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Abstract. This talk is based on pages 2-15 of Lurie [3]. We introduce Atiyah’s definition of a

topological field theory and examine what data a TFT provides in dimensions 1 and 2. Using
these examples, we motivate Baez and Dolan’s Cobordism Hypothesis [1].
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The goal of this talk is to formulate Baez and Dolan’s Cobordism Hypothesis [1] and discuss why
you might believe it. Lurie’s introduction in [3] is wonderfully readable and most of this talk is
mainly just a reformatting of Lurie’s intro to fit into a juvitop talk.

1. Modeling Field Theories

Whatever the Cobordism Hypothesis says, it has something to do with field theories. We start
by figuring out what a field theory should be. A good overview can be found in the introduction of
Costello-Gwilliam’s book, [2, Ch.1 §4]. There are many different mathematical theories for modeling
field theories. Each model has to account for a few basic features. For this, it’s good to keep in
mind the picture of a particle moving around in a box.

• Space: What world we’re in, what area your system is varying over
• Time: how long you are letting the system run

When you combine the manifold describing space (say M) with the manifold describing time (say
R) you get a new manifold M × R that is cleverally called “spacetime.”

• Fields: the possible paths a particle could take
For U ⊂ X × R, we get Fields(U) = Maps(U,Box).

• Rules: what makes the system special? What constraints are there on the paths particles
can take? For example (in the massless free field theory), this might say that the particle
has to follow a straight line. In general, these cut out a subspace of fields that satisfy the
equation.

These rules are called the equations of motion or the Euler-Lagrange equations. It is
the differential equation determined by the action functional.

ex. (free massless theory) the particle must move in a straight line
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Solutions to these equations define a subspace

Sol(U) ⊂ Fields(U)

• Observables: measurements you can take on the solutions to the Euler-Lagrange equations.

Obs(U) = Hom(Sol(U),R)

• Statistical numbers: In a topological field theory, these numbers don’t depend on the metric
of spacetime.

These are called correlation functions. The main one of importance for us will be the
partition function.

Features Classical Mechanics Atiyah/Segal
Space a fixed manifold X. In

quantum mechanics,
the Hilbert space of
states

any oriented
(n− 1)-dimensional
manifold, including the
emptyset

? ? Value of Z on any
oriented
(n− 1)-dimensional
manifold

Time R or an interval the closed interval [0, 1]
Spacetime a fixed n-dimensional

manifold Y Think
Y = X × R

any oriented
n-dimensional manifold
with boundary.

Fields For U ⊂ X × R open,
Maps(U,Box)

?

Equations of Motion differential equation
determining subspace
Sol(U) ⊂ Fields(U).

?

Observables C∞(Sol(U),R) Z(Sn−1).
Partition Function ? value of Z on a closed

n-manifold

I’ve left a few boxes blank. We can talk about these in discussion section next week.

Notation. For X an oriented manifold, let X denote X with the opposite orientation.

Definition 1.1. Let n be a positive integer. We define a category Cob(n) as follows:

• objects: (n− 1)-dimensional oriented manifolds
• morphisms fromM toN are given by equivalence classes of n-dimensional oriented manifolds

with boundary B together with an an orientation-preserving diffeomorphism

∂B 'M tN
Two morphisms B and B′ are equivalent if there is an orientation-preserving diffeomorphism
B → B′ that restricts to the identity on the boundaries,

B //

'
��

B′

'
��

M tN M tN
Composition is given by gluing cobordisms along their shared boundary. View Cob(n) as a sym-
metric monoidal category under disjoint union.
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For k a field, let Vect(k) denote the symmetric monoidal category of k-vector spaces with tensor
product.

Definition 1.2 (Atiyah, Segal). Let k be a field. A topological field theory (TFT) of dimension n
is a symmetric monoidal functor Z : Cob(n)→ Vect(k).

In particular, Z(∅) = k.

Remark 1.3. Note that Atiyah’s definition considers all possible spacetimes at once, instead of
working on one specific n-manifold at a time. We could instead consider the category of bordism
submanifolds within a fixed manifold.

What makes these field theories topological is the lack of a Hamiltonian. We only care about the
cobordism n-manifolds as smooth manifolds, not Riemannian manifolds.

Notation. For V a k-vector space, let V ∨ denote the linear dual, V ∨ : = Hom(V, k).

Let Z be an n-dimensional TFT. Given an oriented (n − 1)-manifold M , the product manifold
M × [0, 1] can be viewed as a morphism in Cob(n) in multiple ways.

• As a morphism from M →M , the product M × [0, 1] maps to the identity map

id: Z(M)→ Z(M).

• As a morphism M tM → ∅, the product M × [0, 1] determines an evaluation map

ev : Z(M)⊗ Z(M)→ k.

• As a morphism ∅ →M tM , the product M × [0, 1] determines a coevaluation map

coev : k → Z(M)⊗ Z(M).

Recall that a pairing V ⊗W → k is perfect if it induces an isomorphism V →W∨.

Proposition 1.4. Let Z be a topological field theory of dimension n. For every (n − 1)-manifold
M , the vector space Z(M) is finite dimensional. The evaluation map Z(M)⊗ Z(M)→ k, induced
from the cobordism M × [0, 1], is a perfect pairing.

Proving this is one of the problems we’ll talk about in next weeks discussion section.

2. Classifying Topological Field Theories

2.1. Low Dimensions.

Example 2.1 (Dimension 1). Let Z : Cob(1) → Vect(k) be a 1-dimensional TFT. Let P denote
a single point with positive orientation and Q = P . Let Z(P ) = V . This finite-dimensional vector
space, determines Z on objects. By Proposition 1.4, Z(Q) = Z(P ) = V ∨. A general object of
Cob(1) looks like

M =
∐
S+

P t
∐
S−

Q

for S+, S− sets. Since Z is symmetric monoidal, we have

Z(M) =
∐
S+

V t
∐
S−

V ∨

What about morphisms? A morphism in Cob(1) is a 1-dimensional manifold with boundary B.
Using the monoidal structure, it suffices to describe Z(B) where B is connected. There are five
possibilities

• B is an interval viewed as a morphism P → P . Then Z(B) = IdV .
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• B is an interval viewed as a morphism Q→ Q. Then Z(B) = IdV ∨ .
• B is an interval viewed as a morphism P tQ→ ∅. Then Z(B) : V ⊗V ∨ → k. By Proposition

1.4, this is the canonical pairing of V and V ∨,

Z(B)(x⊗ f) = f(x)

Under the isomorphism V ⊗ V ∨ ∼= End(V ), the morphism Z(B) corresponds to taking the
trace.
• B is an interval viewed as a morphism ∅ → P tQ. Then Z(B) is the map

k → V ⊗ V ∨ ∼= End(V )

sending λ ∈ k to λIdV .
• B = S1 is a circle viewed as a morphism ∅ → ∅. Then Z(S1) is a linear map k → k; i.e.,

multiplication by some γ ∈ k. To determine γ, view S1 as the union of two semi-circles
along P tQ. This determines a decomposition of S1 into the composite of two cobordisms,

∅ → P tQ→ ∅

By the above cases, Z maps this to the composite

k → End(V )→ k

of the map λ 7→ λIdV and the trace map. Thus Z(S1) is the scaling by Tr(IdV ) = dim(V )
map.

Remark 2.2. In 1-dimension, the observables are given by Z(S0) = End(V ). Notice that this has
the structure of an associative algebra.

Thus in dimension 1, we see that the vector space Z(P ) determines the TFT Z. Does every
V ∈ Vect(k) appear as Z(P ) for some 1-dimensional TFT? Nope, only the finite-dimensional ones.
We get an equivalence of categories

Fun⊗(Cob(1),Vect(k))→ Vectfin(k)

by evaluating on the point.
Let’s try to do something similar in dimension 2.

Example 2.3 (Dimension 2). Let Z be a 2-dimensional TFT. The only objects in Cob(2) are the

empty set and disjoint unions of copies of S1. We don’t get a new object S1 since the circle has an
orientation-reversing diffeomorphism. The observables, A = Z(S1) determines Z on objects.

What about morphisms? A morphism in Cob(2) is 2-dimensional oriented manifold with bound-
ary.

• The pair of pants cobordism determines a map m : A ⊗ A → k. One can check that m
defines a commutative, associative multiplication on A.
• The disk D2 viewed as a cobordism S1 → ∅ determines a linear map Tr: A→ k.
• The disk D2 viewed as a cobordism ∅ → S1 determines a linear map k → A. The image of

1 ∈ k under this map acts as a unit for the multiplication. Indeed, we can glue D2 to one of
the legs of the pants. The resulting manifold is diffeomorphic to S1 × [0, 1]. But S1 × [0, 1]
maps to IdA under Z.

Note that the composite of

A⊗A m−→ A
Tr−→ k

comes from the cobordism S1 × [0, 1] viewed as a map S1 t S1 → ∅. By Proposition 1.4, the map
Tr ◦m is a nondegenerate pairing.
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Definition 2.4. A commutative Frobenius algebra over k is a finite-dimensional commutative k-
algebra A, together with a linear map Tr: A → k such that the bilinear form (a, b) 7→ Tr(a, b) is
nondegenerate.

Theorem 2.5. The category of 2-dimensional TFTs is equivalent to the category of Frobenius
algebras.

Remark 2.6. In 2-dimensions, the observables Z(S1) of a TFT Z has the structure of a Frobenius
algebra.

2.2. Higher Dimensions. The problem when we try to classify TFTs in higher dimensions is that
the objects become too complicated. Up to reversing orientation and taking disjoint unions, the
categories Cob(1) and Cob(2) have a unique object, P and S1, respectively. For n = 3, there are
infinitely many oriented 2-manifolds, one for each genus g. We don’t think of genus g surfaces as
being that complicated. In fact, we usually think of Σg, the genus g surface, as coming from g
connect sums of the torus. A closely related way to say this, is that Σg has a relatively easy handle-
body decomposition. But what happens when we view Σg under its handle-body decomposition?
We’re really viewing it as a composition of cobordisms; i.e., as a morphisms in Cob(2). Similarly,
when we tried to understand the value of a 2-dimensional field theory on S1, we broke S1 into the
union of two semi-circles, that is to say, into its handle-body decomposition.

If we want to be understand a n-dimensional field theory by breaking manifolds down, using their
handle-body decompositions, into lower-dimensional manifolds, we need the TFT to know about
manifolds of dimension < n − 1. In particular, we would like some sort of data assigned to every
(n− 2)-dimensional manifold and we would like this data to have something to do with the values
on (n− 1)-manifolds.

The way to encode all this data is the language of higher categories.

Definition 2.7. A strict n-category is a category C enriched over (n− 1)-categories.

For n = 2, this means that for objects A,B ∈ C the morphisms HomC(A,B) is itself a category.

Example 2.8. The strict 2-category Vect2(k) has objects cocomplete k-linear categories and mor-
phisms

HomVect2(k)(C,D) = Funcocon
k (C,D)

the functor category of cocontinuos, k-linear, functors.

Example 2.9. The strict 2-category Cob2(n) has

• objects: closed, oriented manifolds of dimension n− 2.
• morphisms: HomCob2(n)(X,Y ) =: C should be the category with

– objects: cobordisms X → Y
– morphisms: HomC(B,B

′) is equivalence classes of bordisms X from B → B′

The big problem here is making the composition law strictly associative. One would like to define
composition by gluing bordisms, but get messed up in defining a smooth structure on the result,
and things that used to be equalities are now just homeomorphisms. The solution will be to get rid
of the “strictness” and move to (∞, 2)-categories.

Definition 2.10. Let C be a symmetric monoidal n-category. An extended C-valued n-dimensional
TFT is a symmetric monoidal functor

Z : Cobn(n)→ C

The purpose of this definition is to allow us to reduced n-dimensional TFTs down to information
about 1-dimensional TFTs. As we saw before, a 1-dimensional TFT is determined by its value on
a point. Thus we might make the following guess.
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Guess. An extended field theory is determined by its value on a single point. Moreover, evaluation
on a point determines an equivalence of categories between TFTs valued in C and C.

There’s two problems with this guess.

(1) Even in 1-dimension, not every vector space determined a TFT. We needed to restrict to
finite-dimensional ones. The analogue in higher dimensions will be something called “fully
dualizable objects.”

(2) Orientation in dimension 1 is the same as a framing. This isn’t true in higher dimensions.
We actually wanted a framing, not just an orientation so that we could say that locally Mk

was canonically diffeomorphic to Rk (via the exponential map). Thus we need a version of
Cobn(n) that works with framed manifolds instead of oriented ones.

Theorem 2.11 (Baez-Dolan Cobordism Hypothesis: Framed Version). Let C be a symmetric
monoidal (∞, n)-category with duals. Then the evaluation functor Z 7→ Z(∗) induces an equiva-
lence

Fun⊗(Bordfr
n , C)→ C∼

between framed extended n-dimensional TFTs valued in C and the fully dualizable subcategory of C.
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