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1 The statement

The main theorem of the Freed–Hopkins paper Chern–Weil forms and abstract
homotopy theory is that Chern–Weil forms are the only natural way to get a differential
form from a principal G-bundle.

Theorems along these lines are of interest historically. It is an important ingredient
in the heat kernel proof of the Atiyah–Singer index theorem. Essentially, the idea
of the proof is to use the heat equation to show that there is some formula for
the index of a vector bundle in terms of the derivatives of the metric, and then by
invariant theory, this must be given by the Chern–Weil forms we know and love.
One then computes this for sufficiently many examples to figure out exactly which
characteristic class it is, as Hirzebruch originally did for his signature formula.

To state the theorem, we work in the category Shv(Man,S). For the pur-
poses of this theorem, it actually suffices to work with sheaves of groupoids, i.e.
Shv(Man, τ≤1S). This only requires 2-category theory instead of ∞-category theory.
However, working with ∞-categories presents no additional difficulty, and is what
we shall do.

We now introduce the main characters of the story.

Example 1. Any M ∈ Man defines a representable (discrete) sheaf, which we denote
by M again.

Example 2. Any sheaf of sets on Man is in particular sheaf of (discrete) spaces.
Thus, for p ≥ 0, we have a discrete sheaf

Ωp ∈ Shv(Man,S).

This is in fact a sheaf of vector spaces, and moreover, there are linear natural
transformations d : Ωp → Ωp+1. Thus, we get a sheaf of chain complexes Ω•, and

[M,Ω•] = Ω•(M).

1



In general, for any sheaf F , we can think of Ω•(F) ≡ [F ,Ω•] as the de Rham complex
of F .

From now on, fix G a Lie group.

Example 3. For M ∈ Man, define B∇G(M) to be the groupoid of principal G-
bundles on M with connection and isomorphisms, which we think of as a 1-truncated
space. This defines B∇G ∈ Shv(Man,S).

The main theorem is

Theorem 4. The Chern–Weil homomorphism induces an isomorphism

(Sym• g∗)G
∼→ Ω•(B∇G).

To prove the theorem, we consider the universal principal G-bundle E∇G→ B∇G.
The point is that E∇G admits a much more explicit description, and then we use
B∇G = E∇G//G to understand B∇G itself.

E∇G can be described explicitly as follows:

Example 5. Define E∇G(M) to be the groupoid of trivialized G-bundles on M
with connection. Equivalently, this is the groupoid of connections on the trivial
G-bundle M ×G→ G. So E∇G ∼= Ω1 ⊗ g.

There is then a natural map E∇G(M)→ B∇G(M), which one can easily check is
the universal principal G-bundle. Our next claim is that B∇G(M) = E∇G(M)//G,
which is clear once we know what the latter is.

Definition 6. Let F ∈ Shv(Man,S), and let α : G × F → F be an action by G.
Explicitly, for each M ∈ Man, there is a group action

HomMan(M,G)×F(M)→ F(M)

where HomMan(M,G) is given the pointwise group structure. We can then define the
action groupoid

(F//G)• = G×• ×F ∈ Shv(Man,S)∆op

.

The homotopy quotient of F by G is then

F//G = |(F//G)•|.

Note that this geometric realization is taken in the category Shv(Man,S). To compute
this, one takes the geometric realization in the category of presheaves, then sheafify.

We then see that B∇G = E∇G//G. Explicitly, the action of the gauge group can
be described as follows — given g : M → G and α ∈ E∇G(M) = Ω1(M ; g), we have

g · α = g∗θ + Adg−1 α.
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Remark 7. Formally, to prove that B∇G = E∇G//G, we first form the quotient
of E∇G by G in the category of presheaves. Since E∇G is discrete, this is given by
(the nerve of) the action groupoid of the G-action on E∇G. This gives the presheaf
of trivial principal G-bundles. To show that the sheafification is B∇G, observe that
there is a natural map from this presheaf to B∇G, and it is an equivalence on stalks
since all principal G-bundles on contractible spaces are trivial. So it induces an
isomorphism after sheafification.

Our proof then naturally breaks into two steps. First, we compute Ω•(E∇G),
and then we need to know how to compute Ω•(F//G) from Ω•(F) for any discrete
sheaf F .

We first do the second part.

Lemma 8. Let F ∈ Shv(Man,S) be a discrete sheaf with a G-action α : G×F → F .
Then Ω•(F//G) is the subcomplex of Ω•(F) consisting of the ω such that

(1) α∗ω|{g}×F = ω for all g ∈ G; and

(2) ιξω = 0 for all ξ ∈ g.

The first condition says ω should be G-invariant, and the second condition says
ω is suitably “horizontal”.

Remark 9. Let us explain what we mean by ιξω. In general, for M a manifold and X
is a vector field on M , we can define ιX : Ωp(M×N)→ Ωp−1(M×N) for all manifolds
N . Then by left Kan extension, this induces a map ιX : Ωp(M ×F)→ Ωp−1(M ×F)
for all F ∈ Shv(Man,S).

Now if F has a G-action and ξ ∈ g, then ξ induces an invariant vector field on
G, which we also call ξ. We then define ιξ : Ωp(F) → Ωp−1(F) by the following
composition

Ωp(F) Ωp(G×F) Ωp−1(G×F) Ωp−1({e} × F) = Ωp−1(F),α∗ ιξ

where the last map is induced by the inclusion.
This gives us a very explicit method to compute the natural transformation ιξω

for ω ∈ Ωp(F) and ξ ∈ g. Given a test manifold M and φ ∈ F(M), which we think
of as a natural transformation φ : M → F , we form the composiite

G×M G×F F Ωp
1×φ α ω

This defines a differential form η ∈ Ωp(G×M). Then we have

(ιξω)M (φ) = ιξη|{e}×M .
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Proof. We have

Ωp(F//G) = Ωp(|(F//G)•|) = Tot(Ωp((F//G)•)).

Since (F//G)• is a simplicial discrete sheaf, its totalization can be computed by

Ωp(F//G) = ker

(
Ωp(F) Ωp(G×F)

pr∗−α∗
)
,

where pr : G×F → F is the projection.
To prove the lemma, we have to show that pr∗ω = α∗ω iff the conditions in

the lemma are satisfied. This follows from the more general claim below with
η = α∗ω − pr∗ω.

Claim. Let M be a manifold and F a sheaf. Then η ∈ Ωp(M ×F) is zero iff

(1) η|{x}×F = 0 for all x ∈M

(2) ιXη = 0 for any vector field X on M .

The conditions (1) and (1’) match up exactly. Unwrapping the definition of ιξ
and noting that ιXpr∗ω = 0 always, the only difference between (2) and (2’) is that
in (2), we only test on invariant vector fields on G, instead of all vector fields, and
we only check the result is zero after restricting to a fiber {e} × F . The former is
not an issue because the condition C∞(G)-linear and the invariant vector fields span
as a C∞(G)-module. The latter also doesn’t matter because we have assumed that
α∗ω is invariant.

To prove the claim, if F were a manifold, this is automatic, since the first condition
says η vanishes on vectors in the N direction while the second says it vanishes on
vectors in the M direction.

If F were an arbitrary sheaf, we know η is zero when pulled back along any map
(1× φ) : M ×N →M ×F where N is a manifold, by naturality of the conditions.
But since M ×F is a colimit of such maps, η must already be zero on M ×F .

Now it remains to describe Ω•(E∇G) = Ω•(Ω1 ⊗ g). More generally, for any
vector space V , we can calculate Ω•(Ω1 ⊗ V ). We first state the result in the special
case where V = R.

Theorem 10.
Ωp(Ω1) ∼= R for all p ≥ 0.

For p = 2q, it sends ω to (dω)q. For p = 2q + 1, it sends ω to ω ∧ (dω)q.

The general case is no harder to prove, and the result is described in terms of
the Koszul complex.
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Definition 11. Let V be a vector space. The Koszul complex Kos• V is a differential
graded algebra whose underlying algebra is

Kos• V =
∧•
V ⊗ Sym• V.

For v ∈ V , we write v for the corresponding element in
∧1
V , and ṽ for the cor-

responding element in Sym1 V . We set |v| = 1 and |ṽ| = 2. The differential is
then

d(v) = ṽ, d(ṽ) = 0.

Theorem 12. For any vector space V , we have an isomorphism of differential
graded algebras

η : Kos• V ∗
∼→ Ω•(Ω1 ⊗ V ).

In particular,
Ω•(E∇G) = Kos• g∗.

Explicitly, for ` ∈ V ∗ =
∧1
V ∗, the element η(`) ∈ Ω1(Ω1 ⊗ V ) is defined by

η(`)(α⊗ v) = 〈v, `〉α

for α ∈ Ω1 and v ∈ V . This is then extended to a map of differential graded algebras.
In other words, the theorem says every natural transformation

ωM : Ω1(M ;V )→ Ωp(M)

is (uniquely) a linear combination of transformations of the form∑
αi ⊗ vi 7→

∑
I,J

MI,J(vi1 , . . . , vik , vj1 , . . . , vj`)αi1 ∧ · · · ∧ αik ∧ dαj1 ∧ · · · ∧ dαj`

where MI,J is anti-symmetric in the first k variables and symmetric in the last `.

Using this, we conclude

Theorem 13. The Chern–Weil homomorphism gives an isomorphism

(Sym• g∗)G
∼→ Ω•(B∇G),

and the differential on Ω•(B∇G) is zero.

Note that this Sym• g∗ is different from that appearing in the Koszul complex.

Proof. We apply the criteria in Lemma 8. The first condition is the G-invariance
condition, and translates to the (· · · )G part of the statement. So we have to check
that the forms satisfying the second condition are isomorphic to Sym• g∗.
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To do so, we have to compute the action of ιξ on E∇G following the recipe in
Remark 9. Fix ω ∈ Ωp(E∇G) and ξ ∈ g.

Let φ : M → E∇G be a trivial principal G-bundle with connection A ∈ Ω1(M ; g).
The induced principal G-bundle on G ×M under the action then has connection
θ + Adg−1 A. So by definition,

(ιξω)M (A) = ιξ
(
ω(θ + Adg−1 A)

)∣∣
{e}×M .

To compute the action on Kos• g∗, it suffices to compute it on
∧1

g∗ and Sym1 g∗.

1. If λ ∈ g∗ =
∧1

g∗, then λ(A) = 〈A, λ〉, and

ιξ〈θ + Adg−1 A, λ〉 = 〈ιξθ + ιξ Adg−1 A, λ〉.

We know ιξθ = ξ, and ιξ Adg−1 A = 0 since Adg−1 A vanishes on all vectors in
the G direction. So we know

ιξλ = 〈ξ, λ〉 ∈
∧0

g∗.

2. Next, λ̃(A) = 〈dA, λ〉. We compute

ιξ〈d(θ + Adg−1 A), λ〉|{e}×M

= ιξ

〈
−1

2
[θ, θ] + Addg−1 ∧A+ Adg−1 dA, λ

〉∣∣∣∣
{e}×M

= 〈−Adξ A, λ〉 = 〈A,−Ad∗ξ λ〉.

So
ιξλ̃ = −Ad∗ξ λ ∈

∧1
g∗.

First observe that in
∧•

g∗, the only elements killed by ιξ are those in
∧0

g∗ ∼= R.
To take care of the Sym part, set

Ωλ = λ̃+
1

2
[λ, λ].

Since λ̃(A) = 〈dA, λ〉, we see that Ωλ(A) = 〈ΩA, λ〉, where ΩA is the curvature, and
one calculates ιξΩλ = 0. By a change of basis, we can identify

Kos• g∗ ∼=
∧•

g∗ ⊗ Sym•〈Ωλ : λ ∈ g∗〉,

and ιξ vanishes on the second factor entirely. So we are done.

More generally, the same proof shows that
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Theorem 14. If M is a smooth manifold, the de Rham complex of M × (Ω1 ⊗ V )
is Ω(M ; KosV ∗)• (the total complex of Ω•(M ; Kos• V ∗)).

In particular, if M has a G-action, then M × E∇G//G is exactly the Cartan
model for equivariant de Rham cohomology.

This would follow immediately if we had a result that says Ω•(M × F) ∼=
Ω•(M)⊗̂Ω•(F), and since Ω•(E∇G) is finite dimensional, the completed tensor
product is the usual tensor product.

2 The proof

We now prove of Theorem 12. The p = 0 case is trivial, so assume p > 0.
Recall that we have to show that any natural transformation

ωM : Ω1(M ;V )→ Ωp(M)

is (uniquely) a linear combination of transformations of the form∑
αi ⊗ vi 7→

∑
I,J

MI,J(vi1 , . . . , vik , vj1 , . . . , vj`)αi1 ∧ · · · ∧ αik ∧ dαj1 ∧ · · · ∧ dαj` .

The uniqueness part is easy to see since we can extract MI,J by evaluating ωM (α)
for M of dimension large enough. So we have to show every ωM is of this form.

The idea of the proof is to first use naturality to show that for x ∈M , the form
ωM (α)x depends only on the N -jet of α at x for some large but finite number N (of
course, a posteriori, N = 1 suffices). Once we know this, the problem is reduced to
one of finite dimensional linear algebra and invariant theory.

Lemma 15. For ω ∈ Ωp(Ω1 ⊗ V ) and α ∈ Ω1(M ;V ), the value of ωM (α) at x ∈M
depends only on the N -jet of α at p for some N . In fact, N = p suffices.

We elect to introduce the constant N , despite it being equal to p, because the
precise value does not matter.

Proof. Suppose α and α′ have identical p-jets at x. Then there are functions
f0, f1, . . . , fp vanishing at p and β ∈ Ω1(M ;V ) such that

α′ = α+ f0f1 · · · fpβ.

The first step is to replace the fi with more easily understood coordinate functions.
Consider the maps

M M × Rp+1 M.
1M×(f0,...,fp) pr1
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Let α̃, β̃ be the pullbacks of the corresponding forms under pr1, and t0, . . . , tp the

standard coordinates on Rp+1. Then α, f0f1 · · · fpβ are the pullbacks of α̃, t0t1 · · · tpβ̃
under the first map.

So it suffices to show that ωM×Rp+1(α̃) and ωM×Rp+1(α̃ + t0t1 · · · tpβ̃) agree as
p-forms at (x, 0).

The point now is that by multilinearity of a p-form, it suffices to evaluate these
p-forms on p-tuples of standard basis basis vectors (after choosing a chart for M),
and there is at least one i for which the ∂ti is not in the list. So by naturality we
can perform this evaluation in the submanifold defined by ti = 0, in which these two
p-forms agree.

By naturality, we may assume M = W is a vector space and x is the origin. The
value of ωW (α) at the origin is given by a map

ω̃W : JN (W ;W ∗ ⊗ V )→
∧p
W ∗,

where JN (W ;W ∗ ⊗ V ) is the space of N -jets of elements of Ω1(W ;V ). This is a
finite dimensional vector space, given explicitly by

JN (W ;W ∗ ⊗ V ) =

N⊕
j=0

SymjW ∗ ⊗W ∗ ⊗ V.

Under this decomposition, the jth piece captures the jth derivatives of α. Throughout
the proof, we view SymjW ∗ as a quotient of (W ∗)⊗j , hence every function on
SymjW ∗ is in particular a function on (W ∗)⊗j .

At this point, everything else follows from the fact that ω̃W is functorial in W ,
and in particular GL(W )-invariant.

Lemma 16. ω̃W is a polynomial function.

This lemma is true in much greater generality — it holds for any set-theoretic
natural transformation between “polynomial functors” Vec → Vec. Here a set-
theoretic natural transformation is a natural transformations of the underlying set-
valued functors. This is a polynomial version of the fact that a natural transformation
between additive functors is necessarily additive, because being additive is a property
and not a structure.

Proof. Write

F (W ) =

N⊕
j=0

SymjW ∗ ⊗W ∗ ⊗ V, G(W ) =
∧p
W.

We think of these as a functor Vec → Vec (with V fixed). The point is that for
f ∈ HomVec(W,W

′), the functions F (f), G(f) are polynomial in f . This together
with naturality will force ω̃W to be polynomial as well.
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To show that ω̃W is polynomial, we have to show that if v1, . . . , vn ∈ F (W ), then
ω̃W (

∑
λivi) is a polynomial function in λ1, . . . , λn. Without loss of generality, we

may assume each vi lives in the (ji − 1)th summand (so that the summand has ji
tensor powers of W ∗).

Fix a number j such that ji | j for all i. We first show that ω̃W (
∑
λjivi) is a

polynomial function in the λi’s.

Let f : W⊕n →W⊕n be the map that multiplies by λ
j/ji
i on the ith factor, and

Σ : W⊕n →W be the sum map. Consider the commutative diagram

F (W⊕n) F (W⊕n) F (W )

G(W⊕n) G(W⊕n) G(W )

F (f)

ω̃W⊕n

F (Σ)

ω̃W⊕n ω̃W

G(f) G(Σ)

Let ṽi ∈ F (W⊕n) be the image of vi under the inclusion of the ith summand.
Then x =

∑
ṽi gets sent along the top row to

∑
λjivi. On the other hand, ω̃W⊕n(x)

is some element in G(W⊕n), and whatever it might be, the image along the bottom

row gives a polynomial function in the λ
j/ji
i , hence in the λi. So we are done.

We now know that for any finite set v1, . . . , vn, we can write

ω̃W (λj1v1 + · · ·+ λjnvn) =
∑

r1,...,rm

aRλ
r1
1 · · ·λrnn .

We claim each ri is a multiple of j (if the corresponding aR is non-zero). Indeed, if we
set λi = (µji − ν

j
i )1/j , then the result must be a polynomial in the µi and νi as well,

since it is of the form ω̃W (
∑
µjivi − ν

j
i vi). But

∑
aR(µj1 − ν

j
1)r1/j · · · (µjn − νjn)rn/j

is polynomial in µi, νi if and only if j | ri.
Now by taking jth roots, we know ω̃W (

∑
λivi) is polynomial in the λi when

λi ≥ 0. That is, it is polynomial when restricted to the cone spanned by the vi’s.
But since the vi’s are arbitrary, this implies it is polynomial everywhere.

Lemma 17. Any non-zero GL(W )-invariant linear map
⊗M

W ∗ →
∧p
W ∗ has

M = p and is a multiple of the anti-symmetrization map. In particular, any such
map is anti-symmetric.

Proof. For convenience of notation, replaceW ∗ withW . Since the map is in particular
invariant under R× ⊆ GL(W ), we must have M = p. By Schur’s lemma, the second
part of the lemma is equivalent to claiming that if we decompose W⊗p as a direct
sum of irreducible GL(W ) representations, then

∧p
W appears exactly once. In fact,

we know the complete decomposition of W⊗p by Schur–Weyl duality.
Let {Vλ} be the set of irreducible representations of Sp. Then as an Sp×GL(W )-

representation, we have

W⊗p =
⊕
λ

Vλ ⊗Wλ,
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where Wλ = HomSp(Vλ,W
⊗p) is either zero or irreducible, and are distinct for

different λ. Under this decomposition,
∧p
W corresponds to the sign representation

of Sp.

So we know ω̃W is a polynomial in
⊕

j SymjW ∗⊗W ∗⊗V , and is anti-symmetric
in the W ∗. So the only terms that can contribute are when j = 0 or j = 1. In
the j = 1 case, it has to factor through

∧2
W ∗ ⊗ V . So ω̃W is polynomial in

(W ∗ ⊗ V )⊕ (
∧2
W ∗ ⊗ V ). This exactly says ωW (α) is given by wedging together α

and dα (and pairing with elements of V ∗).
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