficient to determine Z. The main point being that $Z(S^1) = \dim V$.

1.2. Rewriting finite dimensionality. We want to rephrase the notion of a vector space having finite dimension in categorical terms. Consider the "Mark of Zorro" as a bordism between + and itself:

Notice we can "decompose" this bordism as follows:

Z sends this to a morphism:

$$Z\left(\underbrace{\overbrace{}}_{} \right): V \to V$$

which, because of the above decomposition, factors as:

(2)
$$V \simeq V \otimes k \xrightarrow{\operatorname{id}_V \otimes \operatorname{coev}_V} V \otimes V^{\vee} \otimes V \xrightarrow{\operatorname{ev}_V \otimes \operatorname{id}_V} k \otimes V \simeq V$$

Similarly, reversing the orientation of (1) gives us

$$(3) V^{\vee} \simeq k \otimes V^{\vee} \xrightarrow{\operatorname{coev}_{V} \otimes \operatorname{id}_{V^{\vee}}} V^{\vee} \otimes V \otimes V^{\vee} \xrightarrow{\operatorname{id}_{V^{\vee}} \otimes \operatorname{ev}_{V}} V^{\vee} \otimes k \simeq V^{\vee}$$

Proposition 1. A k-vector space V is finite-dimensional if and only if there is some other k-vector space V^{\vee} and linear maps

$$\operatorname{ev}: V \otimes V^{\vee} \to k \qquad \qquad \operatorname{coev}: k \to V^{\vee} \otimes V$$

such that (2) and (3) commute.

Remark 1. This is really a special case of Proposition 2.

Proof sketch. Both are equivalent to ev determining a map

$$\operatorname{Hom}(W, W' \otimes V) \longrightarrow \operatorname{Hom}(W \otimes V^{\vee}, W' \otimes V \otimes V^{\vee}) \xrightarrow{\circ \operatorname{ev}} \operatorname{Hom}(W \otimes V^{\vee}, W')$$

(for any $W, W' \in \mathbf{Vect}_k$) which has inverse induced by coev:

 $\operatorname{Hom} (W \to V^{\vee}, W') \xrightarrow{\operatorname{coev}} \operatorname{Hom} (W \otimes V^{\vee} \otimes V, W' \otimes V) \xrightarrow{\operatorname{coev}} \operatorname{Hom} (W, W' \otimes V) \ .$

1.3. 0-dualizability. Proposition 1 motivates the following definition.

Definition 1. Let C be a monoidal category.² Let $V \in C$. An object $V^{\vee} \in C$ is a *right dual of* V if there are maps

$$\operatorname{ev}_V : V \otimes V^{\vee} \to \mathbf{1}$$
 $\operatorname{coev}_V : \mathbf{1} \to V^{\vee} \otimes V$

such that the zig-zag identities (2) and (3) hold. In this case, V is the left dual of V^{\vee} .

Remark 2. If **C** is a symmetric monoidal category then the notions of left and right dual coincide. If **C** also has an internal hom, then the dual of V can always be taken to be $V^{\vee} = \text{hom}(V, \mathbf{1})$. Many of the usual facts about dual vector spaces hold in this general setting.

Fact 1. If a dual V^{\vee} and the corresponding morphisms ev and coev exist, then they are unique up to unique isomorphism.

Remark 3. This is really a special case of fact 2.

Proof sketch. Let D_1 and D_2 be two different duals of and object V. Write the (co)evaluation maps as ev_i and $coev_i$ for i = 1, 2. Now consider the maps

$$D_1 \xrightarrow{\mathrm{id} \otimes \mathrm{coev}_2} D_1 \otimes V \otimes D_2 \xrightarrow{\mathrm{ev}_1 \otimes \mathrm{id}} D_2$$

$$D_2 \xrightarrow{\mathrm{id} \otimes \mathrm{coev}_1} D_2 \otimes V \otimes D_1 \xrightarrow{\mathrm{ev}_2 \otimes \mathrm{id}} D_1$$

The fact that these are mutually inverse follows from the definition of a dual object. See [EGNO15, Proposition 2.10.5] for a full proof.

1.3.1. *Towards higher dualizability*. 1-dualizability turns out to be 0-dualizability plus an extra condition asking the maps ev and coev to have "duals". So we need to answer the following question.

Question 1. What is the correct notion of dualizability for a morphism?

2. DUALIZABLE 1-MORPHISMS

The correct notion of a "dual pair" of 1-morphisms turns out to be that of an adjoint pair.

2.1. Cat. We recall the usual definition of an adjunction between functors. We will eventually generalize it to a relationship between 1-morphisms in any 2-category.

The 2-category of (small) categories, **Cat**, has

- objects given by (small) categories,
- 1-morphisms given by Functors, and
- 2-morphisms given by natural transformations.

²A category equipped with a tensor product \otimes : $\mathbf{C} \times \mathbf{C} \to \mathbf{C}$ which is unital and associative up to coherent isomorphism.

2.2. Rewriting adjunction. Let $\mathbf{X}, \mathbf{Y} \in \mathbf{Cat}$. Consider two functors $f: \mathbf{X} \to \mathbf{Y}$ and $g: \mathbf{Y} \to \mathbf{X}$. An *adjunction* between f and g is a collection of bijections:

$$\varphi_{a,b}$$
: Hom_{**Y**} $(f(a), b) \simeq$ Hom_{**X**} $(a, g(b))$

which depend functorially on $a \in \mathbf{X}$ and $b \in \mathbf{Y}$. Then we say f is *left adjoint* to g and that g is *right adjoint* to f. This is sometimes written simply as $f \dashv g$.

Proposition 2. f and g form an adjunction if and only if there are natural transformations

$$u: \operatorname{id}_{\mathbf{X}} \to g \circ f$$
 $v: f \circ g \to \operatorname{id}_{\mathbf{Y}}$

such that the following diagrams commute:

$$f \simeq f \circ \operatorname{id}_{\mathbf{X}} \xrightarrow{\operatorname{id} \times u} f \circ g \circ f \xrightarrow{v \times \operatorname{id}} \operatorname{id}_{\mathbf{Y}} \circ f \simeq f$$

(4)

Proof sketch. (\Leftarrow): Suppose we have such natural transformations u and v. Then for any $a \in \mathbf{X}$ and $b \in \mathbf{Y}$ we get the bijections:

$$\operatorname{Hom}\left(f\left(a\right),b\right) \to \operatorname{Hom}\left(g\circ f\left(a\right),g\left(b\right)\right) \xrightarrow{\circ u_{x}} \operatorname{Hom}\left(a,g\left(b\right)\right)$$
$$\operatorname{Hom}\left(a,g\left(b\right)\right) \to \operatorname{Hom}\left(f\left(a\right),f\circ g\left(b\right)\right) \xrightarrow{v_{y}\circ} \operatorname{Hom}\left(f\left(a\right),b\right).$$

They are mutually inverse because they satisfy (4).

 (\Longrightarrow) : Let $\{\varphi_{a,b}\}_{a\in\mathbf{X},y\in\mathbf{Y}}$ be an adjunction between F and G. Setting y = f(a), we get an isomorphism

$$\varphi_{a,f(a)}$$
: Hom $(f(a), f(a)) \xrightarrow{\sim}$ Hom $(a, g \circ f(a))$

which sends $id_{f(a)}$ to some morphism

$$u_a\colon a\to g\circ f(a)$$

which together form the natural transformation u.

Setting a = g(b), we get an isomorphism

$$\varphi_{g(b),b}$$
: Hom $(f \circ g(b), b) \to$ Hom $(g(b), g(b))$

so there is some morphism

$$v_b \colon f \circ g(b) \to b$$

which goes to $\mathrm{id}_{g(b)}$ under this isomorphism. These comprise the natural transformation v. u and v satisfy (4) because the morphisms $\varphi_{x,y}$ defining the adjunction are isomorphisms.

2.3. Adjunction in a 2-category. Proposition 2 motivates the following definition.

Definition 2. Let **C** be an arbitrary 2-category. Suppose we are given a pair of objects $X, Y \in \mathbf{C}$ and a pair of 1-morphisms $f: X \to Y$ and $g: Y \to X$. A 2-morphism

$$u \colon \operatorname{id}_X \to g \circ f$$

is the unit of an adjunction between f and g if there exists another 2-morphism

 $v \colon f \circ g \to \mathrm{id}_Y$

such that the diagrams in (4) commute.

Remark 4. Notice that (4) is effectively the same condition as (2) and (3). The difference being that we replaced V with f, and V^{\vee} with g. Furthermore, the 2-morphisms u and v are playing the role that the 1-morphism ev and coev were playing before.

Definition 3. Let C be a 2-category. C has adjoints for 1-morphisms if the following conditions are satisfied:

- (1) For every 1-morphism $f: X \to Y$ in **C**, there exists another 1-morphism $g: Y \to X$ and a 2-morphism $u: \operatorname{id}_X \to g \circ f$ which is the unit of an adjunction.
- (2) For every 1-morphism $g: Y \to X$ in **C**, there exists another 1-morphism $f: X \to Y$ and a 2-morphism $u: \operatorname{id}_X \to g \circ f$ which is the unit of an adjunction.

Fact 2. If it exists, a left or right adjoint is unique up to unique isomorphism.

Proof sketch. The proof is effectively the same as fact 1. If g_1 and g_2 are two right adjoints of f, then the isomorphisms are given by the following mutually inverse morphisms:

$$g_1 \xrightarrow{u_2 \times \mathrm{id}} g_2 \circ f \circ g_1 \xrightarrow{\mathrm{id} \times v_1} g_2$$
$$g_2 \xrightarrow{u_1 \times \mathrm{id}} g_1 \circ f \circ g_2 \xrightarrow{\mathrm{id} \times v_2} g_1$$

3. Full dualizability

3.1. Definition.

Definition 4. Let \mathcal{C} be a monoidal (∞, n) -category. An object $X \in \mathcal{C}$ is 0-dualizable if it admits a dual as an object of the homotopy category $h\mathcal{C}$, defined as follows.

- The objects are the objects of \mathcal{C} .
- The morphisms are isomorphism classes of objects of $\operatorname{Map}_{\mathcal{C}}(X, Y)$.

Definition 5. Let \mathcal{C} be an (∞, n) -category for $n \geq 2$. The homotopy 2-category for \mathcal{C} , written $h_2\mathcal{C}$, is defined as the following category.

- The objects of $h_2 C$ are the objects of C.
- The 1-morphisms of $h_2 \mathcal{C}$ are the 1-morphisms of \mathcal{C} .
- For two objects $X, Y \in \mathcal{C}$ and a pair of 1-morphisms $f, g: X \to Y$, we define a 2-morphism from f to g in $h_2\mathcal{C}$ to be an isomorphism class of 2-morphisms from f to g in \mathcal{C} .
- C admits adjoints for 1-morphisms if h_2C admits adjoints for 1-morphisms.

JACKSON VAN DYKE

- C admits adjoints for k-morphisms if, for all $X, Y \in C$, the $(\infty, n-1)$ -category $\operatorname{Map}_{\mathcal{C}}(X, Y)$ admits adjoints for (k-1)-morphisms.
- C has adjoints if C admits adjoints for k-morphisms for all 0 < k < n.

Definition 6. Let C be a monoidal (∞, n) -category. C has duals if C has duals for objects, and C has adjoints.

Claim 1. Let \mathcal{C} be a monoidal (∞, n) -category. There exists another monoidal (∞, n) -category \mathcal{C}^{fd} and a monoidal functor $i: \mathcal{C}^{\text{fd}} \to \mathcal{C}$ with the following properties.

- (1) $\mathcal{C}^{\mathrm{fd}}$ has duals.
- (2) For any monoidal (∞, n) -category \mathcal{D} with duals and any monoidal functor $F: \mathcal{D} \to \mathcal{C}$, there exists a monoidal functor $f: \mathcal{D} \to \mathcal{C}^{\text{fd}}$ and an isomorphism $F \simeq i \circ f$; moreover, f is uniquely determined up to isomorphism.

Definition 7. We say that $X \in \mathcal{C}$ is *fully-dualizable* if it is in the image of $\mathcal{C}^{\mathrm{fd}} \to \mathcal{C}$.

Remark 5. Passing from C to C^{fd} amounts to removing any *k*-morphisms without left and right adjoints (and all objects without duals).

3.2. Examples.

Example 1. The fully dualizable objects of the $(\infty, 1)$ -category C =**Vect**(k) are exactly the finite-dimensional ones.

Example 2. For C a monoidal $(\infty, 1)$ -category, C^{fd} is the subcategory of C spanned by the 0-dualizable (in the sense of definition 4) objects of C.

Example 3. The assignment to a circle should be Hochschild of the assignment to a point:

$$Z\left(S^{1}\right) = \mathrm{HH}^{*}\left(Z\left(+\right)\right)$$

Therefore, in dimension 2, this is the Frobenius algebra from the usual classification of 2-dimensional TFT's by their assignment to S^1 .

If we start with a Frobenius algebra assigned to S^1 , the assignment to + is the category of finitely-generated modules over the algebra. See [Hes18] (arXiv link) for more on this equivalence.

Example 4. For each $n \ge 0$, the symmetric monoidal (∞, n) -category **Bord**_n has duals. Let $f: X \to Y$ be a k-morphism, i.e. an oriented k-manifold M, with boundary:

$$\partial M = \overline{X} \sqcup_{\partial X = \partial Y} Y \; .$$

Then \overline{M} can be interpreted as a k-morphism $Y \to X$, which is both right and left adjoint to f.

3.3. k-adjoints as 1-adjoints. First we realize objects of a category as 1-morphisms in such a way that duals are 1-adjoints. Then we realize k-morphisms as 1-morphisms in such a way that k-adjoints are 1-adjoints. So there is a sense in which we were just asking for a 1-adjoint at every level.

0-dualizability. First we rephrase 0-dualizability as an adjunction. Let (\mathcal{C}, \otimes) be a monoidal category.

Definition 8 (Delooping category). Define the *delooping category* BC to be the 2-category with:

- a single object *,
- $\operatorname{Map}_{BC}(*, *) = C$, and
- composition is given by the tensor product for C:

 \otimes : Map_{BC} (*,*) × Map_{BC} (*,*) → Map_{BC} (*,*) .

Proposition 3. Let C be a monoidal (∞, n) -category. C has duals for objects (in the sense of definition 4) if and only if BC has adjoints for 1-morphisms (in the sense of definition 5).

Higher adjoints. Let \mathcal{C} be a monoidal (∞, n) -category and consider two objects $X, Y \in \mathcal{C}$. Let $f: X \to Y$ be a k-morphism. If k > 1, then X and Y both have source S and target T. Then we can form a 2-category $h_2(S, T)$ as follows.

- The objects are (k-1)-morphisms $S \to T$.
- The 1-morphisms are k-morphisms in C between these (k-1)-morphisms.
- Given two objects and two 1-morphisms between them, a 2-morphism is an isomorphism class of (k + 1)-morphisms in C between the k-morphisms.

Note f is a 1-morphism in $h_2(S,T)$, so we can ask if it has an adjoint.

Proposition 4. f has an adjoint as a k-morphism in C (in the sense of definition 5) if and only if f has an adjoint as a 1-morphism in $h_2(S,T)$.

References

- [EGNO15] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Tensor categories, volume 205 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015. 3
- [Hes18] Jan Hesse. An equivalence between semisimple symmetric Frobenius algebras and Calabi-Yau categories. J. Homotopy Relat. Struct., 13(1):251–272, 2018. 6