Factorization algebra as an extended TFT

Tashi Walde

November 17, 2020

This are notes for a talk given during the Juvitop seminar in Fall 2020. The main references are

- Lurie's paper "On the classification of Topological Field Theories"
- Scheimbauer's Ph.D. thesis "Factorization Homology as a Fully Extended Topological Field Theory"

Throughout, we let (\mathcal{C}, \otimes) be a symmetric monoidal ∞ -cat; we assume that \mathcal{C} admits sifted colimits and that $- \otimes -$ preserves them in each component. We fix a natural number $n \in \mathbb{N}$.

1 E_n -algebras

We start by recalling the definition of an E_n -algebra. Let Man_n^{fr} the symmetric monoidal ∞ -category obtained as the coherent nerve of the topological category with

- objects: framed *n*-dimensional smooth manifolds;
- morphism spaces $\operatorname{Emb}^{\operatorname{fr}}(M,N)$ of framed embeddings $M \hookrightarrow N$ between manifolds.
- The monoidal product is given by disjoint union.

We denote by $\operatorname{Disk}_n^{\operatorname{fr}} \subset \operatorname{Man}_n^{\operatorname{fr}}$ the full ∞ -subcategory spanned by those framed *n*-manifolds which are isomorphic to a finite disjoint union $\coprod_{\operatorname{finite}} \mathbb{R}^n$ (with the standard framing).

Definition 1. An E_n -algebra in C is a symmetric monoidal functor from $Disk_n^{fr}$ to C.

If $A: \operatorname{Disk}_n^{\operatorname{fr}} \to \mathcal{C}$ is an E_n -algebra, we say that $A(\mathbb{R}^n) \in \mathcal{C}$ is the underlying object of A; by abuse of notation, we also denote it by A. Unraveling the definition, we see that A is equipped with multiplication maps

$$A^{\otimes k} = A \otimes \dots \otimes A \simeq A(\mathbb{R}^n \sqcup \dots \sqcup \mathbb{R}^n) \longrightarrow A(\mathbb{R}^n) = A \tag{1}$$

parameterized by the space of framed embeddings $\operatorname{Emb}^{\operatorname{fr}}(\mathbb{R}^n \sqcup \cdots \sqcup \mathbb{R}^n, \mathbb{R}^n)$ of k disks into a bigger disk.

For example, for n = 1, the space $\operatorname{Emb}^{\operatorname{fr}}(\coprod^k \mathbb{R}^1, \mathbb{R}^1)$ is homotopy equivalent to the discrete set of permutations of $\{1, \ldots, k\}$; hence the multiplication maps are parameterized by choosing a linear order on the input copies of A. Unraveling the coherence conditions, one sees that an E_1 -algebra in \mathcal{C} is precisely an associative (and unital) algebra object.

The goal of this talk is to explain a construction which takes as input an E_n -algebra A and produces an n-dimensional topological field theory $\operatorname{Bord}_n^{\operatorname{fr}} \to \operatorname{Alg}_n$ with values in an (∞, n) -category Alg_n which we can heuristically describe as follows:

- The objects of Alg_n are E_n -algebras;
- a 1-morphism $A \to A'$ between E_n -algebras is an A-A'-bimodule, i.e., an $E_{(n-1)}$ -algebra B on which A and A' act compatibly from the left and from the right, respectively;
- a 2-morphism

$${}^{B}\left(\begin{array}{c} C \\ C \\ A' \end{array} \right)^{B'} \tag{2}$$

between two bimodules $B, B': A \to A'$ is a B-B'-bimodule C, by which we mean an $E_{(n-2)}$ -algebra C on which A, A', B, B' act compatibly from the top, the bottom, the left and the right, respectively;

- 3-morphisms are bimodules of bimodules of bimodules of E_n-algebras;
- ...
- *n*-morphisms are (bimodules of)^{*n*} of E_n -algebras.
- Composition in Alg_n is defined as a suitable tensor product which, for instance, sends an A-A'-bimodule B and an A'-A''-bimodule B' to the A-A''-bimodule $B \otimes_{A'} B'$.

The topological field theory associated to the E_n -algebra A is supposed to send the point $\mathbb{R}^0 \in \operatorname{Bord}_n^{\operatorname{fr}}$ to the object $A \in \operatorname{Alg}_n$. According to the cobordism hypothesis, this property uniquely characterizes this TFT. We will in fact give an explicit formula to compute this TFT on an arbitrary k-morphism M in $\operatorname{Bord}_n^{\operatorname{fr}}$ $(0 \leq k \leq n)$ as the factorization homology $\int_{M \times \mathbb{R}^{n-k}} A$; heuristically, we take the local data encoded by the E_n -algebra A and "integrate" it over the n-manifold $M \times \mathbb{R}^{n-k}$.

2 Factorization Algebras

The first challenge is to give a rigorous definition of the (∞, n) -category Alg_n . One approach makes use of *factorization algebras*, which we introduce now.

Let X be a topological space. Denote by \mathcal{U}_X the colored operad¹ with

- colors/objects are the open subsets of X;
- there is a unique operation/morphism $U_1, \ldots, U_k \to U$, whenever $U_1, \ldots, U_k \subseteq U_X$ are *pairwise disjoint* subsets of $U \in U_X$.

Definition 2. A prefactorization algebra F on X with values in C is an \mathcal{U}_X -algebra in C, i.e. a map of ∞ -operads $\mathcal{U}_X \to C^2$. Unraveling the definition, F assigns an object $F(U) \in C$ to each open subsets $U \in UX$, and a morphism $F(U_1) \otimes \cdots \otimes F(U_k) \to F(U)$, whenever U_1, \ldots, U_k are pairwise disjoint open subsets of $U \in \mathcal{U}_X$; it needs to be functorial in the obvious sense.

A factorization algebra is a prefactorization algebra F which additionally satisfies

- 1. If $U_1, \ldots, U_k \in \mathcal{U}_X$ are pairwise disjoint open subsets of X, the induced map $F(U_1) \otimes \cdots \otimes F(U_k) \xrightarrow{\simeq} F(U_1 \sqcup \cdots \sqcup U_k)$ is an equivalence (in particular, for k = 0, the object $F(\emptyset)$ is identified with the monoidal unit of \mathcal{C}).
- 2. A suitable descent condition, which allows the value F(U) to be computed as a colimit of values on sufficiently well behaved open covers. We shall not spell it out here.

A factorization algebra F on X is called **locally constant**, if the inclusion $F(D) \to F(D')$ is an equivalence, whenever $D \subseteq D'$ are both (homeomorphic to) \mathbb{R}^n .

3 Factorization homology

The following construction shows how an E_n -algebra gives rise to a factorization algebra on each framed *n*-manifold M.

Construction 1. Let $A: \operatorname{Disk}_n^{\operatorname{fr}} \to \mathcal{C}$ be an E_n -algebra. We denote by

$$\left(\int_{-}^{-} A\right) \colon \operatorname{Man}_{n}^{\mathrm{fr}} \to \mathcal{C}$$
(3)

¹One way to think of a colored operad is a "multi-category" which has objects (usually called colors) and between them not just 1-to-1-morphisms $x \to y$, but also many-to-1morphisms $(x_1, \ldots, x_k) \to y$. It needs to satisfy the suitable analogs of associativity and unitality.

²Each symmetric monoidal (∞ -)category is canonically an (∞ -)operad, by declaring a multi-morphism $x_1, \ldots x_k \to y$ to simply be a morphism $x_1 \otimes \cdots \otimes x_k \to y$ in C.

the left Kan extension of A and call it **factorization homology with coefficients in** A. For any framed n-manifold M, it is computed explicitly by the pointwise formula:

$$\int_{M} A \coloneqq \operatorname{colim}\left(\operatorname{Disk}_{n}^{\operatorname{fr}}/M \to \operatorname{Disk}_{n}^{\operatorname{fr}} \xrightarrow{A} \mathcal{C}\right) \tag{4}$$

where $\operatorname{Disk}_n^{\operatorname{fr}}/M$ denotes the overcategory of all possible embeddings of disjoint disks into M. By construction, $\int_M A$ is functorial along embeddings of manifolds; hence in particular along inclusions of open subsets. Moreover one can check that the ∞ -category $\operatorname{Disk}_n^{\operatorname{fr}}/M$ is sifted, hence the monoidal product in \mathcal{C} commutes with the limit in (4); a direct calculation produces a canonical identification

$$\left(\int_{U_1} A\right) \otimes \dots \otimes \left(\int_{U_k} A\right) \xrightarrow{\simeq} \left(\int_U A\right) \tag{5}$$

whenever $U = U_1 \sqcup \cdots \sqcup U_k$ arises as a pairwise disjoint union of open subsets U_1, \ldots, U_k of M. This exhibits $\int_{-\subseteq M} A$ as a factorization algebra on M. It is locally constant because the inclusion $D \subseteq D'$ of two disks is an equivalence in the ∞ -category $\operatorname{Man}_n^{\operatorname{fr}}$.

An important special case arises when we consider $M = \mathbb{R}^n$. In this case, we have $\int_{\mathbb{R}}^n A = A$ and in fact the factorization algebra $\int_{-\subseteq \mathbb{R}^n} A$ on \mathbb{R}^n encodes the same data as the \mathbf{E}_n -alegebra A. More precisely we have the following theorem.

Theorem 1 (Lurie). The assignment $A \mapsto \int_{-}^{-} A$ assembles to an equivalence of ∞ -categories between \mathbb{E}_n -algebras in \mathcal{C} and locally constant factorization algebras on \mathbb{R}^n with values in \mathcal{C} .

4 Stratified factorization algebras

To systematically encode the (bimodules of ...) which make up the (∞, n) -category Alg_n , it is convenient to study a statified variant of factorization algebras.

Let X be a topological space. A stratification of X consists of an ascending chain $\emptyset = X_{-1} \subset X_0 \subset X_1 \subset \cdots \subset X_l = X$ of closed subspaces. The **index** of an open subset $U \subset X$ is the smallest *i* such that $U \cap X_i \neq \emptyset$.

Definition 3. Let X be a topological space with stratification X_{\bullet} . A factorization algebra F on X is called **locally constant with respect to the stratification**, if the inclusion $D \subseteq D'$ induces an equivalence $F(D) \xrightarrow{\simeq} F(D')$ whenever D and D' are disks of the same index i which both remain connected when intersected with X_i .

Note that we get the previous notion of locally constancy with respect to the trivial stratification $\emptyset \subset X$.

Finally, let us remark that factorization algebras which are locally constant with respect to stratifications can be pushed forward along suitable maps $f \colon X \to Y$ of stratified spaces by declaring $f_*F(U) = F(f^{-1}(U))$ for each open subset $U \subset Y$.

5 The Morita category

We can now finally say, at the very least, what the morphisms are in the (∞, n) -category Alg_n.

For each k, a k-morphism in Alg_n is a factorization algebra on \mathbb{R}^n which is locally constant with respect to the stratification

$$S^{k}: \emptyset \subset \dots \subset \emptyset \subset \mathbb{R}^{n-k} \times \{0\}^{k} \subset \dots \subset \mathbb{R}^{n-1} \times \{0\} \subset \mathbb{R}^{n}.$$
 (6)

Inside the stratified space (6) we find the two subspaces

$$\mathbb{R}^{n-k} \times (-\infty, 0) \times \mathbb{R}^{k-1} \subset \mathbb{R}^n \quad \text{and} \quad \mathbb{R}^{n-k} \times (0, +\infty) \times \mathbb{R}^{k-1} \subset \mathbb{R}^n$$
 (7)

which are both isomorphic as stratified spaces to (\mathbb{R}^n, S^{k-1}) . Thus we can restrict each factorization algebra F on (\mathbb{R}^n, S^k) to two factorization algebras on (\mathbb{R}^n, S^{k-1}) which we declare to be the source and target (k-1)-morphism of F, respectively.

The composition in Alg_n can be roughly described as follows: Given two composable k-morphisms $E \xrightarrow{F} E' \xrightarrow{F'} E''$, we can reparameterize them and glue them to a factorization algebra on the stratified space

$$\emptyset \subset \dots \subset \emptyset \subset \mathbb{R}^{n-k} \times \{-1, 1\} \times \{0\}^{k-1} \subset \mathbb{R}^{n-k+1} \times \{0\}^{k-1} \subset \dots \subset \mathbb{R}^{n-1} \times \{0\} \subset \mathbb{R}^n$$
(8)

where E, E', E'' are identified with the restriction to

$$\mathbb{R}^{n-k} \times (-\infty, -1) \times \mathbb{R}^{k-1}, \tag{9}$$

$$\mathbb{R}^{n-k} \times (-1,1) \times \mathbb{R}^{k-1},\tag{10}$$

$$\mathbb{R}^{n-k} \times (+1, +\infty) \times \mathbb{R}^{k-1}, \tag{11}$$

respectively. This factorization algebra can then be pushed forward along the map $\mathbb{R}^n \to \mathbb{R}^n$ which in the (n - k + 1)-th coordinate sends [-1, 1] to 0 and identifies

$$+1\colon (-\infty, -1] \xrightarrow{\cong} (-\infty, 0] \quad \text{and} \quad -1\colon [+1, +\infty) \xrightarrow{\cong} [0, +\infty). \tag{12}$$

6 Factorization homology as a TFT

Finally we sketch how to make $\int_{-}^{-} A$ into a functor of (∞, n) -categories

$$\left(\int_{-}^{-} A\right) : \operatorname{Bord}_{n}^{\operatorname{fr}} \to \operatorname{Alg}_{n}.$$
(13)

If we are given a k-morphism N in Bord^{fr}_n, we can consider the factorization algebra $\int_{-\subseteq M} A$ on $M := N \times \mathbb{R}^{n-k}$. For k = 0, i.e., $N = \mathbb{R}^0$ gives rise to the factorization algebra $\int_{-\subset \mathbb{R}^n} A$ which is exactly the object corresponding to A in Alg_n .

For $k \neq 0$, we have to push forward along a suitable map to a stratified space by choosing appropriate collars. For example, if we are given a 1-morphism, i.e. a cobordism N between N_0 and N_1 , we can choose collars

$$N_0 \times (-\infty, 0] \hookrightarrow N \longleftrightarrow N_1 \times [0, +\infty)$$
 (14)

and define a map $f: N \to \mathbb{R}$ as follows:

- on the collars it is given by projecting onto $(-\infty, 0]$ or $[0, +\infty)$, respectively;
- all other points go to 0.

Finally, we can define the value of our TFT on N to be the factorization algebra

obtained by pushing $\int_{-\subseteq N \times \mathbb{R}^{n-1}}$ forward along $f \times \text{id} \colon N \times BR^{n-1} \to \mathbb{R}^n$. The construction for higher k is similar by repeatedly choosing collars in $M := N \times \mathbb{R}^{n-k}$ and then pushing forward along an analogous collapse map $M \to \mathbb{R}^n$, where the right side is stratified as in (6). See the following picture for k = n = 2:

Figure 1: An example of a 2-morphism in $\mathrm{Bord}_2^{\mathrm{fr}}$ with collars and the associated collapse map to the stratified space \mathbb{R}^2

7