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The goal of this talk is to understand the “moduli space of 0-dimensional (compact)
manifolds”. Of course, 0-dimensional manifolds are not very interesting. They are just
a finite collection of points. The diffeomorphism classes of 0-dimensional manifolds
are indexed by the natural numbers N, and the automorphism group of [n] is Σn. So
the (homotopy type of) the moduli space is

M =
∐
n≥0

BΣn.

The disjoint union of manifolds endows M with the structure of an A∞-monoid.
This is the correct notion of a topological monoid in the homotopical setting. It
is in fact E∞, but we shall focus on the A∞ structure. We will provide a concrete
definition of an A∞-monoid later on and explicitly describe this A∞ structure.

If X is any A∞-monoid, then π0(X) is a monoid, which may or may not be a
group. We say X is group-like (or an A∞-group) if π0(X) is a group, and the group
completion of X, written X → Xgp, is the universal map of A∞-monoids from X
to an A∞-group. In the previous talk, we discussed the group completion theorem,
which relates the homology of Xgp to that of X.

Theorem 1. There is an equivalence of A∞-groups

Mgp ∼→ lim
N→∞

ΩNSN .

There is an “easy” abstract nonsense proof of this theorem — simply observe
that both sides are the free E∞-group on a point. However, the perspective we want
to take is that M is the moduli of 0-dimensional manifolds, and so we want a proof
that adopts this perspective.

In this talk, we will construct an explicit geometric model of M and endow it
with the structure of an A∞-monoid. We will then use this explicit model to prove
the equivalence above.

First of all, instead of thinking about “all” 0-dimensional manifolds, we consider
0-dimensional submanifolds of R∞. In general,

Definition 2. If M is a manifold, write Confn(M)Σn
for the space of n distinct

(unordered) points on M .
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We define
Confn(R∞)Σn = lim

N→∞
Confn(RN )Σn .

It is not difficult to see that this is a model of BΣn, using the fact that the space of
embeddings of n points in RN is ∼ N connected. So we have

M = lim
N→∞

∐
n≥0

Confn(RN )Σn

It will be useful to consider a variant of this configuration space:

Definition 3. C(RN ) is the set of discrete subsets of RN , where a sequence of
configurations converges if the intersection with any open ball converges.

To get a feel of what this space is like, we can describe some properties of it. For
example this space is path connected, because given any configuration, we can push
all points out to infinity to get a path to ∅. In fact, we can explicitly describe the
homotopy type.

Proposition 4. C(RN ) ' SN .

Proof. We shall define two contractible open subsets U0, U1 ⊆ C(RN ) such that
U0 ∩ U1 ' SN−1. Then we have a homotopy pushout square

U0 ∩ U1 U0

U1 C(RN )

that exhibits C(RN ) as the suspension of SN−1, hence is SN .
We define the subsets U0, U1 as follows:

• U0 contains the configurations with no point at the origin.

• U1 contains the configurations with a unique point closest to the origin.

These indeed cover — if a configuration is not in U0, then it contains a point at the
origin, which is necessarily the unique point closest to the origin. We observe

• U0 deformation retracts to ∅ by pushing every point away from the origin;

• U1 deformation retracts to {(0, 0)} by translating the distinguished point to
the origin, then pushing all other points out to infinity;

• U0 ∩ U1 deformation retracts onto SN−1 by scaling the distinguished point to
radius 1, then pushing all other points to infinity.
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We generalize the definition of C(RN ) a bit:

Definition 5. If U ⊆ RN is open, we define C(U) to be the subset of C(RN )
consisting of the configurations that are contained in U .

Example 6. If I is the interval [0, 1], then

C(IN ) ∼=
∐
n≥0

Confn(IN )Σn
∼=

∐
n≥0

Confn(RN )Σn .

So
M∼= lim

N→∞
C(IN ).

The main theorem we have to prove is the following:

Theorem 7. Let U ⊆ RN be an open subspace of the form Rk×V with V precompact.
Then C(I × U) has a canonical structure as an A∞-monoid and

C(I × U)gp ' ΩC(R× U).

Iterating this with the case U = Rk × Ij, we find that

Mgp ∼= lim
N→∞

ΩNC(RN ) = lim
N→∞

ΩNSN .

It is reasonable to expect the theorem to be true for more general U , but I only
know of a proof for U of this particular form.

The idea of the theorem is that if C(I × U) were a topological monoid, then the
theorem is equivalent to BC(I × U) ∼= C(R × U), and in the bar construction for
C(I × U), we have lots of copies of I put next to each other, which give us an R.

To actually prove the theorem, we need to first know what it means to be an
A∞-monoid. It turns out the definition of an A∞-monoid is one such that the idea
above can be made literally true.

Our notion of an A∞-monoid is what people call a reduced Segal space. The idea
is that a reduced Segal space is a simplicial space that “looks like” the bar resolution
of a topological monoid.

Definition 8. An A∞-monoid is a (proper) simplicial space X• such that the maps
Xp → Xp

1 given by the inclusions [1] ↪→ [p] sending {0, 1} 7→ {i, i + 1} is a weak
equivalence. In particular, X0 ' ∗.

Given an A∞-monoid X•, we will refer to X1 as the underlying space, and we
expect the geometric realization ‖X•‖ to be the delooping of X1. The main theorem
(whose proof we omit) is the following:

Theorem 9. If X• is an A∞-monoid, then Xgp
1
∼= Ω‖X•‖.
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So to prove the main theorem, we need to construct X• such that X1
∼= C(I ×U)

and ‖X•‖ ∼= C(R× U).

Proof of main theorem. We define Xp to be the subset of C(R×U)×Rp+1 consisting
of elements (x, t0 ≤ · · · ≤ tp) such that x never meets the “walls” {ti}×U . The face
map di forgets the wall ti, and the degeneracies repeat the corresponding wall.∗

t0 t1 t2

There is an inclusion C(I×U) ∼= C(I×U)×{(0, 1)} ↪→ X1, which is a deformation
retract, and in particular a homotopy equivalence. This deformation retract is simply
given by scaling the ti the configuration and ti linearly until (t0, t1) = (0, 1), and then
pushing the points with t 6∈ (0, 1) away to infinity. Similarly, we get Xp ' C(I ×U)p

and we see that X• is indeed an A∞-monoid.
We next need to show that ‖X•‖ ' C(R × U). A point in ‖X•‖ is an element

(x, t0 < · · · < tp) together with some non-zero weights on the ti summing to 1,
modulo some equivalence relations. We define a map p : ‖X•‖ → C(R × U) that
simply forgets the walls and weights.

We first prove that this is a weak equivalence if U is precompact. The strategy
is to show that this map is a Serre microfibration with weakly contractible fibers.
Recall that a Serre fibration is a map A→ B where we can always solve the lifting
problem

Dk A

Dk × [0, 1] B

A Serre microfibration is a weaker notion where we only need to be able to lift of
the restriction of the bottom map to Dk× [0, ε) for some small ε > 0. It is a theorem
that a Serre microfibration with weakly contractible fibers is a weak equivalence.

The map is easily seen to be a microfibration in the case where U is precompact,
because any element in C(I×U) only has finitely many points and so the configuration
of points is bounded away from the walls, so any small perturbation of the points
will still not hit the walls. If U is not precompact, this argument fails because we

∗ Näıvely, one might think we should require the points to lie within (t0, tp)×U . It gives the same
homotopy type because we can push the outside points away to infinity, but our formulation
here makes the proof go more smoothly.
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can have infinitely many points that can get arbitrarily close to the walls, and we
need to modify our argument.

To see that the fibers are contractible, fix x ∈ C(R × U). Then p−1({x}) is
the space of ways to insert walls and weights that do not hit x. If K is a compact
space and f : K → p−1({x}) is a map, then by compactness, the walls in f(K) are
bounded. So we can pick a T so large that the walls in f(K) are all < T , and we
may also assume {T} × U does not hit x. There is then a homotopy from f to the
constant map on (x, T ) by scaling down the weights at the existing walls and putting
the weights on T . So p−1({x}) is contractible.

In the case where U ∼= Rk × V is not precompact, we have to do a bit more work.
We define another space X ′• whose p-simplices is the subspace of C(R×U)×Rp+1×
(Rk)p+1 consisting of (x, t0 ≤ . . . ≤ tp, y0, . . . , yp) such that x is disjoint from the
subset {ti} × {yi} × V ⊆ R× Rk × V of the wall (and we require yi = yj if ti = tj).
This is a less restrictive condition, and we have maps

‖X•‖ ‖X ′•‖

C(R× U)

p p′

The horizontal map sets yi = 0 and is a deformation retract because we can push
points on {ti} × Rk × V away from the point yi (and then translate yi to 0). Then
the above argument generalizes to show that p′ is a Serre microfibration with weakly
contractible fibers.

t0 t1 t2

y0

y1

y2

This proof is meant to serve as a blueprint for understanding the moduli space of
higher dimensional manifolds. In the positive dimensional case, essentially the same
proof will show that (the classifying space of) the “cobordism category” is homotopy
equivalent to an explicit infinite loop space. The main differences are as follows:

1. We have to relate this cobordism category to the moduli space of manifolds.
In the 0-dimensional case, this requires almost no work. Indeed, we managed
to avoid mentioning the cobordism category at all.
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2. We have to identify the replacement of C(Rn) with an appropriate Thom space.
This will be done with a technique known as scanning.

3. One has to put some effort into defining the right topology on the moduli
spaces, which is more complicated than the zero-dimensional case. In the
0-dimensional case, we had this trick of considering the space X ′• in addition
to X•, and in positive dimensions, we need to play multiple similar tricks to
relate different models of the moduli space.
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