Factorization algebra as an extended TFT

Tashi Walde

November 17, 2020

This are notes for a talk given during the Juvitop seminar in Fall 2020. The main references are

- Lurie's paper "On the classification of Topological Field Theories"
- Scheimbauer's Ph.D. thesis "Factorization Homology as a Fully Extended Topological Field Theory"

Throughout, we let (\mathcal{C}, \otimes) be a symmetric monoidal ∞-cat; we assume that \mathcal{C} admits sifted colimits and that $-\otimes$ - preserves them in each component. We fix a natural number $n \in \mathbb{N}$.

$1 \quad \mathrm{E}_{n}$-algebras

We start by recalling the definition of an E_{n}-algebra. Let $\mathrm{Man}_{n}^{\mathrm{fr}}$ the symmetric monoidal ∞-category obtained as the coherent nerve of the topological category with

- objects: framed n-dimensional smooth manifolds;
- morphism spaces $\operatorname{Emb}^{\mathrm{fr}}(M, N)$ of framed embeddings $M \hookrightarrow N$ between manifolds.
- The monoidal product is given by disjoint union.

We denote by $\operatorname{Disk}_{n}^{\mathrm{fr}} \subset \operatorname{Man}_{n}^{\mathrm{fr}}$ the full ∞-subcategory spanned by those framed n-manifolds which are isomorphic to a finite disjoint union $\coprod_{\text {finite }} \mathbb{R}^{n}$ (with the standard framing).

Definition 1. An E_{n}-algebra in \mathcal{C} is a symmetric monoidal functor from $\mathrm{Disk}_{n}^{\mathrm{fr}}$ to \mathcal{C}.

If $A: \operatorname{Disk}_{n}^{\mathrm{fr}} \rightarrow \mathcal{C}$ is an E_{n}-algebra, we say that $A\left(\mathbb{R}^{n}\right) \in \mathcal{C}$ is the underlying object of A; by abuse of notation, we also denote it by A. Unraveling the definition, we see that A is equipped with multiplication maps

$$
\begin{equation*}
A^{\otimes k}=A \otimes \cdots \otimes A \simeq A\left(\mathbb{R}^{n} \sqcup \cdots \sqcup \mathbb{R}^{n}\right) \longrightarrow A\left(\mathbb{R}^{n}\right)=A \tag{1}
\end{equation*}
$$

parameterized by the space of framed embeddings $\operatorname{Emb}^{\mathrm{fr}}\left(\mathbb{R}^{n} \sqcup \cdots \sqcup \mathbb{R}^{n}, \mathbb{R}^{n}\right)$ of k disks into a bigger disk.

For example, for $n=1$, the space $\operatorname{Emb}^{\mathrm{fr}}\left(\coprod^{k} \mathbb{R}^{1}, \mathbb{R}^{1}\right)$ is homotopy equivalent to the discrete set of permutations of $\{1, \ldots, k\}$; hence the multiplication maps are parameterized by choosing a linear order on the input copies of A. Unraveling the coherence conditions, one sees that an E_{1}-algebra in \mathcal{C} is precisely an associative (and unital) algebra object.

The goal of this talk is to explain a construction which takes as input an E_{n} algebra A and produces an n-dimensional topological field theory $\operatorname{Bord}_{n}^{\mathrm{fr}} \rightarrow \mathrm{Alg}_{n}$ with values in an (∞, n)-category Alg_{n} which we can heuristically describe as follows:

- The objects of Alg_{n} are E_{n}-algebras;
- a 1-morphism $A \rightarrow A^{\prime}$ between E_{n}-algebras is an A - A^{\prime}-bimodule, i.e., an $\mathrm{E}_{(n-1)}$-algebra B on which A and A^{\prime} act compatibly from the left and from the right, respectively;
- a 2-morphism

$$
{ }^{B}\left(\begin{array}{c}
A \\
\binom{C}{A^{\prime}}^{B^{\prime}} \tag{2}
\end{array}\right.
$$

between two bimodules $B, B^{\prime}: A \rightarrow A^{\prime}$ is a B - B^{\prime}-bimodule C, by which we mean an $\mathrm{E}_{(n-2)}$-algebra C on which $A, A^{\prime}, B, B^{\prime}$ act compatibly from the top, the bottom, the left and the right, respectively;

- 3-morphisms are bimodules of bimodules of bimodules of E_{n}-algebras;
- ...
- n-morphisms are (bimodules of $)^{n}$ of E_{n}-algebras.
- Composition in Alg_{n} is defined as a suitable tensor product which, for instance, sends an A - A^{\prime}-bimodule B and an $A^{\prime}-A^{\prime \prime}$-bimodule B^{\prime} to the A - $A^{\prime \prime}$-bimodule $B \otimes_{A^{\prime}} B^{\prime}$.

The topological field theory associated to the E_{n}-algebra A is supposed to send the point $\mathbb{R}^{0} \in \operatorname{Bord}_{n}^{\mathrm{fr}}$ to the object $A \in \operatorname{Alg}_{n}$. According to the cobordism hypothesis, this property uniquely characterizes this TFT. We will in fact give an explicit formula to compute this TFT on an arbitrary k-morphism M in $\operatorname{Bord}_{n}^{\mathrm{fr}}(0 \leq k \leq n)$ as the factorization homology $\int_{M_{\times \mathbb{R}^{n-k}}} A$; heuristically, we take the local data encoded by the E_{n}-algebra A and "integrate" it over the n-manifold $M \times \mathbb{R}^{n-k}$.

2 Factorization Algebras

The first challenge is to give a rigorous definition of the (∞, n)-category Alg_{n}. One approach makes use of factorization algebras, which we introduce now.

Let X be a topological space. Denote by \mathcal{U}_{X} the colored operad ${ }^{1}$ with

- colors/objects are the open subsets of X;
- there is a unique operation/morphism $U_{1}, \ldots, U_{k} \rightarrow U$, whenever $U_{1}, \ldots, U_{k} \subseteq$ \mathcal{U}_{X} are pairwise disjoint subsets of $U \in \mathcal{U}_{X}$.

Definition 2. A prefactorization algebra F on X with values in \mathcal{C} is an \mathcal{U}_{X}-algebra in \mathcal{C}, i.e. a map of ∞-operads $\mathcal{U}_{X} \rightarrow \mathcal{C}^{2}$. Unraveling the definition, F assigns an object $F(U) \in \mathcal{C}$ to each open subsets $U \in U X$, and a morphism $F\left(U_{1}\right) \otimes \cdots \otimes F\left(U_{k}\right) \rightarrow F(U)$, whenever U_{1}, \ldots, U_{k} are pairwise disjoint open subsets of $U \in \mathcal{U}_{X}$; it needs to be functorial in the obvious sense.

A factorization algebra is a prefactorization algebra F which additionally satisfies

1. If $U_{1}, \ldots, U_{k} \in \mathcal{U}_{X}$ are pairwise disjoint open subsets of X, the induced $\operatorname{map} F\left(U_{1}\right) \otimes \cdots \otimes F\left(U_{k}\right) \xrightarrow{\simeq} F\left(U_{1} \sqcup \cdots \sqcup U_{k}\right)$ is an equivalence (in particular, for $k=0$, the object $F(\emptyset)$ is identified with the monoidal unit of $\mathcal{C})$.
2. A suitable descent condition, which allows the value $F(U)$ to be computed as a colimit of values on sufficiently well behaved open covers. We shall not spell it out here.

A factorization algebra F on X is called locally constant, if the inclusion $F(D) \rightarrow F\left(D^{\prime}\right)$ is an equivalence, whenever $D \subseteq D^{\prime}$ are both (homeomorphic to) \mathbb{R}^{n}.

3 Factorization homology

The following construction shows how an E_{n}-algebra gives rise to a factorization algebra on each framed n-manifold M.
Construction 1. Let $A: \operatorname{Disk}_{n}^{\mathrm{fr}} \rightarrow \mathcal{C}$ be an E_{n}-algebra. We denote by

$$
\begin{equation*}
\left(\int_{-} A\right): \operatorname{Man}_{n}^{\mathrm{fr}} \rightarrow \mathcal{C} \tag{3}
\end{equation*}
$$

[^0]the left Kan extension of A and call it factorization homology with coefficients in A. For any framed n-manifold M, it is computed explicitly by the pointwise formula:
\[

$$
\begin{equation*}
\int_{M} A:=\operatorname{colim}\left(\operatorname{Disk}_{n}^{\mathrm{fr}} / M \rightarrow \operatorname{Disk}_{n}^{\mathrm{fr}} \xrightarrow{A} \mathcal{C}\right) \tag{4}
\end{equation*}
$$

\]

where $\operatorname{Disk}_{n}^{\mathrm{fr}} / M$ denotes the overcategory of all possible embeddings of disjoint disks into M. By construction, $\int_{M} A$ is functorial along embeddings of manifolds; hence in particular along inclusions of open subsets. Moreover one can check that the ∞-category $\operatorname{Disk}_{n}^{\mathrm{fr}} / M$ is sifted, hence the monoidal product in \mathcal{C} commutes with the limit in (4); a direct calculation produces a canonical identification

$$
\begin{equation*}
\left(\int_{U_{1}} A\right) \otimes \cdots \otimes\left(\int_{U_{k}} A\right) \xrightarrow{\simeq}\left(\int_{U} A\right) \tag{5}
\end{equation*}
$$

whenever $U=U_{1} \sqcup \cdots \sqcup U_{k}$ arises as a pairwise disjoint union of open subsets U_{1}, \ldots, U_{k} of M. This exhibits $\int_{-\subseteq M} A$ as a factorization algebra on M. It is locally constant because the inclusion $D \subseteq D^{\prime}$ of two disks is an equivalence in the ∞-category $\mathrm{Man}_{n}^{\mathrm{fr}}$.

An important special case arises when we consider $M=\mathbb{R}^{n}$. In this case, we have $\int_{\mathbb{R}}^{n} A=A$ and in fact the factorization algebra $\int_{-\subseteq \mathbb{R}^{n}} A$ on \mathbb{R}^{n} encodes the same data as the E_{n}-alegebra A. More precisely we have the following theorem.

Theorem 1 (Lurie). The assignment $A \mapsto \int_{-} A$ assembles to an equivalence of ∞-categories between E_{n}-algebras in \mathcal{C} and locally constant factorization algebras on \mathbb{R}^{n} with values in \mathcal{C}.

4 Stratified factorization algebras

To systematically encode the (bimodules of ...) which make up the (∞, n)category Alg_{n}, it is convenient to study a statified variant of factorization algebras.

Let X be a topological space. A stratification of X consists of an ascending chain $\emptyset=X_{-1} \subset X_{0} \subset X_{1} \subset \cdots \subset X_{l}=X$ of closed subspaces. The index of an open subset $U \subset X$ is the smallest i such that $U \cap X_{i} \neq \emptyset$.

Definition 3. Let X be a topological space with stratification X_{\bullet}. A factorization algebra F on X is called locally constant with respect to the stratification, if the inclusion $D \subseteq D^{\prime}$ induces an equivalence $F(D) \xrightarrow{\simeq} F\left(D^{\prime}\right)$ whenever D and D^{\prime} are disks of the same index i which both remain connected when intersected with X_{i}.

Note that we get the previous notion of locally constancy with respect to the trivial stratification $\emptyset \subset X$.

Finally, let us remark that factorization algebras which are locally constant with respect to stratifications can be pushed forward along suitable maps
$f: X \rightarrow Y$ of stratified spaces by declaring $f_{*} F(U)=F\left(f^{-1}(U)\right)$ for each open subset $U \subset Y$.

5 The Morita category

We can now finally say, at the very least, what the morphisms are in the (∞, n) category Alg_{n}.

For each k, a k-morphism in Alg_{n} is a factorization algebra on \mathbb{R}^{n} which is locally constant with respect to the stratification

$$
\begin{equation*}
S^{k}: \emptyset \subset \cdots \subset \emptyset \subset \mathbb{R}^{n-k} \times\{0\}^{k} \subset \cdots \subset \mathbb{R}^{n-1} \times\{0\} \subset \mathbb{R}^{n} \tag{6}
\end{equation*}
$$

Inside the stratified space (6) we find the two subspaces

$$
\begin{equation*}
\mathbb{R}^{n-k} \times(-\infty, 0) \times \mathbb{R}^{k-1} \subset \mathbb{R}^{n} \quad \text { and } \quad \mathbb{R}^{n-k} \times(0,+\infty) \times \mathbb{R}^{k-1} \subset \mathbb{R}^{n} \tag{7}
\end{equation*}
$$

which are both isomorphic as stratified spaces to $\left(\mathbb{R}^{n}, S^{k-1}\right)$. Thus we can restrict each factorization algebra F on $\left(\mathbb{R}^{n}, S^{k}\right)$ to two factorization algebras on $\left(\mathbb{R}^{n}, S^{k-1}\right)$ which we declare to be the source and target $(k-1)$-morphism of F, respectively.

The composition in Alg_{n} can be roughly described as follows: Given two composable k-morphisms $E \xrightarrow{F} E^{\prime} \xrightarrow{F^{\prime}} E^{\prime \prime}$, we can reparameterize them and glue them to a factorization algebra on the stratified space
$\emptyset \subset \cdots \subset \emptyset \subset \mathbb{R}^{n-k} \times\{-1,1\} \times\{0\}^{k-1} \subset \mathbb{R}^{n-k+1} \times\{0\}^{k-1} \subset \cdots \subset \mathbb{R}^{n-1} \times\{0\} \subset \mathbb{R}^{n}$,
where $E, E^{\prime}, E^{\prime \prime}$ are identified with the restriction to

$$
\begin{gather*}
\mathbb{R}^{n-k} \times(-\infty,-1) \times \mathbb{R}^{k-1}, \tag{9}\\
\mathbb{R}^{n-k} \times(-1,1) \times \mathbb{R}^{k-1} \tag{10}\\
\mathbb{R}^{n-k} \times(+1,+\infty) \times \mathbb{R}^{k-1}, \tag{11}
\end{gather*}
$$

respectively. This factorization algebra can then be pushed forward along the $\operatorname{map} \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which in the $(n-k+1)$-th coordinate sends $[-1,1]$ to 0 and identifies

$$
\begin{equation*}
+1:(-\infty,-1] \stackrel{\cong}{\cong}(-\infty, 0] \text { and } \quad-1:[+1,+\infty) \xrightarrow{\cong}[0,+\infty) \tag{12}
\end{equation*}
$$

6 Factorization homology as a TFT

Finally we sketch how to make $\int_{-} A$ into a functor of (∞, n)-categories

$$
\begin{equation*}
\left(\int_{-} A\right): \operatorname{Bord}_{n}^{\mathrm{fr}} \rightarrow \operatorname{Alg}_{n} \tag{13}
\end{equation*}
$$

If we are given a k-morphism N in $\operatorname{Bord}_{n}^{\mathrm{fr}}$, we can consider the factorization algebra $\int_{-\subseteq M} A$ on $M:=N \times \mathbb{R}^{n-k}$. For $k=0$, i.e., $N=\mathbb{R}^{0}$ gives rise to the factorization algebra $\int_{-\subseteq \mathbb{R}^{n}} A$ which is exactly the object corresponding to A in Alg_{n}.

For $k \neq 0$, we have to push forward along a suitable map to a stratified space by choosing appropriate collars. For example, if we are given a 1 -morphism, i.e. a cobordism N between N_{0} and N_{1}, we can choose collars

$$
\begin{equation*}
N_{0} \times(-\infty, 0] \hookrightarrow N \hookleftarrow N_{1} \times[0,+\infty) \tag{14}
\end{equation*}
$$

and define a map $f: N \rightarrow \mathbb{R}$ as follows:

- on the collars it is given by projecting onto $(-\infty, 0]$ or $[0,+\infty)$, respectively;
- all other points go to 0 .

Finally, we can define the value of our TFT on N to be the factorization algebra obtained by pushing $\int_{-\subseteq N \times \mathbb{R}^{n-1}}$ forward along $f \times \mathrm{id}: N \times B R^{n-1} \rightarrow \mathbb{R}^{n}$.

The construction for higher k is similar by repeatedly choosing collars in $M:=N \times \mathbb{R}^{n-k}$ and then pushing forward along an analogous collapse map $M \rightarrow \mathbb{R}^{n}$, where the right side is stratified as in (6). See the following picture for $k=n=2$:

7

Figure 1: An example of a 2-morphism in $\mathrm{Bord}_{2}^{\mathrm{fr}}$ with collars and the associated collapse map to the stratified space \mathbb{R}^{2}

[^0]: ${ }^{1}$ One way to think of a colored operad is a "multi-category" which has objects (usually called colors) and between them not just 1-to-1-morphisms $x \rightarrow y$, but also many-to-1morhphisms $\left(x_{1}, \ldots, x_{k}\right) \rightarrow y$. It needs to satisfy the suitable analogs of associativity and unitality.
 ${ }^{2}$ Each symmetric monoidal (∞-) category is canonically an (∞-) operad, by declaring a multi-morphism $x_{1}, \ldots x_{k} \rightarrow y$ to simply be a morphism $x_{1} \otimes \cdots \otimes x_{k} \rightarrow y$ in \mathcal{C}.

