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1. Introduction: 8/28/19

“These are the ordinary chain maps of singular homology. . . except they’re not.”

At the first meeting, Dan gave a short introduction to the ideas of differential topology.
Let X be a smooth manifold. Its first differential cohomology group is the space

(1.1) Ȟ1(X) := Map(X,R/Z).

We should think of this as an infinite-dimensional abelian Lie group. The group structure is pointwise
addition.

Treating this as an abelian Lie group, there are a few natural questions we can ask.

• First, what is its Lie algebra? The answer is the space of maps from X to R, which is identified with
Ω0(X).

• Next, an abelian Lie group can only have two nonzero homotopy groups, π0 and π1. This is also true
for Ȟ1(X), even though it’s infinite-dimensional: π0Ȟ

1(X) ∼= H1(X) and π1Ȟ
1(X) ∼= H0(X). All

higher homotopy groups of Ȟ1(X) vanish.
• The exponential map from the Lie algebra to the Lie group is f 7→ (f mod 1). The image is the

identity component of Ȟ1(X), which is the functions that have a logarithm. The kernel of the
exponential map is π1Ȟ

1(X).

There’s a map ω : Ȟ1(X) → Ω1(X)cl which sends f 7→ df . The “cl” means it lands in closed forms. The
map isn’t surjective; its image is those forms with integral periods, i.e. those 1-forms α such that the integral
of α around any smoothly embedded circle is an integer.

Closed forms have a map dR to de Rham cohomology H1
dR(X) = H1(X;R), which is a surjective map from

an infinite-dimensional vector space to a finite-dimensional vector space. H1(X;Z) also sits inside H1(X;R)
as a lattice. The preimage under dR of 0 is the space of exact 1-forms, and preimages of other elements
of H1(X;Z) form affine spaces modeled on the space of exact 1-forms. The union of all such preimages is
precisely the 1-forms with integral periods.

To summarize the situation, we have maps

(1.2)

Ȟ1(X)
ω //

π0

��

Ω1(X)cl

dR

��
H1(X;Z) // H1(X;R).
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This is a commutative diagram of abelian Lie groups. It is not a pullback diagram! This is because, for
instance, ω has kernel. This tells you that Ȟ1(X) somehow contains some extra information, and this is the
magic that makes differential cohomology interesting.

The fiber of ω, i.e. ω−1(0), is H0(X;R/Z), the locally constant maps from X to R/Z. This can be identified
with H0(X;R)/H0(X;Z).

We can also explicitly identify the next differential cohomology group Ȟ2(X): as a set, it is the isomorphism
classes of principal R/Z-bundles on X together with a connection, or equivalently isomorphism classes of
Hermitian line bundles with compatible connection; the group structure is tensor product.

To compute the Lie algebra, consider a path of connections on the trivial bundle; these are 1-forms, but
because we consider them up to isomorphism, we end up with Ω1(X)/dΩ0(X).

The homotopy groups are similar, but shifted up once: π0Ȟ
1(X) ∼= H2(X;Z) (equivalence classes of

bundles, where we forget the connection, only remembering the global information) and π1Ȟ
2(X) ∼= H1(X;Z).

The higher homotopy groups vanish. Now something new can happen: H2(X) can have torsion, e.g. for RPn
for some n.

Again there is a map ω : Ȟ2(X)→ Ω2(X)cl which sends a connection to its curvature; the image is again
closed 2-forms with integral periods, again a union of affine spaces. Here, “integral periods” has a slightly
different definition: using Chern-Weil theory, you can think of them as the forms which are curvatures of
connections, which is an integrality condition.

The degree-2 version of (1.2) is

(1.3)

Ȟ2(X)
ω //

π0

��

Ω2(X)cl

dR

��
H2(X;Z) // H2(X;R).

Again this is a commutative diagram of abelian Lie groups but not a pullback diagram; ker(ω) = H1(X;R/Z),
which unlike H0(X;R/Z), is not a torus; it need not be connected. Instead, its path components are identified
with the torsion subgroup of H2(X;Z). Said differently, a flat connection on a circle bundles does not imply
that it’s trivial. There is a short exact sequence

(1.4) 0 // T 1(X) := H1(X;R)/H1(X;Z) // H1(X;R/Z) // TorsH2(X;Z) // 0.

The presence of torsion makes the description of Ȟ2(X) slightly more interesting.
Differential cohomology has more structure: multiplication and integration. Recall that integral and de

Rham cohomology are rings under cup product, and differential forms are a ring under wedge product. The
maps in (1.2) and (1.3) are compatible with these structures, so we might expect a map Ȟ1(X)× Ȟ1(X)→
Ȟ2(X) compatible with the ring structures on differential forms and cohomology (and indeed we will get
one).

This is somewhat strange, though: to define this map we want to, given f1, f2 : X ⇒ R/Z, produce a
principal R/Z-bundle with connection.

If f1 has a logarithm f1 : X → R (i.e. f mod 1 = f), then we could take f1 df2 as our connection 1-form,
but in general it’s a little fancier. Given f1, f2, we can define f1× f2 : X → R/Z×R/Z. There is a universal
principal R/Z-bundle with connection P → R/Z× R/Z whose curvature is dx ∧ dy; then we pull that back
to X via f1 × f2, and that’s the product f1 · f2.

In general, we don’t have as explicit geometric models for differential cohomology, and we’ll have to define
everything more abstractly, but for an introduction the geometric viewpoint is beneficial.

Next, let’s define integration. Just as with ordinary cohomology, we’ll need an orientation on X, which we
now assume. Let x̌ = (P, θ) ∈ Ȟ2(X). We can integrate the curvature dθ over a closed, oriented 2-manifold
Σ, and because ω(x̌) has integral periods, this is an element of Z. Chern-Weil theory tells us this integral is
topological, not geometric: it depends on P but not θ. This is an example of a primary (topological) invariant.

But we can also integrate x̌ over a closed, oriented 1-manifold C, which we define for now as the holonomy
of θ around C. This depends on θ and lives in R/Z, and we call it a secondary (geometric) invariant.

In general, on a closed, oriented d-manifold, integration will be a map Ȟ2(X)→ Ȟ2−d(pt); what we just
said fits in, where we define Ȟ0(X) := H0(X), the space of maps to Z.
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There’s plenty more to say here: what Stokes’ theorem means, gluing, manifolds with boundary, etc.
There’s also the new stuff afforded by geometry, e.g. the Lie derivative of a form and Cartan’s formulas
for commutators of these operators. These enhance to the world of differential cohomology, so differential
cohomology is expressing calculus of local objects which have an integrality condition.

Historically, differential cohomology was first studied by Cheeger and Simons [CS85], following the work of
Chern and Simons, both in the early 1970s. Cheeger and Simons introduced something called differential
characters.

Definition 1.5 (Cheeger-Simons [CS85]). Let X be a smooth manifold. A degree-k differential character is
a homomorphism χ : Zk−1(X)→ R/Z such that there exists an ω(χ) ∈ Ωk(X) such that

(1.6) χ(b) =

∫
C

ω(χ) mod 1,

where b = ∂c for some c ∈ Ck(X). Here Zk−1 and Ck are the smooth chains of degrees k − 1, resp. k: we
only consider formal sums of smooth maps of the standard n-simplex into X, not just continuous ones.

Remark 1.7. Cheeger and Simons use a different degree convention in their original paper; don’t get tripped
up by that! (

It follows from the definition that ω is unique, and is closed. The degree-k differential characters define a
group Ȟk(X), and this is isomorphic to our explicit constructions of Ȟ1(X) and Ȟ2(X): the character is the
map from a chain to the integral over the chain.

Deligne approached differential cohomology in a different way: fix a k > 0 and consider the cochain
complex Z(k) given by

(1.8) 0 // Z // Ω0(X)
d // Ω1(X)

d // · · · d // Ωk−1(X) // 0.

Let’s approach this with Čech cohomology, say in the case k = 1, where we have 0→ Z→ Ω0(X)→ 0. Let U
be a good open cover of X; then we have a double complex

(1.9)

∏
U∈U

Ω0(U)
δ //

∏
U 6=V ∈U

Ω0(U ∩ V )
δ // · · ·

∏
U∈U

H0(U ;Z)
δ //

OO

∏
U 6=V ∈U

H0(U ∩ V )
δ //

OO

· · · .

In most degrees, this is the usual cohomology of X, either with Z or R/Z coefficients. But for degree k, this is
something interesting, and you can directly check that for k = 0, 1, 2 we get Ȟk(X) as we explictly described
it.

Applications. One reason to like differential cohomology is to consider generalizations of the integration
maps we considered on Ȟ1 and Ȟ2 (both the primary and secondary invariants). For example, if G is a Lie
group and λ ∈ Hk(BG;Z), then λ defines a characteristic class of principal G-bundles P →M on a closed,
oriented manifold M , namely

∫
X
λ(P ) ∈ Z.

There is a refinement of λ(P ) to a class λ̌(P, θ) ∈ Ȟk(X) which depends both on a bundle and a connection,
and in a sense all of Chern-Weil theory refines to the homomorphism ω : Ȟk(X)→ Ωk(X)cl. If we integrate
over a closed, oriented k-manifold, this recovers the topological invariant, but if we integrate over a closed,
oriented (k − 1)-manifold, you get the classical Chern-Simons invariant. A sufficiently robust integration
theory, with a good geometric model, would yield things like integration on manifolds with boundary, or an
integral over a (k − 2)-manifold as a Hermitian line (since it should live in Ȟ2(pt)), and this should all stitch
together nicely into an invertible field theory. One might expect more examples of invertible field theories
coming from other bordism invariants or cohomology theories.

Another application: let E → X be an oriented, rank-r real vector bundle, and let c(E) ∈ Hr(X;Z) be
the Bockstein of the Stiefel-Whitney class wr−1(E) ∈ Hr−1(X;Z). This is the Euler class, which is 0 when
r is even but generally nonzero when r is odd. One can study this with differential cohomology, and this
viewpoint is amenable to generalizations (e.g. to differential K- and KO-theory, where it’s particularly useful).
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Differential cohomology has some applications to physics. Recall Maxwell’s equations for a 2-form F on a
Lorentzian 4-manifold X:

(1.10)
dF = 0

d?F = jE ,

where jE is a 3-form thought of as the electric current: if we have worldlines of a bunch of particles with
charges qi, we can take the dual and obtain a (generally distributional) 3-form.1

In classical electromagnetism, the charges are real numbers, but Dirac pointed out that in quantum
mechanics, and once we have a nonzero magnetic current, the charges must be quantized. Thus we’re in need
of calculus with an integrality condition, leading us to differential cohomology.

Some general theory. Let Man denote the category whose objects are smooth manifolds and whose
morphisms are smooth maps. By a presheaf (on Man) we mean a contravariant functor F : Mapop → Set .
You can think of this as something like a distribution, except instead of evaluating them on test functions
we’re evaluating them on test manifolds.

Remark 1.11. You may be used to presheaves on a single smooth manifold M ; this is related to the general
notion we defined above. Specifically, we just restrict to the subcategory of open subsets of M as objects and
inclusions as morphisms. (

Example 1.12. Differential k-forms define a presheaf Ωk, sending M 7→ Ωk(M) (which for now we only
regard as a set); functoriality is by pullback. The same is true for Ȟ1.

A smooth manifold X defines a presheaf FX , with FX(M) := Map(M,X). There’s a general lemma in
category theory, called the Yoneda lemma, that FX knows X: we can use that to get the set of points of X,
and learn about its topology by seeing which points can be connected by a map from R, etc. If we think only
about smooth maps, it’s possible to see the smooth structure on X. (

A presheaf naturally isomorphic to FX for some X is called representable. For example, Ȟ1 ' FR/Z.

Example 1.13. The space Map(X,Y ) is not a smooth manifold – it’s infinite-dimensional for X,Y not
discrete. But if we only need to care about finite-dimensional families, then we can use the presheaf Map(X,Y ),
whose value on M is the set Map(M ×X,Y ). This is regarding Map(X,Y ), and presheaves in general, as
generalizations of smooth manifolds. (

If we want to consider things such as principal bundles and Ȟ2, Set is not the correct target: principal
bundles on X have morphisms between them, so we should really consider groupoid-valued presheaves (or
more generally, presheaves valued in simplicial sets). For example, if G is a Lie group, we can let B∇(G)
denote the groupoid of principal G-bundles with connection on M , which defines a groupoid-valued presheaf,
and Ȟ2 is precisely π0B∇(R/Z).

But now we can ask fun questions like, what’s the de Rham complex for B∇G? This amounts to finding
differential forms on each manifold compatible under pullback, or some sort of natural differential forms.
This relates to early work of Thurston.

Theorem 1.14. The de Rham complex of B∇G is Sym2•(g∗)G, i.e. invariant even-degree G-invariant
polynomials on g, and the differential vanishes.

So Chern-Weil theory sees all of the invariant differential forms, which is nice. See Freed-Hopkins [FH13]
for a proof.

One possibly strange aspect of the above calculation is that the de Rham complex is levelwise finite-
dimensional, which is unusual.

There are three versions of BG in the world of (pre)sheaves of groupoids:

• B∇G, as above,
• B•G, which assigns the groupoid of principal bundles without any connection, and
• BG, which assigns to M the set Map(M,BG).2

1This is part of why differential forms where functions are replaced with distributions are called currents.
2TODO: groupoid structure?
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There are maps B∇G→ B•G→ BG.
One can also put Deligne’s complex Z(k) into this world, e.g. using the Dold-Thom theorem to pass from

a chain complex to an abelian group. For even k, there are maps

(1.15) Hk(BG;Z) // Hk(B•G;Z(k/2)) // Hk(B∇G;Z(k)),

which sends λ 7→ λ̌. For suitably chosen G, this provides a geometric construction of a certain central
extension of Diff+(S1) that appears in conformal field theory. This runs into old work of Bott and Haefliger,
work on characteristic classes of foliations, who certainly knew plenty of this in different language.

2. Chern-Weil theory and equivariant de Rham cohomology: 9/18/19

Today, Greg Parker spoke about Chern-Weil theory and equivariant de Rham cohomology.
First, let’s start with some motivation — why should anything like Chern-Weil theory exist? Let’s begin

by recalling a very classical and very cool theorem.

Theorem 2.1 (Gauss-Bonnet). Let Σ be a closed, oriented surface with a Riemannian metric. Let K denote
the Gaussian curvature of Σ; then

(2.2)

∫
Σ

K = 2πχ(Σ).

So the geometric data of the Gaussian curvature is telling us something topological.
First, though, what’s the Gaussian curvature? Recall that the Riemannian curvature R on an oriented

surface is an so2-valued 2-form. Locally, this has the form

(2.3) R =

(
[r]0 R12

−R12 0

)
dx1 ∧ dx2.

Then the Gaussian curvature of Σ is K := R12 =
√

detR.
Now integration is really something we do to differential forms, so we’ve rephrased the left-hand side

of (2.2) as 〈[detR], [Σ]〉, where [–] on the left means the class of the differential form in cohomology.
On the right-hand side, we maybe don’t know what characteristic classes are yet, but χ(Σ) = 〈e(Σ), [Σ]〉

for a certain degree-2 characteristic class e called the Euler class. So this tells us that the Gaussian curvature
refines to a de Rham representative of the Euler class. Chern-Weil theory generalizes this, and ideas such as
this one entered into the first definitions of characteristic classes.

For the general story, we should talk about connections on vector bundles. Let M be a compact manifold
and π : E → M be a rank-k vector bundle, either real or complex. Choose an inner product 〈–, –〉 on E,
either Euclidean if it’s real or Hermitian if it’s complex; this refines the structure group of E to Ok (real
case) or Uk (complex case).

A connection allows you to differentiate sections of E along a path in M . The key difficulty is that the
fibers of E are not canonically identified, so it’s not clear how to add or subtract elements in different fibers,
as one usually does when defining the directional derivative. We need something to connect these vector
spaces, hence the name “connection.”

Let x(t) be a path in M ; then ψx(t) is a path in E, so we can make sense of
dψx(t)

dt ∈ Tψx(t)
E. Intuitively,

what we actually want is the “vertical component” of this: TE is an extension of the “vertical vectors”
ker(dπ) by the “horizontal vectors” (isomorphic to TM) — but to project down to the vertical vectors, we
need a splitting. A connection is a choice of such splitting. This allows us to define parallel transport as
TODO, and we define a connection in terms of such a parallel transport ϕt of vectors in E.

Definition 2.4. The covariant derivative with respect to a connection A is

(2.5) ∇xψ :=
d

dt

∣∣∣∣
t=0

ϕ−tψx(t).

To typecheck, ϕ−tψx(t) ∈ Ex(0), so we can compute this derivative, since everything lives in the same
vector space.

The covariant derivative is an operator ∇A : Γ(E) → Γ(T ∗M ⊗ E) (the latter space is sometimes also
denoted Ω1

M (E)); it’s C∞(M)-linear in the vector field x, so

(2.6) ∇Afxψ = f∇Ax ψ,
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and it satisfies a Leibniz rule in ψ, i.e.

(2.7) ∇Ax (fψ) = df ⊗ ψ + f∇ψ.

Given a connection ∇A on E, several more connections are canonically induced: there’s a dual connection on
E∗, for example, and a pullback connection on f∗E for any smooth map f : Y → X. Given another vector
bundle with connection (F,∇B) on M , there is a connection ∇AB on E ⊗ F .

Proposition 2.8. The difference of two connections is a 1-form; hence the space of connections is an
infinite-dimensional affine space modeled on Ω1

M (o(E)).

Here, o(E) = End(E), the endomorphism bundle.

Proof. The idea is that two Leibniz rules will cancel out:

(∇A −∇B)(fψ) = df ⊗ ψ + f∇Aψ − df ⊗ ψ −∇Bψ(2.9)

= f(∇Aψ −∇Bψ). �

Remark 2.10. The space of connections is contractible, suggesting that some things which appear to depend
on a connection, if they vary nicely enough in paths, are actually topolgical invariants. (

Example 2.11.

(1) The de Rham differential d is a connection on the trivial bundle Rn →M .
(2) In a local trivialization, we can write any connection as ∇ = d +A, where A ∈ Ω1

M (ok). This follows
because (1) d is a connection here, and (2) any two connections differ by a endomorphism-valued
1-form. (

On End(E) = E∗ ⊗ E, locally a section B ∈ Ω0
M (EndE) is differentiated by

(2.12) ∇AB = dB + [A,B].

Definition 2.13. A connection is compatible with the metric 〈–, –〉 if

(2.14) d〈ψ,ϕ〉 = 〈∇ψ,ϕ〉+ 〈ψ,∇ϕ〉.

Finally, we’d like to know that connections exist in general. This is true because they exist locally and
form a convex space, so it’s true using a partition of unity.

Curvature begins with the observation that if X and Y are two vector fields, it’s possible that

(2.15) ∇X∇Y −∇Y∇X 6= 0.

The flows could commute if there’s a horizontal distribution of E; curvature measures the (lack of) such a
distribution.

Definition 2.16. The curvature of a connection ∇ is FAψ := [∇,∇]ψ. This means F ∈ Ω2
M (EndE): given

two vector fields X,Y ∈ Γ(TM), we get ∇X∇Y −∇Y∇X ∈ End(E).

Implicitly, we claim that FA is C∞-linear; this can be checked locally, using the fact that locally, ∇ = d+A.
This implies that locally,

(2.17) FA = dA+A ∧A.

Here, we need to make sense of A∧A ∈ Ω2
M (EndE). This is not automatically zero, as matrix multiplication

isn’t commutative. In coordinates where FA = F ijA dxi ∧ dxj ,

(2.18) F ijA = ∂iAj − ∂jAi +AiAj −AjAi.

Theorem 2.19 (Bianchi identity). Under the map dA : Ω2
M (EndE)→ Ω3

M (EndE) defined by

(2.20) α⊗B 7−→ dα⊗B + α⊗∇B,

dAFA = 0.
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Now we can talk about Chern-Weil theory, beginning with invariant polynomials. On a Riemannian surface
Σ, let R ∈ Ω2(Σ; o(TΣ)) be the curvature of the Levi-Civita connection. The expression for

√
detR might

depend on your choice of coordinates, but the value of the (squart root of the) determinant doesn’t.
In general, we don’t get as strong invariance, but what we can do is hit FA with an invariant polynomial,

a map g → R which is invariant under the Ad-action of G on g. Here G = Ok or Uk, as above. Given P ,
we obtain P (FA) ∈ Ω2

M . More generally, we can consider higher-degree polynomials P : Symk(g∗)→ R, in
which case P (FA) ∈ Ω2k

M .

Proposition 2.21. dP (FA) = 0, and therefore we obtain a map Symk(g∗)→ H2k
dR(M).

This map is called the Chern-Weil homomorphism.
The proof idea, quickly: Ad-invariance means that if one of the arguments to P is a commutator, then

the value vanishes. One can then compute that dP (FA) is a sum of P (. . . ) terms, all of which contain a
commutator.

This is cool, but what’s even cooler is that what we get is actually a topological invariant of E!

Proposition 2.22. The de Rham class of P (FA) is independent both of the connection and the metric on E.
Moreover, if E ∼= E′, P (FA) = P (FA′) (where A′ is a connection on E′).

Proof sketch. For independence of A, recall that ∇t := t∇A + (1− t)∇A′ (where A′ is a connection on E) is
also a compatible connection on E × I →M × I. Thus we obtain P (F∇t) ∈ Ω∗M×I and the inclusions at 0
and 1 give us i∗0(P (F∇t)) = P (FA) and i∗1(P (F∇t)) = P (FA′), but these two maps are homotopic.

The remaining two cases are analogous. �

Thus for judicious choices of P , we can define interesting characteristic classes.

Example 2.23 (Chern classes). The expression P (x) := det(λid − (1/2π)x) defines an Ad-invariant map
uk → R. Expanding,

(2.24) det

(
λid− 1

2π
x

)
=
∑
i

λk−ici(x).

The ith Chern class of a complex vector bundle E →M is [ci(FA)] ∈ H2i(M ;R), where A is a compatible
connection on E. (

There are many ways to calculate with Chern classes, but this one is powerful: if someone hands you some
terrible four-manifold and some vector bundle over it, this might be a mess, but it will work.

Example 2.25 (Pontrjagin classes). Using the same P as in Example 2.23, we obtain an Ad-invariant
polynomial ok → R, but the even-degree ones will vanish, since ok consists of skew-symmetric matrices. Thus
we get Pontrjagin classes pi ∈ H4i(M ;R) associated to a real vector bundle. ass (

Example 2.26 (Euler class). There is an Ad-invariant polynomial Pf : o2k → R with Pf(A)2 = det(A); then
Pf(FA) is the Euler class of a vector bundle. (

And this approach works for many other polynomials for other choices of g; for example, we can get the
Hirzebruch L-genus and the Chern character in this way.

Remark 2.27. If E admits a flat connection (i.e. curvature is zero), its Chern classes therefore vanish. (Well,
Chern classes can be defined over the integers, but here we mean their images in real cohomology.) (

There are other definitions of Chern classes, but Grothendieck showed that Chern classes are characterized
by four axioms, and we just have to check those.

Equivariant de Rham cohomology. In the last 15 minutes, we’ll (briefly) discuss equivariant cohomology.
Let G be a compact Lie group acting continuously on a space P . If the action is free, the G-equivariant
cohomology of P is H∗G(P ) := H∗(P/G); if the action isn’t free, then H∗G(P ) := H∗(EG×G P ); the latter
space is the Borel construction on P , or the homotopy orbits.

We’d like to imitate this construction for de Rham cohomology. First the free setting: if P → M is a
principal G-bundle, we can define Ω∗G(P ) ⊆ Ω∗(M), so that H∗(Ω∗G) = H∗(Ω(M)). The linearized action
gives Xξ ∈ Γ(TP ) from ξ ∈ g; ranging over all ξ, this spans the vertical tangent space ker(dπ).

TODO: more here, defining basic forms.
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In general, g acts on Ω∗(P ) in two ways: by ξ 7→ ιξ and ξ 7→ Lξ; we also have d. We can stitch this all
together into a super Lie algebra action by g̃ := g⊕ R⊕Πg with generators Lξ, ιξ, and d and the relations
satisfied by the Cartan formulas.

A G∗-algebra is an algebra A with representations G→ Aut(A) and g̃→ End(A) compatible in the sense
that TODO. There’s also a notion of a G∗-module — and of course, this is constructed exactly such that the
ring of differential forms is a G∗-algebra.

3. Definitions of differential cohomology theories: 9/25/19

Today, Peter Haine spoke about definitions of (generalized) differential cohomology theories.
Objects in differential cohomology theories behave like sheaves on the category of smooth manifolds, but

they’re not quite homotopy invariant, and in an interesting way. Today we’ll discuss the formalities related
to this, and discuss specific examples next week.

Let Man denote the category of smooth manifolds; differential cohomology theories on objects of Man
were studied by Freed-Hopkins, then extended to manifolds with corners by Bunke, Nikolaus, and Volkl. We
will use Sp to denote the category of spectra.

Remark 3.1. Today we’ll work with sheaves of spectra, but we can replace spectra with any presentable stable
∞-category and the same formal constructions will work. (

By a presheaf Ê we mean a contravariant functor Manop → Sp.

Definition 3.2. A presheaf Ê : Manop → Sp is a sheaf if for every manifold M , the restriction of Ê to the
category of open subsets of M and their embeddings is a sheaf on M .

For example, the assignment which sends M to the closed differential n-forms on M is a sheaf.3 Note:
there is a typo in the definition in Bunke-Nikolaus-Volkl.

There is a sheafification functor, which we call L.

Definition 3.3. A (pre)sheaf Ê is homotopy-invariant if pr∗1 : Ê(M)→ Ê(M × R) is an equivalence for all
M .

Let Shh(Man) for the subcategory of homotopy-invariant sheaves in Sh(Man). Because homotopy-invariant
sheaves are closed under limits and colimits, the inclusion functor Shh(Man) ↪→ Sh(Man) has both a left
and a right adjoint.

Let Γ∗ : Sh(Man)→ Sp denote the global sections functor, which explicitly is Ê 7→ Ê(pt). This has a left
adjoint Γ∗ : Sp → Sh(Man), the constant sheaf functor. These have additional adjoints — for example, Γ∗
has a right adjoint Γ! : Sp → Sh(Man) satisfying

(3.4) Γ!(X)(M) =
∏
m∈M

X.

You could think of this as the cotensor of X by M (with the discrete topology). This is a silly thing, but is
still useful.

Lemma 3.5 (Dugger). Γ∗ : Shh(Man)→ Sp is an equivalence, with Γ∗ as an inverse.

Lemma 3.6. Is Ê : Manop → Sp is a homotopy-invariant presheaf, then so is its sheafification.

This implies, in particular, that all constant sheaves are homotopy-invariant: they’re sheafifications of
constant presheaves, which are homotopy-invariant.

Now Lemma 3.5 tells us that homotopy-invariant sheaves are pretty simple:

(3.7) Ê(M) = Ê(pt)M = Map(Σ∞+ M, Ê(pt)).

Here Map denotes the spectrum of maps. The idea of this proof is that since Ê is homotopy-invariant,

Ê(Rn) ' Ê(pt). Now, choose a good cover U for M , meaning all U ∈ U are diffeomorphic to Rn, as are their
pairwise intersections, triplewise intersections, etc. By van Kampen’s theorem,

(3.8) hocolim
U∈U

U 'M,

(taken in Top rather than Man).

3Well, this lands in real vector spaces, rather than spectra, but otherwise is fine.
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Proof sketch of Equation (3.7) and Lemma 3.5. The sheaf condition means

Ê(M) ' lim

 Ê

(∐
U∈U

U

)
//// Ê

 ∐
U,V ∈U

U ∩ V

 // //// · · ·

(3.9)

' lim

 ∏
U∈U

Ê(pt)U ////
∏

U,V ∈U
Ê(pt)U∩V // //// · · ·

(3.10)

' Ê(pt)hocolimU U = Ê(pt)M .(3.11)

Hence Γ∗(X)(M) ' XM , from which we see Lemma 3.5. �

The upshot is a diagram of maps and adjunctions

(3.12) Sh(Man)
**

⊥ 55
Shh(Man)? _⊥oo

Γ∗

∼ // Sp.
Γ∗oo

So there are two different ways to obtain a spectrum from a sheaf: global sections and the unexpected adjoint.
This is important somehow.

TODO: missed the next point, a theorem about Banach and Fréchet manifolds understood as sheaves of
sets.

Anyways, the upshot is that if M and N are (finite-dimensional) manifolds, where M is compact, then
C∞(M,N) admits the structure of a Fréchet manifold.

Theorem 3.13 (Waldorf). Regarding C∞(M,N) as a sheaf (of sets) on Man, in which it sends P 7→
C∞(M × P,N), this is isomorphic to the internal Hom in the category of sheaves of sets on Man.

Now let’s talk about differential cohomology. Consider the diagram

(3.14)

H∗(M ;Z)

��
H∗dR(M).

H∗−1(M ;R/Z)
β //

��
Ĥ∗(M)

??

��
Ω∗c`(M)Z

??
H∗−1

dR (M)

??

��
Ω∗−1(M)/Ω∗−1

c` (M)Z

??

d
//

The diagonals are exact. TODO: missed some discussion of how this related to adjoints.
Anyways, we’re going to define a functor Z : Sh(Man)→ Sh(Man) by taking the cofiber of ε : (hi)∗ → id,

where ε is the counit of the adjunction. The cofiber is some map curv : id→ Z; we call Z(Ê) the sheaf of

differential cycles associated to Ê.

The first thing we can calculate is Γ∗Z(Ê) ' 0. This is because Γ∗ preserves the cofiber sequence, so we
have a cofiber sequence

(3.15) Γ∗hi∗(Ê)Γ∗(Ê)
∼ // // Γ∗Z(Ê),

so the third term is forced to vanish.

Definition 3.16. A sheaf Ê is pure if Γ∗(Ê) ' 0.

So in other words, pure sheaves are purely geometrical, and don’t have much homotopy theory.
9



Theorem 3.17 (Fracture theorem). For every sheaf Ê, the square

(3.18)

Ê
curv //

��

Z(Ê)

unit
��

hi!(Ê) // hi!Z(Ê)

is a pullback square.

This means that Sh(Man) is equivalent to the ∞-category of triples (???) (could not read it, sorry about
that).

Recall that in any stable ∞-category, given a commutative square

(3.19)

W
f //

��

Y

��
X

f
// Z,

there’s an equivalece TODO: was no longer able to follow well enough to take notes. Sorry about that.
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