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0.1. Review: Fiber Integration in Ordinary Cohomology. Normally, we get a fiber integra-
tion map from combining the Thom isomorphism and the suspension isomorphism. Let E → S
be an oriented fiber bundle with fiber a compact manifold of dimension k. Let E → RN be an
embedding with normal bundle ν. Let Eν denote the Thom space of the normal bundle. Then fiber
integration is given by the composite

Hq+k(E)
∼−→ Hq+N (Eν)

PT−−→ Hq+N (S+ ∧ SN ) ' Hq(S+)

where the first map is the Thom isomorphism, the second map is the Pontryagin-Thom collapse
map, and the third map is the suspension isomorphism. Recall that the Thom isomorphism is given
by taking the cup product with the Thom class.

To do all of this in differential cohomology, we need to differentialize the following things:

• the cup product
• Thom classes/orientations
• the suspension isomorphism

1. Cup Product

Let X be a manifold. Recall that the Deligne complex Z(k) is the homotopy pullback

Z(k) //

��

Z

��
ΣkΩkcl

// R
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Thus we can represent an element of Z(k)(X) as a triple (c, h, ω) where c is an integral degree k
cocycle on X, ω is a closed k form on X, and h is a degree k−1 real cochain on X so that dx = ω−c.

1.1. Combining the Cup and Wedge Products. We can form a ring structure on differential
cohomology by combining the cup product on HZ and the wedge product on ΩdR.

Z(n)⊗ Z(m) //

��

HZ[n]⊗HZ[m]
∪ //

��

HZ[m+ n]

��

Ωncl ⊗ Ωmcl

∧
��

// HR[n]⊗HR[m]

∪

((
Ωn+mcl

// HR[m+ n]

In particular, if we represent an element of Cn(X; Z(n) by a triple (c1, h1, ω1) and an element of
Cm(X; Z(m)) by a triple (c2, h2, ω2) we would like the product to be a triple

(c1, h1, ω1) ∪ (c2, h2, ω2) = (c3, h3, ω3) ∈ Cm+n(X; Z(m+ n))

Saying that this product comes from combining the cup product and the wedge product, means that
c3 = c1 ∪ c2 and ω3 = ω1 ∧ ω2. We are only left with figuring out what h3 should be. Heuristically,
h3 should be a homotopy between c3 and ω3; i.e., a homotopy between the cup product and the
wedge product.

Given forms ω ∈ Ωn(X) and η ∈ Ωm(X), we can form the wedge product ω ∧ η ∈ Ωn+m(X)
and view that as a real cochain under the map Ωn+m(X) → Cn+m(X; R. We could also map the
forms ω, η to real cochains on X and then take their cup product. Let B(ω, η) ∈ Cn+m−1(X; R) be
a choice of natural homotopy between these two cochains so that

dB(ω, η) +B(dω, η) + (−1)|ω|B(ω, dη) = ω ∧ η − ω ∪ η
Note that we can take B(ω, 0) = 0.

Then the product of (c1, h1, ω1) ∈ Cn(X; Z(n)) and (c2, h2, ω2) ∈ Cm(X; Z(m)) is given by

(c3, h3, ω3) = (c1 ∪ c2, (−1)|c1|c1 ∪ h2 + h1 ∪ ω2 +B(ω1, ω2), ω1 ∧ ω2)

For this to be a differential cocyle, we need to have

d((−1)|c1|c1 ∪ h2 + h1 ∪ ω2 +B(ω1, ω2) = ω1 ∧ ω2 − c1 ∪ c2
This will only work if (c1, h1, ω1) and (c2, h2, ω2) are themselves cocycles; i.e., dci = 0 = dωi. In
this case, we have

ω1 ∧ ω2 − ω1 ∪ ω2 = dB(ω1, ω2) = B(0, ω2) + (−1)|ω1|B(ω1, 0) = dB(ω1, ω2)

Thus

d((−1)|c1|c1∪h2 + h1 ∪ ω2 +B(ω1, ω2)

= (−1)|c1|d(c1 ∪ h2) + d(h1 ∪ ω2) + dB(ω1, ω2)

= (−1)|c1|
(
dc1 ∪ h2 + (−1)|c1|c1 ∪ dh2

)
+ dh1 ∪ ω2 + (−1)|h1|h1 ∪ dω2 + dB(ω1, ω2)

= c1 ∪ dh2 + dh1 ∪ ω2 + dB(ω1, ω2)

= c1 ∪ (ω2 − c2) + (ω1 − c1) ∪ ω2 + ω1 ∧ ω2 − ω1 ∪ ω2

= c1 ∪ ω2 − c1 ∪ c2 + ω1 ∪ ω2 − c1 ∪ ω2 + ω1 ∧ ω2 − ω1 ∪ ω2

= ω1 ∧ ω2 − c1 ∪ c2
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Remark. In fact we can get E∞-structure from the homotopy pullback diagram. View HZ as a
(stupidly) filtered E∞-algebra. View Ω as a filtered E∞-algebra with filtration by Ω≥k. Then the
homotopy pullback of two E∞-algebras is again an E∞-algebra.

1.2. Deligne Cup Product. Recall that we have an identification of the homotopy pullback ĤZ(k)
with the complex of sheaves Z(k),

Z(k) =
(

Γ∗Z
ι−→ Ω0 d−→ Ω1 d−→ · · ·Ωk−1

)
Under this identifcation, we can describe the product in differential cohomology more explicitly.
This is sometimes called the “Deligne cup product.”

Let X be a manifold and U ⊂ X an open set. Then Z(k)(U) is a chain complex that is C0(U ; Z)
in degree 0 and Ωp(U) in degree p+ 1.

Proposition 1.1. The Deligne cup product ∪ : Z(k)(U)⊗ Z(l)(U)→ Z(k + l)(U) is given by

x ∪ y =


x · y deg(x) = 0

x ∧ ιy deg(x) > 0,deg(y) = 0

x ∧ dy deg(x) > 0,deg(y) = l > 0

0 otherwise

Remark. This is only commutative up to homotopy.

1.3. Examples. We analyze the Deligne cup product in detail n the lowest dimensions. Let X be
a manifold. Recall the following computations.

• Z(0) = Γ∗Z[0] is the complex with Γ∗Z in degree zero. Thus Ȟ0(X) = H0(X; Z).
• Ȟ1(X) = Mapssm(X,U(1)).
• Ȟ2(X) = {line bundles on X with connection}/ ∼.

Let Z(k)l denote the degree l term of the complex Z(k). For example, Z(3)2 = Ω1. Let U be a good
cover for X. Using Cech cohomology for this good cover, the Deligne cup product gives a map ⊕

i+j=k

Či(U ; Z(k)j)

⊗⊕
i+j=l

Či(U ; Z(l)j)

→
 ⊕
i+j=k+l

Či(U ; Z(k + l)j)


Example 1.2. The Deligne cup product

Z(0)⊗ Z(0)→ Z(0)

should give us a way of taking two connected locally constant functions of X → Z and producing
a third. By Proposition 1.1, the Deligne cup product of two elements in degree 0 agrees with the
ordinary cup product in H0(X; Z); i.e., the product of the two locally constant functions.

Example 1.3. The Deligne cup product

Z(0)⊗ Z(1)→ Z(1)

should give us a way of taking a locally constant function X → Z and a smooth map g : X → U(1)
and producing a new smooth map X → U(1). In the Cech complex, we are looking at a map

Č0(U ; Z(0)0)⊗
(
Č0(U ; Z(1)1)⊕ Č1(U ; Z(1)0)

)
→
(
Č0(U ; Z(1)1)⊕ Č1(U ; Z(1)0)

)
Identifying these terms, we have

Č0(U ; Z)⊗
(
Č0(U ; Ω0)⊕ Č1(U ; Z)

)
→
(
Č0(U ; Ω0)⊕ Č1(U ; Z)

)
This sends n⊗ (f,m) to (n · f, n ·m).
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Example 1.4. The Deligne cup product

Z(1)⊗ Z(0)→ Z(1)

should give us a way of taking a locally constant function X → Z and a smooth map g : X → U(1)
and producing a new smooth map X → U(1). In the Cech complex, we are looking at a map(

Č0(U ; Ω0)⊕ Č1(U ; Z)
)
⊗ Č0(U ; Z)→

(
Č0(U ; Ω0)⊕ Č1(U ; Z)

)
This map sends (f,m)⊗ n) to (f · ιn,m · n).

More geometrically, we can describe the Deligne cup product as follows. Given a pair (n, f) where
n : X → Z is a locally constant function and f : X → S1 is a smooth map, the Deligne cup product
of n with f is the smooth function g : X → S1 by g(x) = e2πin(x)f(x).

Remark. We can note that the Deligne cup product commutes up to homotopy,

Z(1)⊗ Z(0) //

��

Z(1)

Z(0)⊗ Z(1)

99

since (f · ιn = n · f) as functions to R.

Example 1.5. The Deligne cup product

Z(1)⊗ Z(1)→ Z(2)

should give us a way of taking two smooth maps X → U(1) and producing a line bundle on X with
connection. In the Cech complex, we are looking at a map(

Č0(U ; Z(1)1)⊕ Č1(U ; Z(1)0)
)⊗2 → (

Č0(U ; Z(2)2)⊕ Č1(U ; Z(2)1)⊕ Č2(U ; Z(2)0)
)

Then the Deligne cup product sends

(f, n)⊗ (g,m) 7→ (nαβ ·mβγ , nαβ · gβ + 0, fαdgα)

If we think of (f, n) and (g,m) as smooth maps X → U(1), then (nαβ · mβγ , nαβ · gβ , fαdgα)
corresponds to the line bundle with transition function nαβ · gβ and connection given by one form
(2πi)fαdgα.

2. Integration

We explain how to combine fiber integration in ordinary cohomology with integration of forms
to obtain a fiber integration map in ordinary differential cohomology.

The input will be a fiber bundle

M → E → X

where M is a closed, smooth manifold of dimension d and X is a simplicial manifold.The output
will be a map of spectra

Z(k)(E)→ ΣdZ(k − d)(X)

where Z(k) is the homotopy pull back

Z(k) //

��

Γ∗HZ

��
Σ−kHΩkcl

// Γ∗HR
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in Shv(Man,Sp) and, similarly, Z(k − d) is the homotopy pullback

Z(k − d) //

��

Γ∗HZ

��
Σd−kHΩk−dcl

// Γ∗HR

To produce a map Z(k) → ΣdZ(k − d), it therefore suffices to produce maps HZ → ΣdHZ and

Ωkcl → Ωk−dcl together with a path between their images in ΣdΓ∗HR.

2.1. Differential Thom Classes and Orientations.

Definition 2.1. Let M be a smooth compact manifold and V → M a real vector bundle of
dimension k. A differential Thom cocycle on V is a cocycle

U = (c, h, ω) ∈ Ž(k)kc (V )

such that, for each m ∈M ∫
Vm

ω = ±1

Remark. A differential Thom class determines a ordinary Thom class in integral cohomologyHk
c (V ; Z).

The following is [1, Defn. 2.9].

Definition 2.2. An Ȟ-orientation of p : E → S consists of the following data
1) a smooth embedding E ⊂ S × RN for some N ;
2) a tubular neighborhood W ⊂ S × RN ;
3) a differential Thom cocycle U on W .

2.2. Differential Fiber Integration. Our hope is to get an analogue of the suspension isomor-
phism

Hq+N
c (S × RN ) ' Hq(S)

Example 2.3. Consider the case when S is a point and N = 1. Then the ordinary suspension
isomorphism says that

H1(S1; Z) ∼= H0(pt; Z) ' Z

The calculation H1(S1; Z) ' Z is by degree,

H1(S1; Z) = [S1,K(Z, 1)] = [S1, S1] ' Z

In differential cohomology, we have an equivalence

Ȟ1(S1) ' Mapssm(S1, S1)

We still have a degree map

Mapssm(S1, S1)→ Z

but it is no longer an isomorphism.

Thus, we are looking for a suspension map not an isomorphism.
We start by working with the trivial bundle S×RN → S and defining integration for compactly-

supported forms. This is [1, §3.4]. Define the map∫
S×RN/S

: Č(p+N)q+Nc (S × RN )→ Č(p)q(S)
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by the slant product with a fundamental cycle ZN ∈ CN (RN ; Z),

(c, h, ω) 7→

(
c/ZN , h/ZN ,

∫
S×RN/S

ω

)
Note that this is simply a map not an isomorphism.

Remark. Checking that the slant product goes through to differential cohomology seems to require
some work. See [1, §3.4].

The following is [1, Defn. 3.11]

Definition 2.4. Suppose that p : E → S is an Ȟ-oriented map of smooth manifolds with boundary
of relative dimension k. The integration map is the map∫

E/S

: Č(p+ k)q+k(E)→ Č(p)q(S)

given by the composite

Č(p+ k)q+k(E)
∪U−−→ Č(p+N)q+Nc (S × RN )

∫
RN (−)
−−−−−→ Č(p)qc(S)

2.3. Example: S1-bundle. In one dimension, the only closed manifold is S1. If E → S is an
oriented S1-bundle, then integration along the fibers defines a map∫

E/S

: Ȟ2(E)→ Ȟ1(E)

If x ∈ Ĥ2(E) corresponds to a line bundle with connection, then∫
E/S

x

represents the function S → S1 sending s ∈ S to the monodromy of x computed around the fiber
Es.
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