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1 An intro to moduli spaces of manifolds

Speaker: Sander Kupers

Overview: In this talk, Sander discussed the goal of the program and how it differs from classical
programs.

All manifolds under consideration are smooth and compact.

1.1 Classification of manifolds:

dim 0, 1: All 0, 1 manifolds are, respectively, disjoint unions of points and circles – we study them by
restricting to path-connected ones.

dim 2: use geometry to cut surfaces into simpler pieces by cutting along embedded curves with trivial
normal bundle

[picture of surface of genus 3 = genus 2 \D2 + genus 1 \D2]

∴ every smooth compact surface is a conected sum (= opposite surgery/operation to cutting
along a curve) of the torus =T 2 and RP 2

dim 3: similar idea to the 2-dimensional case – cut along spheres with trivial normal bundle to
produce irreducible manifolds, then cut along tori, Thurston’s program

dim ≥ 4: Problem: every finitely-presented group is π1 of a smooth, compact 4-manifold - can’t classify
these (there’s no algorithm to produce a list of these)
Instead, fix π1. In fact, we go further by fixing the homotopy type. For X to have the
homotopy type of a manifold, it needs to have H∗ with Poincaré duality, stable spherical
fibration, etc.

Existence: Pick an arbitrary map M → X. Try to improve it by modifying M (to make it
closer and closer to a homotopy equivalence) using surgeries.
[picture of M ⊂M × I, with Di+1 ×Dn glued along ∂(Di+1 ×Dn) ↪→M × {1}
new boundary: (M \ int(∂Di+1 ×Dn)) ∪ (Di+1 × ∂Dn) ”result of surgery”]

Question. Can you make M → X a homotopy equivalence by surgeries?

There are two problems

– Algebraic problem: can arise when you reach middle dimension (“trading things off each
other”): there is an obstruction in symmetric L-theory of Z[π1X] when n is odd
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– Geometric problem: only occurs in dimension 4 due to failure of the Whitney trick

Idea: these issues are governed by homotopy theory, and (as we’ll see next) algebraic K-theory

Uniqueness: Suppose we have M,M ′ → X which are homotopy equivalences. Pick an
arbitrary bordism W between M,M ′. Want to apply the same techniques in a relative (to
∂W ) way. Eventually want MtM ′ ⊂ ∂W such that the inclusions M,M ′ →W are homotopy
equivalences. If W ∼= M × I rel M × {0}, then get ∂1W ∼= M × {1}. There is an algebraic
K-theory obstruction to finding this (W ∼= M × I).

Classification of manifolds up to diffeomorphism (70s): dim ≤ 3 were classified by geometric meth-
ods, dim = 4 we had no idea what was going on, and in dim ≥ 5 these were classified by homotopy
theory and algebra.

Nowadays, we think it’s important to keep track of how things are diffeomorphic to each other
(i.e. the types of symmetries each object has).

1.2 Classification of manifold bundles

A more refined classification also studies symmetries of isomorphism classes:
Why is studying diffeomorphisms the same as studying manifold bundles? (A: the former arise

as clutching functions for latter)

Definition. A manifold bundle is M ↪→ E � B such that for each b ∈ B there is an open
neighborhood b ∈ U such that p−1(U) ∼= U × M (local triviality) and the transition functions
U ∩V ×M → p−1(U ∩V )→ U ∩V ×M are given by (u,m) 7→ (u, g(u)m) for some continuous map
g : U ∩ V → Diff(M). “locally trivial fiber bundle with fiber M and structure group Diff(M)”

Remark. Can associate this to a principal bundle
Consider:

I ×M ∼= p∗E E

I S1

The bundle on the RHS is determined by a diffeomorphism of M identifying M ×{0} with M ×{1}
Recall: vector bundles are ”locally trivial fiber bundles with fiber Rn and structure group

GLn(R)”
When studying any bundle, should ask if there is a universal bundle:

Definition. Euniv → Buinv n-dimensional vector bundle is universal if there is an isomorphism

{n-dim’l vector bundles over B} /iso ∼= {maps f : B → Buniv} /htpy

f∗Euniv ← [[f ]

Fact: A principal G-bundle is universal ⇐⇒ its total space is contractible.
=⇒ : Buniv for n-dimensional (real) vector bundle fits in a fiber sequence

GLn(R)→ Euniv ∼= ∗ → Buniv

By the LES on homotopy groups, have πi(Buniv) = πi+1(GLn(R))
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Example. Let Vn(R∞) = Stiefel manifold = {injective linear maps Rn → R∞}. This is contractible
by a standard swindle (i.e. the map (x1, . . .) 7→ (0, x1, . . .)). We have a map

Vn(R∞)→ GLn(R∞) ∼= {n-planes in R∞}

. The latter is the classifying space for GLn(R∞)/n-dim’l vector bundles.

Fix M .

{M bundles over B } /iso { maps f : B → base of universal M -bundle} /htpy

{principal Diff(M)-bundles over B}

The universal such thing is given by the moduli space of manifolds diffeomorphic to M .

Consider {embeddings M ↪→ R∞} quotient by Diff(M)−−−−−−−−−−−−−→ {submanifolds of R∞ diffeo to M} =MM (R∞).

Ẽ ×Diff(M) M = {submanifolds of R∞ diffeo to M + point in M} →MM (R∞)

1.2.1 Conclusion

1. understanding M -bundles ⇐⇒ understanding homotopy type of MM (R∞)

2. πiMM (R∞) = πi−1Diff(M)

What was known about these things before people started studying moduli spaces of manifolds?
In the 80s: In dim ≤ 3, Diff(M) were homotopy discrete (i.e. given by π0 - proven using

hard group theory), in dim 4 ???. In dim ≥ 5, ”parametrized surgery theory” works in a range of
dimensions ≤ n

3 . The goal of (the program of) moduli spaces of manifolds is to remove this last
constraint and compute the homotopy type of Diff(M) for all M . This is still impossible, but we
can try to do this for certain classes of M (e.g. simply connected) and/or express πiDiff(M) in
terms of other things that are hard to compute (e.g. πst∗ of spheres).

1.3 Stabilization

here’s a simple example

Wg = #gS
n × Sn

Wg,1 = #gS
n × Sn \ int(D2n)

Glue a copy of W1,1 to Wg,1 to get Wg+1,1. This gives us a map

BDiff∂(Wg,1)→ BDiff∂(Wg+1,1)

which has a geometric model

MWg,1
([0, 1]× [0,∞)× R∞)→MWg+1,1

([0, 1]× R× R∞)

Why is Sander changing where the manifold lives? Because he wants the boundary to be fixed
pointwise. Wg+1,1 contains a (many) copie(s) of Wg,1, but there isn’t a canonical one, i.e. the map
above has local inverses but no global ones.
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[very colorful picture]

Consider the space of ”inverses of stabilization” consisting of linear combinations of embedded
Wg,1’s with weight in [0, 1], and if weight = 0 then delete it. It turns out that this space is highly
connected.

Theorem. (Galatius, Randall-Williams)

H∗(BDiff∂(Wg,1))→ H∗(BDiff∂(Wg+1,1))

is an isomorphism for ∗ ≤ g
2

Remark. Think/intuition: all the choices above (of a copy of Wg,1 in Wg+1,1) are conjugate to each
other, although this is not how the proof goes.

Question. What happens when g →∞? The group completion theorem says that

lim−→
r→∞

⊕
g≥0

H∗(BDiff∂(Wg+r,1)) ∼= H∗

⊔
g≥0

BDiff∂(Wg,1)

 [stab−1]

The RHS makes sense for MWg,1
(−) (?)

Consider MW (R× [0,∞)× R∞), where we allow W1,1’s to disappear at {±∞} × [0,∞)× R∞

lim−→
⊕

H(BDiff∂(Wg+r,1)) ∼= H∗(ΩMW (R× [0,∞)× R∞)

If you’re allow to remove/add ”bits at infinity,” can implement surgeries:

[animated picture showing the joining of a handle with a disjoint S1 × S1 at ∞]

In order to do surgery, we need to add extra data of tangent/normal bundle
MW (R× [0,∞)× R∞)→Mθ(R× [0,∞)× R∞) This map is a weak homotopy equivalence.
(?) Allowing things to disappear/reappear at infinity = adding more loops to the space

lim−→
n→∞

ΩnMθ(R× [0,∞)× R∞) ∼ Ω∞−1MTO

(latter is some Thom spectrum).

Theorem. (GRW) H∗(BDiff∂(Wg,1)) ∼= H∗(Ω
∞
0 MTO) ∗ ≤ g

2 where the RHS is very computable.
H∗(BDiff∂(Wg,1);Q) ∼= Q[κc | c monomial in e, pi, n ≤ 4i ≤ 4n] if ∗ ≤ g

2 .
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