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Abstract 

This paper first appeared in a collection of lecture notes which 

were distributed at the A.M.S. Summer Institute on Differential 

Geometry, held at Stanford in 1973. Since then it has been (and 

remains) the authors' intention to make available a more detailed 

version. But, in the mean time, we continued to receive requests for 

the original notes. Moreover, the secondary invariants we discussed 

have recently arisen in some new contexts, e.g. in physics and in the 

work of Cheeger and Gromov on "collapse" (which was the subject of the 

first author's lectures at the Special Year). For these reasons we 

decided to finally publish the notes, albeit in their original form. 

In this paper we sketch the study of a functor which assigns to a 

smooth manifold M a certain graded ring H*(M), the ring of 

"differential characters" on M. Roughly speaking, if A c R is a 

proper subgroup of the reals, a differential character (mod A) is a 

homomorphism f from the group of smooth singular k-cycles to R/A, 

whose coboundary is the mod A reduction of some (necessarily closed) 

differential form ~ 6 Ak+I(M). It is easily seen that f uniquely 

determines not only ~, but a class u 6 Hk+I(M,A) whose real image 

is cohomologous to the de Rahm class of ~. It turns out that ~ and 

u both vanish if and only if f is an R/A cocycle the cohomology 

class of which is the mod A reduction of a real class. Thus, in 

general H* contains more information than, A-cohomology and forms 

with A-periods. 

Perhaps the main interest of our construction comes from the fact 

that the Weil homomorphism can be naturally factored through H*. As 

a consequence, we obtain a refinement of the theory of characteristic 

classes and characteristic forms. In appropriate contexts, this gives 
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rise to obstructions to conformal immersion of Riemannian manifolds 

as well as R/A characteristic cohomology classes for flat bundles 

and foliations. Moreover, the calculus we develop, may be used to 

draw some conclusions from the recent "geometric index theorem" of 

Atiyah-Patodi-Singer. 

We should mention that our invariants are closely related to the 

differential forms TP(O) on the total space of a principle bundle 

with connection. These were considered by Chern and Simons in [9]. 

In fact, the present work arose out of the attempt to define objects 

in the base playing a role analogous to that of the TP(@). Earlier 

results in this direction were formulated in [17]. The multiplication 

in H* was already developed in [7]. 

The format of this paper will be as follows: In Section 1 we 

develop the general properties of the ring 4*. In Section 2, we show 

how the Well homomorphism can be factored through H* and study the 

resulting invariants of bundles with connection. We show how these 

invariants change with connection and relate them to the forms TP(@). 

Sections 3, 4 and 5 are concerned with more detailed consideration of 

the characters corresponding to the Euler, Chern and Pontrjagin classes. 

In particular we construct these characters intrinsically and give an 

analogue of the Whitney sum formula. In Section 6 we apply our 

previous results to give necessary conditions for a Riemannian mani- 

fold M n to immerse conformally in IR n+k. In Section 7 we take up 

foliations. The normal bundle of a foliation is equipped with a 

distinguished family of connections defined by Bott. In a suitable 

range the associate characters are independent of connection and as a 

consequence of Bott's vanishing theorem, are cohomology classes. In 

Section 8 we specialize to flat bundles in which case our invariants 

become R/Z cohomology classes. These are shown to come from R/Z 

Borel cohomology classes of the discretized structural group. We 

construct these classes explicitly in the bar resolution and relate 

their values to the volumes of geodesic simplicities on the sphere. 

Finally, in Section 9, we reformulate the geometric index theorem 

(mod Q) of Atiyah-Patodi-Singer in terms of our invariants, and use 

our previous computations to derive some special results in the case 

of flat bundles. 

We are very happy to thank A. Haefliger and W. Thurston for helpful 

conversation. We are especially grateful to John Millson who provided 

several important insights and made many stimulating suggestions 

throughout the development of this work. 
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§I. Differential Characters 

C ~ Let M be a manifold and let A* denote the ring of differ- 

ential forms on M. Let C k ~ Z k ~ B k denote the groups of normalized 

smooth singular cubic chains, cycles and boundaries, and 3:C k ÷ Ck_ 1 

C k C k+l be the usual boundary and coboundary operators. If and 6 : ÷ 

k for the closed A c R is a proper subring of the reals, we write A 0 

k-forms with periods lying in A. Let R~ R/A be the natural 

homomorphism. If ~ ( A k then via integration, we may regard ~ as a 

real cochain and write ~ for the R/A-cochain obtained by reducing 

the values of ~ mod A. 

Observe that a non-vanishing differential form never takes values 

lying only in a proper subring A c R. Therefore, the map 

w ÷ ~ 6 ck+I(M,R/A) is an injection, and we may regard 

~k+l ~ ck+I(M,R/A) . 

Definition. 

Hk(M,R/A) = {f 6 Hom(Zk,R/A ) If o ~ (Ak+l}. 

The most interesting cases will be A = Q,Z,0. 

A smooth map ¢ :M 1 + M 2 induces a homomorphism ~* : Hk(M2,R/A) ÷ 

Hk(MI,R/A) with the obvious functorial properties. We set 

^-i ~, , 
H (M,A) = A. (M R/A) = • Hk(M,R/A), is a graded A-module whose 

objects we will call differential characters. A ring structure on this 

module will be introduced presently. 

We can measure the size of H by inserting it in some exact 

sequences. Set 

k ×Hk(M,A)Jr(u) = [~]} and ~ Rk(M,A)= R*(M,A). Rk(M,A) = {(e,u)E i 0 

Here r is the natural map r :Hk(M,A ÷ Hk(M,R) and [~] is the 

de Rahm class of ~. R(M) has an obvlous ring structure 

(u,~) (v,~) = (u Uv,w A¢). 

Theorem i.i. There are natural exact sequences 

~i ~+l(m ) 0 0 ÷ Hk,M,R_A)( / ÷ H ( / ~_k.M,R_A. ~ A ÷ 

k(s) ÷ Hk(M R/A) 2+ Hk+I(M,A) ÷ 0 0 ÷ Ak(M) A 0 , 

(61'6 2 ) k+l 
0 ÷ Hk(M,R)/r(H(M,A) ÷ ^ Hk(M,R/A) - - ÷  R (M,A) ÷ 0. 
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In particular if Hk(M,R) = 0, then f is determined uniquely by 

~l(f) ,~2 (f). 

Proof. Let f E ~k. Since R is divisible, there is a real cochain 

T with TI z k = f. Since 6T = 6T = f o ~, by assumption there exists 

6 A k+l and c 6 ck+I(M,A) such that 6T = ~-c. Then 0 = 62T = 

6e - 6c = d~ - ~c. Since, as we have mentioned, a nonvanishing 

differential form never takes values lying only in a proper subgroup 

A c R, we conclude dw = 6c = 0. Since 6T = ~-c, it follows that 

~ A k+l, [c] = u E Hk+I(M,A) and [~] = r(u) . We claim that ~,u 
0 

are independent of the choice of T. In fact if T' is another lift, 

then T - T'Iz k = 0 so that T' = T + d + 6s for some d E ck(M,A) 

and s E ck-I(M,R). Then ~' - c' = 6T' = 6T + 6d = ~- c + 6d. 

Therefore ~ - ~' = c' - c + 6d and as above it follows that w = ~' 

and [c'] = u. Set 61(f) = ~ and 62(f) = u. 

k+l there exists 61,62 are surjective. In fact given ~ E A 0 

u £ Hk+I(A) with [~] = r(u). Conversely given u we can find such 

an ~. Let [c] = u. Then ~ - c is exact as a real cochain so 

there exists T with 6T = ~ - c. Then T/Z k = f E ~k with 

61(f) = ~, 62(f) = u. 

If f E ker 61 then 6T = -c, so that fiB k -- 0 6 R/A. Thus T" 

defines an R/A co-cycle. T' = T + 6s = T + 6s, so f defines an 

R/A cohomology class. Similarly if v is an R/A cohomology class 

represented by some cocycle s then s IZ k defines a differential 

character f. f is independent of the choice of s and ~l(f) = 0. 

Finally, if 62(f) = 0 then 6T = ~ - c with c = ~e for some 

e E ck(M,A). Then ~ (T-e) = ~. By the de Rahm theorem, we have also 

d% = ~ for some e ~ Ak(M) . Then, 6 (T-e-0) = 0 so that T -e -9 =z 

for some z E zk(M,R). Again, by the de Rahm theorem, there exists 

a closed form ~ ~ Ak(s) with ¢IZ k = ziZ k. So TIZ k = % + ¢ + e. 

Thus the map ~ ÷ ~IZk sends A k onto ker 62 and its kernel is 
k 

clearly A 0 . 

The third sequence follows immediately by combining the first two. 

q .e od. 

Corollary 1.2. Let B :Hk(M,R/A) + Hk+I(M,A) denote the Bockstein 

associated to the coefficient sequence O + A + R ÷ R/A ÷ O. Then 

i) 62 IHk (M,R/A) = -B. 

2) ~±IAk/A~ = d .  
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Proof. This is straightforward to check from the arguments above. 

We will often write dl(f) = mf and ~2(f) = uf. 

Let 0 ÷ A 1 ~--~A 2 + R. Let A i denote closed forms with periods 

in A i. The inclusion i induces an obvious map i :Hk(M,R/AI)+ 

Hk(M,R/A 2) as well as i, :Hk(M,R/A I) ÷ Hk(m,R/A2 ) . 

Corollary 1.3. We have the exact sequence 

¢ 
k+l~ k+l 

0 ÷ ker i, ÷ Hk(M,R/AI) 1-~Hk(M,R/A 2) + A 2 /A 1 + 0. 

Example 1.4. H0(M,R/Z) ~-- C ~(M,S I) 

Hn(M,R/A) = Hn(M,R/A) 

^k 
H (M,R/A) = 0 k > n = dim M. 

The following simple example illustrates how differential charac- 

ters arise in geometry. In many ways it typifies the general case. 

Example 1.5. Let S0(2) + E ~--~ M be a circle bundle over M with 

connection e. Let ~ E A2(M) denote its curvature form. Since 

1 1 2 For 7 a closed 2--~ ~ represents the real Euler class, 2~z ~ E A 0- 

curve let H(y) 6 $0(2) be holonomy around y, and define 2(Y) E R/Z 
2~i~ 

by H(y) = e (y). 

Extend X to all 1-cycles as follows. Let x 6 Z 1 and choose a 

closed curve y and a chain y E C 2 so that x = Y + ~y. Set 

1 
X(x) = X(y) + ~-~-~(y). 

It is easily seen that X is well defined and clearly X o ~ = 

Thus X 6 HI(M,R/Z). If we let X denote the integral Euler class 

then one can check 

1 
~i (~) = 2-~ ~' 62 (~) = X. 

carries more information than ~ and X together, since both may 

vanish when X does not, e.g. M = S I. 

As already mentioned, the differential characters form a graded 

ring. To define the multiplication we must introduce subdivision. 

Let ~ : C, + C, be the standard subdivision map in cubical theory, 

and let ~ be its chain homotopy to 1 (see [ii]). I.e. 
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1 - A = ~ + ~3. (1.6) 

Since ~ is natural, if q is a k-simplex then ~(~) is supported 

on ~. Thus the (k+l)-dimensional volume of ~(~) E Ck+ 1 is zero. 

Consequently, if ~ E A k+l then ~ o 9 = 0. A operates on everything, 

and in particular differential forms (regarded as cochains) are invari- 

ant under subdivision. So are differential characters. In fact if 

x E Z k then A(f) (x) = f(Ax) = f(x) - f(~x) = f(x) - wf(~x) = f(x). 

Subdivision allows one to connect A product and U product. 

If 8, ~ E A* we may regard 8,w, and 8 A w as real cochains. We 

may thus cup @ and ~ and get another real cochain @ U ~. In [12] 

Kervaire has shown 

lim An(@ Uw) = 8 A ~. 
n-~oo 

1.7) 

It is because of this formula that we use cubical theory. 

Let Wl,~ 2 E A ZI, A ~2 be closed. Using (1.7) we can make 

~i A w 2 - e I U~2 exact in a canonical way. Define 

£i+~2-i 
E(Wl,~ 2) ( C (M,R) by 

0o 

E(wI,~ 2) (x) = - [ ~i U ~2(~£ix) 
i=0 

1.8) 

A straightforward estimate shows that the right hand side of 1.8) 

is dominated by a geometric series and hence converges. Moreover, it 

is then obvious that 

lim E(Wl,~ 2) (Anx) = 0. (1.9) 
n-~oo 

Now 
co . co . 

6E(Wl,W 2) (x) = - [ w I U~2(}AI3x) = - [ w I Uw2(@~Alx) 
i=O i=O 

co . , 

= - [ ~i Uw2 ((I-A-~)AIx) = lim - [ w I Uw2((l-A)Alx) 
i=0 n÷co i=0 

= lim - ~i Uw2((l-An+l)x) 
n÷co 

= (w I A~2-Wl U~2 ) (x) 

where we have used (1.6), (1.7) and the fact that 

since the w. are closed. Hence 
1 

6(w I Uw 2) = O ,  
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8E(e 1,e 2) = e 1A e 2 - e 1U e 2. (i.i0) 

The main point in the above computation is that {[i=0 ~AI} is 

a sequence of natural chain homotopies between 1 and A n+l. In 

fact, if 8 is any such sequence with the property that 
n 

lim -e I U e2(0n x) exists, then we can take E(el,~2) (x) =lim -e I U e2(SnX). 

All expressions so obtained will differ universally by exact cochains. 

One such can be written as a finite sum of terms involving integrals 

over x of certain expressions in e l, e 2. 
k ~k 2 k 1 

NOW let f 6 H I(M,R/A), g E (M,R/A) and choose Tf 6 C (M,R), 

k 2 ~ = 
Tg ( C (M,R) with TfiZkl = f, TgiZk2 g" 

Definition. 

k I ~ ~ 
* = - - Tf UST + E(ef,eg) IZkl+k2+ I. f g Tf Ueg (-i) ef UTg g 

^kl+k2+l 
Theorem i.ii. f * g 6 H (M,R/A) 

the choices of Tf, T . Moreover, 
g 

i) (f *g) * h = f , (g ,h) 

(kl+l) (k2+l) 
2) f , g = (-i) g , f 

is well defined independent of 

3) ef,g = efA Wg and Uf,g = uf U Ug ^ i.e. 81 and__ 82 are 

rinq homomorphisms as is (81,82):H(M) ÷ R(M) . 

C ~ = 4) If ~ :M ÷ N is a map, then ¢*(f*g) ~*(f),~*(g). 

Proof. Let 8Tf = ef - cf, 8Tg - eg - Cg with [cf] = uf, [Cg] = Ug. 

To see that f,g is a different character such that 3) holds, one 

computes that 

k 1 
8(Tf Ueg - (-i) ef UT -T UdT +E(ef,eg)) g g g 

-c ) +ef Ae -ef Ue = (ef-cf) Ueg +ef U (eg-Cg) -(ef-cf) U (eg g g g 

= ef Aeg cf Uc . g 

3) follows immediately. That the definition is independent of the 

choices of Tf, Tg is straightforward. 2) can be proved ̂ by a simple 

formal argument and 4) is trivial. To see i) , let h 6 H k3 and 

choose T h as above. A direct computation shows that (f*g*h-f*(g*h) 

is the mod A reduction of 
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k 1 
E(wf,Wg) Ue h +E(w_Aw_,~ h) + (-i Z g f 

U E(Wg,W h) -E(wf,WgA~ h) , (1.12) 

and that the coboundary of this expression is zero. (1.9) and 

similar estimates show that the limit of (1.12) under subdivision, is 

a cocycle with zero periods, and i) follows, q.e.d. 

Note that if A is discrete, e.g. A = Z, then by use of (1.7) 

we have 

f,g lim A n ~ k l ~ g  
= (T 1 U~g -(-l) -Tf U~Tg) IZkl+k2+ I. 

Two special cases are important and follow easily from the defini- 

tion. 

kl+l k 2 
f,g = (-i) uf U g g E H (M,R/A) (1.14) 

kl+l k 2 k 2 
f,g = (-i) ~f A g g E A /A 0 . (1.15) 

Theorem i.ii may be paraphrased as saying that H* is a functor 

from manifolds to rings and (61,62) :H* ÷ R* is a natural transforma- 

tion of functors. The * product is probably characterized by this 

property. It is also possible to represent differential characters by 

differential forms with singularities (although not canonically). With 

respect to this representation, there is a nice formula for the product 

which generalizes that of Example 1.16 below. (For more details see 

[7]). 

Example 1.16. M = S I, f,g E H0(SI,R/Z) = C~(SI,R/Z). f and g may 

be represented by functions F,G : R + R so that F(x+2~) = F(x) + n I, 

G(x+2~) = G(x) + n 2 with nl,n 2 E Z. Now f*g E HI(sI,R/Z) = 

HI (SI,R/Z) , and 

f2z 
f,g(S I) = nlG(0 ) - J FG'. 

0 

§2. A Lift of Weil Homomorphism 

Let G be a Lie group with finitely many components, B G its 

classifying space and I*(G) the ring of invariant polynomials on G. 

Let e = {E,M,%} be a principle G-bundle with total space E, base 

space M and connection 0. Let e(G) be the category of these ob- 

jects with morphisms being connection preserving bundle maps. Then we 

have the functors e ÷ I*(G), H*(BG,R), H*(BG,A), H*(M,A), H*(M), 
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A~I(M) (= closed forms). (In the first three cases, to any morphism 

we assign the identity map). The Weil homomorphism constructs a 
I k H 2k homomorphism w : (G) + (BG,R) and a natural transformation 

W : Ik(G) + A2k(M) such that the following diagram of natural trans- 

formations commutes 

I*(G) W ~ H*(BG,R) 

W [C R 

A~I(M) dR H*(M,R) < 

r 
H* (BG,A) 

r 
H* (M, A) .  

(2 .i) 

Here, CA, C R are provided by the theory of characteristic classes 

and dR is the de Rham homomorphism. If P ~ Ik(G), u E H*(BG,A) 

and ~ is the curvature form of e E e then explicitly, W(P) = 
k 

P ( ~ ) ,  and CA(U) = u(e), the characteristic class. Set 

K2k (G,A) { (P,u) (Ik(G) x H2k(BG,A) [ w(p) : r(u)}. 

K*(:G,A) = @K2k(G,A) forms a graded ring in an obvious way. More- 
Wxc A 

over (2.1) induces K*(G,A) ~ R*(M,A). Our result may be para- 

phrased as saying that there exists a unique natural transformation 
^ 

S : K*(G,A) + H*(M,A) such that the diagram 

H* (M, R/A) 

* R* (M,A) K*(G,A) - WXCA 

commutes. In more detail: 

Theorem 2.2. Let (P,u) 6 K2k(G,A). For each ~ ~ e(G) there exists 

H2k-i (M, R/A) satisfying a unique Sp,u 

i) ~l(Sp,u(a)) = P(~). 

2) 62(Sp,u(e)) = u(~). 

3) If 8 6 e(G) and ~ : e ÷ ~ is a morphism then ~*(Sp,u(B)) = 

Sp, u (a) • 

Proof. An object 8 N = (EN,AN,P N) 6 £(G) is called N-classifying if 
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any (E,M,8) = ~ E e(G) with dim M < N admits a morphism to BN and 

for any two such morphisms, the corresponding maps fl,f2 ÷ M are 

smoothly homotopic. By a theorem of Narasimhan-Ramanan [15] such 

objects exist. It is well known that H°dd(BG,R) = 0 and since 8N 

is topologically N-classifying H2k-I(AN,R) = 0 for N-sufficiently 

large. Referring to Theorem i.i, (61,62) : ~2k-l(~) + R2k(AN) is an 

isomorphism and the theorem follows trivially in the category of such 

N-classifying objects by setting Sp,u(BN) = (@i'62)-I(P(~))" It will 

follow in general if we can show that if F0,FI are morphisms of 

0 1 with f. :M ÷ A ± the corresponding maps of to N-classifying BN' 8N 1 N 

(Sp,u(B~ *(Sp,u(B~)). There is an N-classi- base spaces, then f$ )) = fl 

fying object BN,,N' >> N, such that 8~ admit morphisms to BN,. 

Let ~i :AiN ÷ AN' be the corresponding maps of base spaces. By the 

above, ~(Sp,u(SN,)) = Sp,u(B~). Therefore, it suffices to check that 

(%0 o f0)*(Sp,u(BN' )) = (%1 o fl )*(SP, u(BN,)). Let Gt be a homotopy 

between ~0 o f0 and %1 o fl" Further, choose G t to be constant 

near t = 0, t = i. Let z E Z2k_l(M) and ~, ~ be the curvature 

forms of BN, and G[(SN,), (the latter being a bundle over M ×I). 

Since 

(¢lOfl)*(Sp,u(BN,)) - (¢0of0)*(Sp,u(SN,)) (z) = Sp,u(~Gt(zxI)) 

= ] P (~q) 
Gt (z×I) 

we must show that fGt(zxi)P(~) E A. Since G t is constant near 

t = 0, t = i, the induced connection on G~(EN,) is independent of 

t near these points. By identifying G~(EN,) IM x 0 with G~(EN,) IM x i, 

we obtain a bundle with smooth connection over M × S I. Let P(~) 

denote the characteristic form for this bundle. Clearly 

t F 
= p(~) = ] P(~) . 

P (~) ] I z×S 1 JGt (z×I) z × 

S 1 , the theorem follows. Since, z x is a cycle and P(~) E A ° 

Corollary 2.3. The map S :K*(G,A) ~ H*(M,R/A) is a ring homomorphism. 

i.e. 

SpQ,uUv(e) = Sp,u(~) * SQ,v(C~) • 

This follows immediately from the properties of * product and the 

uniqueness statement in the theorem. From Theorem i.i and Corollary 

1.2 we see 
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Corollary 2.4. Suppose P(~) = 0. Then 

(e) 6 H 2k-I(M,R/A) i) Sp, u 

2) B(Sp,u(e)) = -u(e). 

Example 2.5. Suppose ~ = {E,M2k-I,@} where M 2k-I is compact and 

oriented. If (P,u) 6 K2k(G,A) then P(Q) vanishes for dimension 

reasons and S (a) 6 H2k-I(M,R/A). Evaluating on the fundamental 
P,u 

cycle we get the characteristic number 

Sp,u(~) (M 2k-l) 6 R/A. 

NOW suppOse M 2k-I = 3M and that E extends to E, a principal G- 

bundle over M. Let ~ be any extension of 8 to a connection in E. 

Setting ~ = {M,E,8} we have the morphism ~-~ ~. Thus Sp,u(~) I 

M 2k-I = Sp, u(e). Since ~l(Sp,u(~)) = P(~) 

(M 2k-l) = l P(~). (2.6) Sp,u(~) 
J 

It might appear from this formula that these numbers depend only on P, 

but this is false since in general E only extends over a manifold 
2k-i 

whose boundary is a finite union of copies of M , and the choice 

of u removes a rational ambiguity. 

In [9] the authors considered the forms TP(8) defined in E by 

tl ~-l)d t 
TP(8) = k } P(8 A 

2 O 

= t~ + ~(t2-t) [@,@], and showed where Ct 2 

dTP(6) = P(~) in E. (2.7) 

These forms, reduced mod A, are the lifts of the Sp,u(~). Letting 

: E ÷ M, one may show 

Proposition 2.8. ~*(Sp,u(e)) = TP(e) I Z2k_I(E). 

This makes the characters representable by specific differential forms 

when E has a global cross-section. 

If e0,e I are connections on E set ~i = {E'M'0i}" Then 

62(Sp,u(el ) - Sp,u(~0)) = U(el) - u(e 0) = 0. Thus by (i.i) the 

difference of the characters must be the reduction of a form. Let @t 

be a smooth curve of connections joining 8 0 to 81 , let ~t be the 
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@t 
! = curvature at time t, and set d/dt(et). As in [9] we have 

Pr°p°siti°n 2"9 Sp,u(~l) - Sp,u I~ p k-1)dt I Z2k_I(M) • (S 0) = k (@LA~ • 

This makes sense since @' vanishes on vertical vectors, and the inte- 
t 

grand is the lift of a form on M. 

A bundle is called flat if ~ = 0. The holonomy theorem [i] shows 

that in this case the holonomy group H _c G is arcwise totally dis- 

connected. It is called globally flat if it is trivially a product. 

The G-bundle {E,M} is always reducible to an H-bundle {EH,M}, and 

this is induced by a map p : M + B H. The inclusion H _c G induces 

: B H ÷ B G, and for u 6 H2k(BG,A), we get ~*(u) 6 H2k(BH,A). These 

are sometimes called the characteristic classes of the representation, 

see [2]. We recall that if H is finite its integral cohomology is 

all torsion, and H2k-I(BH,R/Z) ~ H2k-I(BH,Q/Z)--~ H2k(BH,Z) . 

(a) 6 H2k-I(M,R/A). Proposition 2.10• If e is flat then all Sp, u 

If e is globally flat then all S (e) = 0. If ~ has finite 
-- P,u -- 

holonomy (and is consequently flat) and A = Z then 

Sp,u(~) = p*(B-l(~*(u)) ~ H2k-I(M,Q/Z). 

This formula was pointed out to us by John Millson; its proof, 

which is straightforward appears in his dissertation [13]. 

§3. The Euler Character 

It is possible to give a more intrinsic construction of the Euler 

character X. Let V 2n = {V,M,q} be a real 2n-dim Riemannian vector 

bundle over M, with V denoting covariant differentiation. Let 

SV ~-~ M be the associated sphere bundle. We have the homology sequence 

(s2n-l) * 
H2n_l ÷ H2n_I(SV) > H2n_I(M) ÷ 0. (3.1) 

2n Z) be the integral Euler class and let P 6 Let X 6 H (Bso(2n) X 

In(So(2n)) be the unique polynomial with w(P X) = X. (Px is unique 

since G is compact). Let F(V) 6 c(SO(2n)) be the orthonormal frame 

bundle of V, with connection @ and curvature Q. The Euler form 

P (D) becomes exact in SV, and in fact there is a canonical (2n-l) 
X 

form Q (see [8]) on SV which is natural in the category and which 

satisfies 
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~*(Px(9)) = dQ and ] Q = 1. (3.2) 
2n-i 

S 

Let z 6 Z2n_I(M). By (3.1) we can find y (Z2n_l(SV) and 

w 6 C2n(M ) with 

z = ~,(y) + ~w. 

We define the Euler character, x(V) (H2n-I(M,R/Z), 

X(V) (z) = Q(y) + PX(~) (w). (3.3) 

An analysis of (3.1) easily shows x(V) to be well defined. It 

is immediate from (3.3) that @I(X(V)) = PX(~), and it is not diffi- 

cult to show 42(X(V)) = X(V) • Since Q is natural X is natural, 

and so by Theorem 2.2 

x(V) = Spx,x (F(V)) . (3.4) 

In the special case that dim M = 2n -i, (3.3) simplifies. We 

may then choose a global cross-section % : M ÷ SV, and if M is 

compact and oriented 

x(V) (M) = %*(Q) (M). (3.5) 

Let V = {V,M,V} and W = {W,M,V'} be two Riemannian vector 

bundles over M. The inner product on V and W naturally induces 

one on V • W, and letting V @ V' denote the natural connection we 

get the new Riemannian vector bundle V • W = {V @W, M, ? ~?'}. 

Theorem 3.6. X(V ~W) = X(V) , x(W). 

Proof. Since V ~ W may be induced from a bundle over a product of 

classifying spaces, by naturality it suffices to check the theorem 

there. Such a product again has vanishing real cohomology in odd 

dimensions and the theorem follows from Theorem i.i and Theorem 2.2. 

§4. Chern Characters. 

Let G = GI(n,C). The Weil map W is onto, but has a large 

kernel. Let A be an n × n complex matrix and define the k th 

Chern polynomial, C k 6 Ik(Gl(n,C)) by 

n 
[ [C k(A) +iD k(A) ]In-k. 

k=O 

1 
det(ll -2-~ A) = (4.1) 
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Letting c k denote the k th integral Chern class, w(C k) = c k, and 

(Ck,C k) ( K2k(GI(n,C),Z). 

Let En_k+ 1 be the Stiefel manifold of n - k + 1 bases in C n. 

We do not require these to be orthonormal. H. (E~ n_k+l ) = 0 for 

i < 2k -i. H2k_l(En_k+ I) ~Z and the image of S 2k-I = U(k)/U(k-l) c 

U(n)/U(k-l) c En_k+ 1 gives a generator, h2k_l, of this group. Let 

V = {Vn,M,?} be a complex vector bundle with connection. Let 

÷ V n ~ M 
En-k+l n-k+l 

be the Stiefel bundle of n - k +l dim bases of V n. 

(3.1) we have 

Z ~ H2k_l(En_k+ I) ÷ H (V n ) (M) ÷ 0 2k-i n-k+l ~ H2k-i 

Analogous to 

(4.2) 

an exact sequence. Letting E(V) be the GL(n,C) basis bundle of 

V, with connection @ and curvature ~, ~*(Ci(~)) is exact in 
V n n-k+l" In fact, there is a family of canonical (2k-l) forms, 

Q2k-l' in V n n-k+l' defined modulo exact forms which is natural in 

the category and which satisfies 

f 
= Q2k-i = i. (4.3) 

dQ2k_l ~*(Ck(~)) , ;~h2k_l 

n 
Let z ~ Z2k_I(M). By (4.2) we can find y ( Z2k_l(Vn_k+ I) and 

w (C2k(M) with 

z = ~,(y) + ~w. 

We define the k th Chern character, Ck(V) ~ H2k_I(M,R/Z) by 

Ck(V) (z) = Q2k_l(y) + Ck(~) (w) . (4.4) 

As with X it is easily shown that Ck is well defined and that 

61(Ck(V)) = Ck(~), and 62(Ck(V)) = Ck(V) . Since the family Q2k-I 

is natural, Theorem 2.2 shows 

~k(V) = SCk,Ck (E (V)) . (4.5) 

We set c(V) = 1 + ~I(V) +...+ ~ (V) (H°dd(M,R/Z). 
n 

If V, W are two complex vector bundles wit]] connections we form 

their Whitney sum as in §3 and using (4.5) and Theorem 2.2 show as in 

Theorem 3.6 
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Theorem 4.6. c(V @W) = c(V) * c(W). 

The Whitney sum connection on V ~ W is not always the most use- 

ful. Let ~ be another connection on V ~ W, and for x, y 6 T(M) 
m 

let R : V • W + V • W be its curvature transformation. By 
x,y m m m m 

direct sum projection ~ induces connections ~v and ~w on V and 

W. We call ~ compatible with V ~ V' if 

l) iv = v, ~ = v' 

2) Rx,y(Vm) ~ V m, Rx,y(Wm) ~ W m. 

Using the variation formula (2.9) one shows 

Theorem 4.7. Let ~ be compatible on V ~ W. 

&({VeW,M,?}) = $(V) * c(W). 

The most important instance of Theorem 4.7 occurs in the following 

situation. W is called an inverse of V if there exists a globally 

flat compatible connection on V @ W. e.g. the complexified tangent 

and normal bundles of a manifold immersed in R n are inverses of each 

other. In general the inverse bundle is not unique. 

Corollary 4.8. If V -I is inverse to V 

c(V) * c(V -I) = i. 

If V has a covariant constant hermitian inner product on its 

fibers then the underlying real bundle, V R, is a 2n -dim Riemannian 

v e c t o r  b u n d l e .  T h e  e x p e c t e d  r e l a t i o n  h o l d s  

(V) = -x(V R) (4.9) 
n 

It is sometimes useful to work modulo elements of finite order, 

i.e in R/Q. Let ch ( H even • (BGI(n,c),Q) be the topological Chern 

character, and let Pch = Pch(Cl ..... Cn) 6 I(Gl(n,c)) be the corres- 

ponding polynomial. So W(Pch) = ch, and we set 

ch(V) = Sp ,ch(E(V)) 6 Hodd(M,R/Q) 
ch 

ch is just the usual formula for ch, with * replacing U. We 

work in R/Q because of denominators, e.g. if V is a line bundle. 
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n 

&l*&l Sh(V) = 1 + Cl + 2 +" "+ Cl*'''*Cl 
- -  " n! + "'" 

Given V, W there is a standard connection on V • W, 

as in Theorem 3.6. 

Theorem 4.11. ch(V ~W) = ch(V) + ch(W) 

ch(V ®W) = ch(V) * ch(W) . 

(4 .i0) 

and one shows 

§ 5. Pontrjagin Characters 

Let V = {Vn,M,V} be a real vector bundle with connection, and 
c 

let V be its complexification. We set 

Pk(V) = (-i) k C2k(VC) . (5.1) 

In BGI(n,R ) we have the Pontrjagin class p and the polynomial 

Pk (I2k(Gl(n'R)) with W(Pk) = Pk" Letting E(V) ( E (GI(n,R)) 

denote the basis bundle of V one easily shows 

Pk(V) = SPk,p k(E(V)) . (5.2 

We define ~ and compatible connection as in the complex case, 

and obtain 

P(V ~W) = P(V) *p(W) + order 2 elements in H°dd(M,R/Z) (5.3 

p(V~W,M,~) = p(V egW) V compatible where (5.4 

= ? [n/2] Pk" 1 + Lk=l 

In order to get a proper inverse formula we inductively define 

^i = -Ck A ^± .- Cl , ̂ ± c k - Ck_ 1 * c I -.. Ck_ 1 

Pk̂ ± = Ck (Vc) 

Defining inverse as in the complex case we see 

~k(v -1) : ~(v). (5.5) 
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§6. Applications to Riemannian Geometry 

Let M be a Riemannian manifold, with metric, g, and Riemannian 

connection, V, in the tangent bundle T(M). Set T(M) = {T(M),M,V}, 

and set Pk(M) = Pk(M,g) : pk(T(M)) . 

Theorem 6.1. Let g, g be conformally equivalent metrics on M. Then 

pk (M,g) = pk (M,g) . 

Proof. The difference formula, (2.9), is the same as that in [9] for 

the difference of the TP(8) forms. It i~proved in [9] that these 

forms are conformally invariant, and thus so are the Pk characters. 

Theorem 6.2. A necessary condition that M n admit a conformal immer- 

^±(M n) = 0 for i > [~] sion in R n+k is that Pi 

Proof. By the previous theorem we can assume the immersion is isometric. 

Let N(M n) be the normal bundle; and let [ be the globally flat 

Euclidean connection on T(M) • N(M). ~ induces the Riemannian 

connection, V, on T(M) and also induces a connection V' on N(M). 

Setting N(M) = {N(M),M,V'} we see that N(M) is an inverse of T(M) . 

by (5.5) PC± (Mn) = Pi(N(Mn) ) : 0 for i > [ ~ ]  . Thus 

This theorem, together with Proposition 2.8 show that conformal 

immersion in R n+k implies that the forms TP I. (8) in the frame 
l 

bundle are closed and represent integral cohomology. This is a main 

r e s u l t  o f  [ 9 ] ,  w h e r e  i n  f a c t  i t  i s  s h o w n  t h a t  ~ TP (8) i s  i n t e g r a l .  

The next two theorems are due to John Millson, and are part of his 

doctoral dissertation. 

Theorem 6.3 (Millson) . Let M be a compact nonnegative space form. 

Then all Pi(M) (H4i-I(M,Q/Z). 

Proof. In the flat case the tangent bundle is flat with finite holo- 

nomy and the theorem follows from Proposition 2.10. In the positive 

case M = sn/F, where F ~ 0(n+l) is finite and acts freely. Let 

F = {vn+I,M,~} be the flat bundle over M associated to the inclusion 

representation of its fundamental group F. By topology T(M) ~ L' 

V n+l, where L is a trivial line bundle, and one easily sees that 

hhe connection on T(M) induced by ~ is the Riemannian connection, 

V~ Since F is flat ~ is compatible with V ~ V', where V' is 

the trivial connection on L' Thus by (5.3) and (5.4) Pi(M) = 

pi(F), and we again may use Proposition 2.10. 
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Example 6.4 (Millson). Let M 4k-I = L be the lens space 
P;ql'''''q2k 

obtained by dividing S 4k-I by the cyclic group of order p generated 

2~iq I 2~iq2k 

by (e P P ,...,e ), where the qi and p are pairwise rela- 

tively prime. As in Ex. 2.5 the top characters give numbers, 

, ( 2 2 

^ . 4k-i q{'''q2k°k ql .... 'q2k ) 
Pk (M ) = mod Z. 

P 

where o k is the k th elementary symmetric functions and qlql -= 

1 mod p. e.g. in the standard notation, the 3-dim lens space 

= L and Lp,q p;l,q' 

Pl(Lp,q) -= q' (l+q2) - ~ mod Z. 
P P 

Coupling these calculations with the non-immersion theorem shows 

Theorem 6.4 (Millson). For each k there are infinitely many (4k-l) 

dim lens spaces smoothly immersible in R 4k but not conformall[ 

immersible in R 6k-1. 

The nonnegative space forms themselves may be used as target 

manifolds. 

Theorem 6.5. A necessary condition that M n be conformally immersible 

a nonnegative space form ~n+k is that p~(M n) ( H4i-i (Mn,Q/Z) in 

for i > [~]. 

Q, and regard all Pi ( H4i-I(M'R/Q)" Let T, Proof. Reduce mod T, 
N be the Riemannian tangent bundles of M and M, and the formal 

bundle of M together with the connection induced by M. By restric- 

tion we regard ~ as Riemannian vector bundle over M. Because the 

curvature tensor of T is constant, its connection is compatible with 

that on T ~ N, and by (5.3) and (5.4) 

p(T) = p(T) * p(N) mod Q. 

But Theorem 6.3 shows p(T) = 1 mod Q, and so 

=  i(N) =0 i>k 

TO vanish as an R/Q character is equivalent to being a Q/Z coho- 

mology class. 
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The case of constant negative curvature is considerably deeper. 

Since the characteristic forms all vanish, the Pi are R/Z classes, 

but it seems highly unlikely that they are all rational. These mani- 

folds are all of the form M n = Hn/F, where F acts freely and 

property discontinuously as isometries on the hyperbolic space H n. 

Letting < , > be the Lorenz metric in n +i space, we may identify 
n,l 

H n = {x I []XIln, 1 = -i}, with the induced metric from < ' >n,l' which 

is positive definite on this hypersurface. Now F is the fundamental 

group of M n, and F c 0(n,l). This gives a flat 0(n,l) vector 

bundle, F, over M. As in the proof of Theorem 6.3 one shows 
^ ^ 

Pi(M n) = Pi(F). However, we get no rationality conclusion because 

the holonomy group, F, is not finite. 

7. Foliations 

Let G = GI(n,R), and set I (G) = ker w. Then I = ZI k is 
o trA2k_ 1 o o 

the ideal generated by the polynomials . Taking A = {0} we 

see that Q <-> (Q,0) is an isomorphism between I k and K2k(G,{0}). 
O 

If ~ 6 ~(GI(n,R)) and Q ~ I k set 
O 

Q(~) = SQ,0(~) E H2k-I(M,R). 

Let F be a foliation of co-dim n in a manifold M, and let 

N(F) be its normal bundle. In [4] Bott has defined a family of 

connections in N(F), all of which have the property that their 

curvature transformations, R vanish if x, y 6 F . This guarantees 
k x,y m 

"~ ~..~.~--~ = 0 if k > n, and thus P(~) = 0 if P 6 Ik(G). This 

shows that certain Pontrjagin classes vanish, and it also leads one 

to construct secondary cohomology invariants. Let N(F) = {N(F),M,?} 
^ 

where V is such a Bott connection and set Q(F) = Q(N(F)), Pi(F) = 

Pi(N(F)). Bott's curvature vanishing theorem shows: 

Q(F) 6 H2k-I(M,R) Q 6 I k, k > n 
O 

Pi(F) 6 H4i-I(M,R/Z) 2i > n. 

(7.1) 

(7.2) 

A simple application of Proposition 2.9 yields 

Proposition 7.3. The classes Q(F) and Pi(F) are defined independ- 

ently of choice of Bott connection, and are thus invariants of F. 

It is straightforward to show that the classes Q(F) and Pi(F) 

are natural under smooth maps transverse to F, and that they are 
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cobordism invariants. Thus, letting BF 
n 

space for f o l i a t i o n s ,  s e e  [ 5 ] ,  w e  g e t  

6 H2k-I(B~n,R) k > n 

p. ( H4i-I(BF ,R/Z) 2i > n. 
1 n 

denote Haefliger classifying 

The classes Q have been defined independently by others. For 

example (trA) 2 (H3(BFI,R) is the Godbillon-Vey invariant. An 

extensive treatment of the Q classes may be found in [6]. The Pi 

classes are non-vanishing: 

Theorem 7.4. Let 9 :BFn ÷ BGI(n,R) be the natural map. Then letting 

B denote Bockstein 

B(Pi) = -~*(pi). 

Corollary 7.5. Pi ~ 0. 

The proof of the theorem is immediate from Corollary 2.4. The 

corollary then follows from examples of Bott-Heitsch [6] of foliations 
.th 

of co-dim n, the l integral Pontrjagin classes of whose normal 

bundles do not vanish for i > n. This shows ~*(pi ) ~ 0 and thus 

~i/o. 

§8. Flat Bundles 

Let G be a Lie group with finitely many components, and let 

p : ~I(M) ÷ G be a representation. Associated to p we get a flat 

G-bundle Ep. For (P,u) E K2k(G,A) we set u(p) = U(Ep) and 

Sp,u(P) = Sp,u(Ep) . Corollary 2.4 shows 

(p) (H2k-I(M,R/A) (8.1) Sp,u 

B(Sp,u(p)) = -u(p). (8.2) 

Let % :N ÷ M be smooth. Then p o ~ : ~I(N) ÷ G, and Theorem 2.2 

shows 

Sp,u( p o %) = ¢*(Sp,u(p)) . (8.3) 

B G 
o 

Let G denote G equipped with the discrete topology, and let 

o J--~ G is denote its classifying space. The identity map G o 
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continuous and induces BG 3~ BG" For u 6 H2k(BG,A), 

H2 k (BG o u = j*(u) ( ,i). From (8.1) and (8.3) one shows 
o 

Sp,u ( H 2k-l(B G ,R/A) 
O 

we get 

(8.4) 

B (Sp ) = -u. 
rU 

Any representation 

G i÷  G. S i n c e  Oo i s  c o n t i n u o u s  i t  i n d u c e s  
O 

p : ~I(M) ÷ G can be factored as ~I(M) 

Po :M ÷ B G , and 
O 

(8.5) 

Po 
÷ 

p*(S_o ~,u) = Sp,u(P)" 

2 k l (  G 2k 2 
Proposition 8.7. Let (P,u) 6 K ,A), (Q,v) ( K 

(R/i)to r ~ R/A denote the torsion subgroup. 

(8.6) 

(G,A), and let 

SpQ,uUv = u O SQ, v 6 H*(B G , (R/A)tor) . 
o 

Proof. For any p : ~I(M) ÷ G, Corollary 2.3 and (1.14) show 

SpQ,uUv(p) = Sp,u(p) * SQ,v(0) = u(p) U SQ,v(p) • Moreover, since EQ 

is flat, u(p) = u(E ) ( H 2k (M,A) and H[or(M,i) U H*(M,R/A) c 
p tor 

H* (M,R/A) tor ) . 

In particular we see 

SpQ,uUv ( H*(B G ,Q/Z) i = z (8.8) 
O 

SpQ,uUv = 0 A = Q. 

t 
If p : ~I(M) ÷ G is a family of representations we call it 

smooth if, for each h 6 ~I(M), pt(h) is a smooth curve in G. 

Using Proposition 2.9 one easily shows 

t 
Proposition 8.10. I_~f p : Zl(M) ÷ G is smooth, and k ~ 2, then 

0 pl) 
Sp,u(P ) = Sp,u( • 

As we will see below in the case of X (HI(Bs0(2) ,R/Z) ; the con- 

dition k ~ 2 is necessary in this theorem, o 

A dominating question will be the values taken by the Sp, u 

classes when they are regarded as characters on H2k_I(BGo ) . Propo- 

sitions 8.7 and 8.10 show that for k ~ 2 elementary constructions 

will not produce values outside of (R/A)to r. Moreover, Proposition 
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8.10 seems to indicate that the range of values is countable. 

The Euler Character. Let p :~l(M) ÷ S0(n), and let V be the 
P 

corresponding flat vector bundle. Let SV ÷ M be the associated 

sphere bundle, and let ~ ( An-Isv be the volume form on S n-l, 

normalized so / n-i ~ = i, and extended via the connection to a form, 
S 

~, on SV. Since SV is flat, de = o and defines [~] 6 Hn-I(sv,R). 

Let z 6 Hn_I(M) , and choose y 6 Hn_I(SV ) so that ~,(y) = z. 

Sequence (3.1) shows that such a y exists and is unique up to a 

homology class in the fibre. We then define X(p 6 Hom(Hn_I(M),R/Z) = 

Hn-I(M,R/Z) by 

(p) (z) = [m] (y). (8.11) 

This agrees with the original definition of X gzven in §3 for 

arbitrary S0(2n) bundles, and extends it, in the flat case, to all 

S0(n). 

Proposition 8.12. 

i) X(p) has order 2 n odd 

n-i 
2) X(p) ( H (M,Q/Z) p(~I(M)) finite 

3) X(Pl~P2 ) = X(p l) U X(P2 ) 6 H*(M,Q/Z). 

Proof. Let A : SV ÷ SV be the antipodal map. Since ~Q A = ~, we 

could use A,(y) instead of y in (8.11). For n odd, A*(~) = -~, 

and this shows i). 2) follows from Proposition 2.10, and 3) follows 

from Theorem 3.6 and (1.14). 

In the case n = 2, we are dealing with a flat circle bundle, 

and X(Q) assigns to each closed curve in M its associated angle of 

holonomy (see Ex. 1.5). In particular if M = S 1 and p :~l(S) 1 ÷ 

S0(2), then p(1) = e 2~i~, and X(Q) (S I) = e. Since p may be 

smoothly perturbed so that p(1) takes any value in S0(2), we see 

that k ~ 2 is necessary in Proposition 8.10. Now HI(Bs0(2)O ) 

,S0(2) o] ~ S0(2) ~ R/Z. One easily shows S0(2)o/[S0(2)o o 

: HI(Bs0(2)o)-~ R/Z. (8.13) 

The higher dimensional cases are more interesting. Let M 2n-I 

compact and oriented, let p : Zl(M 2n-l) ÷ S0(2n) be a representa- be 

tion, and let SV be the associated flat (2n-l) dim sphere bundle. 



72 

Let ml,...,m N be the vertices of a simplicial subdivision of M 2n-l. 

For each vertex choose v. ( SV If o. = (m. ,...,m. ) is a 
3 mj i 10 12n_l 

top dimensional simplex let b I denote its barycenter, and let 

w. ,...,w. 6 SVb. be the vectors obtained by parallel translating 
io 12n-i i 

• ,...,v. along curves in ~.. Note that since SV is flat the 
vl o 12n_ 1 i 

{w. } do not depend on the choices of these curves. We call 
1. 
3 
• .. . . ,...,w. are v I, ,v N generic if for each ~i the vectors Wlo 12n-i 

linearly independent. It is easily seen that the set of generic 

N-tuples Vl,...,v N form an open dense subset of SVml x...× SVmN 

In the generic case let Z . ~ S 2n-I denote the unique convex oriented 
1 

~eodesic simplex spanned by w i , .... w , and let VoI(z ~) denote 

its oriented volume, o i2n-i 1 

Theorem 8.14. Let Vl'''''V2n-i N be generiC2n_l and let °l +'''+ ~k be a 

fundamental cycle of M Let S be normalized to have unit 

volume. Then 

(p) (M 2n-l) = Z VoI(z .) • 
1 

This theorem suggests a direct definition of X as a cocycle in 

the bar resolution of S0(2n)o. We recall that k-simplices are (k+l) 

tuples of group elements (go ..... gk )' under the equivalence 

(go .... ,gk ) ~ (hg ° .... ,hgk), and ~ (go ..... gk ) = Z~=0(-l)i(go ' .... 
^ 

gi,...,gk ) . The homology and cohomology of this complex are isomorphic 

to that of B 
G 
o s2n_l, (go Let us fix e ( and call J = ,...,g2n_l ) generic if 

go(e) ..... g2n_l(e) are linearly independent in R2n. The generic 

simplices form an open dense subset of ~S0(2n x...× S0(~). For 

generic let Z (J) ~ S 2n-I be the convex, oriented, geodesic simplex 

spanned by go(e) ..... g2n_l(e) . Let S 2n-I be normalized to have 

unit volume, and set 

Vol(o) = Vol(Z(o)) ( R/Z. 

Since Vol((hg ° ..... hg2n_l)) = Vol((g o, .... g2n_l)), Vol defines an 

(2n-l) cochain on the generic simplexes. 

Let Y = (go ..... g2n ) be a 2n simplex, all of whose (2n-l) 
.th 

faces are generic, and let Yi denote its i face. Then 

J 
-~ f--~ 2n 

(6 Vol) (y) = Vol(o7) = Vol( [ (-l)i Z(yi) 0 = 0 
i=0 
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since z2n i E ~ s2n_l, i=0(-l) (7i) is a (2n-l) dim singular cycle on 

and so by our normalization has integral volume. Thus Vol is a co- 

cycle on its domains of definition and clearly defines, almost every- 

where a Borel map (in the sense of [14] from S0(2n) ×...× S0(2n) 

R/Z. It is shown in [14] that such a cochain can be extended to a 

cocycle on all chains, and all such extensions are cohomologous. 

H 2n-I ,R/Z) is well defined. It is easily Thus [Vol] ( (Bs0(2n) 
o 

shown that [Vol] is independent of the choice of e. By using the 

previous theorem one shows 

Theorem 8.15. X = [Vol] 

and thus we obtain 

Corollary 8.16. X (H2n-l(Bs0(2n) ,R/Z) is a Borel cohomology class. 
O 

Let Range X be the image of the map X : H2n_I(Bs0(2n) ) ÷ R/Z. By 

(8.13) this is of interest only for n ~ 2. o 

Proposition 8.17. Range X ~ Q/Z. 

Proof. Let F c S0(2n) be a finite subgroup acting freely on S 2n-l. 

Let E ÷ s2n-I/F be the associated flat S0(2n) bundle. The associa- 

sphere bundle has a canonical cross-section defined by the normal 

field to S 2n-I in R 2n. Using it in (8.11) shows X(E) (s2n-I/F) 

i/ord(F) mod Z. For any k we may choose F ~ Z k. 

Let Z c S n be an n-dim goedesic simplex. Let ~x. denote 
.th jth 1,j 

the dihedral angle between the l and face. The set 

(Xl,2,...,Xn,n+l) determines Z up to congruence, and we call 

rational if all x. 6 Q. Normalize S n to have volume i. Then for 
1,j 

n = 2, the Gauss-Bonnet theorem gives 

1 
VoI(Z) = ~ (Xl,2+Xl,3+x2,3-2), 

and this shows that rational simplexes in S 2 have rational volume. 

For n ~ 3 this is probably false. In particular 

VoI(Z) = f(xl,2,...,Xn,n+ I) 

is a non-elementary transcendental function (see [i0], [16]). It seems 

highly unlikely that f takes rational values at all rational points, 

but we do not know a counterexample. The following theorem is due to 

W. Thurston. 
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Theorem 8.18 (Thurston). For all but a finite number of rational 3- 

simplexes E ~ S 3, there exists an integer m ~ 0 and r 6 Q so that 

m VoI(Z) + r E Range X. 

Thus X takes irrational values on H3(Bs0(3)O ) unless all but a 

finite number of rational geodesic 3-simplices have rational volume. 

The proof of this theorem depends on Theorem 8.14 and a recent and 

unpublished construction of Thurston. This construction consists of 

associating to a given rational simplex Z, the denominators of whose 

dihedral angles are sufficiently large, a compact manifold M 3 of 

constant negative curvature and a representation p :~I(M 3) ÷ $0(4). 

He then shows that X(p) ~ m Vol(~) mod Q. 

We should emphasize that information on the values of X gives a 

lower bound for the homology group H2n_l(S0(2n)). For example, 

Proposition 8.17 shows that this group has a nontrivial homomorphism 

onto some group, H ~ Q/Z and hence is not finitely generated. 

Similarly Theorem 8.18 implies 

Corollary 8.19. Let V be the vector space over the rationals gen- 

erated by the volumes of the (all but finitely many) rational ~eodesic 

simplices of Theorem 8.18. Then Rank H3(Bs) (4)o) ~ dim V - i. 

The Chern Characters. Let p :~I(M) ÷ U(n) and let Vp be the 

associated, flat, hermitian bundle. Let Vn_k+ 1 ÷ M be the flat 

Stiefel bundle with fibe~ the Stiefel manifold En_k+ I. We recall 

from (4.2) that H2k_l(En_k+ I) ~ Z. Let ~2k-i be the unique harmonic 

(2k-l) form on En_k+ 1 whose value on the generator U(k)/U(k-l) 

is i. Since Vn_k+ 1 is flat, ~2k-i defines a closed form on 

Vn_k+ I, and we denote its cohomology class by [e2k_l ] H2k-I(Vn_k+l,R). 

Let z 6 H2k_I(M), and choose y ~ H2k_l(Vn_k+ I) with ~,(z) = y. 

Sequence (4.2) shows that such a z exists and is unique up to a 

multiple of the generator of H2k_l(En_k+l). We define Ck(P) 

H2k-I(M,R/Z) ~ Hom (H2k_I(M),R/Z) by 

~k(p) (z) = [~2k_l ] (y). (8.19) 

This definition agrees, for flat bundles, with the general definition 

given in (4.4). 

Since U(n)o 5 $0(2n) o, we may also consider X(p), and (4.9) 

shows 
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Cn(P) = - X .  ( P )  • (8.20) 

For any space X with ~ E HZ(X,R/Z), 8 E Hk(x,R/Z), set 

* ~ = -B(~) U ~ ~ Hk+Z+I(x,R/Z). Note 

B(e "8) -- B(~) U B(B). (8.21) 

It is easily seen that for any Lie group, G, H*Borel (B G ,R/Z) forms 

a ring under , product, o 

Theorem 8.21. Cl,...,Cn E HBoreI(Bu(n)o,R/Z). Moreover, under 

, product, the~ are a complete set of generators of the ring. 

Proof. That cn is Borel follows from (8.20) and Corollary (8.16). 

However, to prove the lower ~k are Borel one needs a formula for 

Ck in the bar resolution of U(n)o, similar to that for X. This 

may be derived using (8.19), however, it does not have the canonical 

flavor of [Vol], and we omit the details.* The simple exception is 

Cl' and 

1 log - ) cl(go'gl ) - 2~i det(golgl " 

Let j :Bu(n) ÷ BU(n) be the natural map, and let 
o 

j : H * ( B u ( n ) , Z )  + H * ( B u ( n ) o , Z )  be  t h e  a s s o c i a t e d  map. In  h i s  t h e s i s ,  

[18] Wigner shows 

B :H*BoreI(Bu(n)o,R/Z)-~ Im j*. 

But Im j* is the ring generated by j*(c I) ..... j*(Cn) and by (8.5) 

B(Ck) = -j*(ck). 

Since the Ck are Borel, and B maps , products into cup products 

we are done. 

We need not be restricted to U(n). If P :~I(M) ÷ Gl(n,c), 

following (4.5), (4.10), and (8.1) we define 

Ck(P) H2k-i (M,R/Z) 

~h(P) H°dd(M,R/Q). 

* We wish to thank John Millson for acquainting us with Wigner's thesis 
and for suggesting that the X, c k might be Borel. 
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Theorem 8.22. 
k-i 

i) Ck(P 1 ~p2 ) : ck(Pl ) + Ck(P2 ) + [ 
i=l 

n i-I 
(-i) &i(p ) 2) &h(p) = n + [ (i-l)' 

i=l 

ci(P I) U ~k_i(P2 ) 

mod Q 

3) ch(Pl @p2 ) = &h(Pl) + &h(P2) 

4) ch(Pl ~p2 ) = nlch(P2) + n2~h(Pl) - nln 2. 

Proof. i) follows immediately from Theorem 4.6 and (i.14) . ch is 
^ 

only defined mod Q, and ci(P) , cj (p) = ci(P) U cj(p) = 0 mod Q 

since ci(P) is torsion. Thus in the general formula for ch (e.g. 

see 4.10) all product terms vanish, and 2) is what remains. 3) is 

immediate from Theorem 4.11, and so is 4) by virtue of 2). 

Let R(~I(M)) denote the rational unitary representation ring of 

~I(M), and I(~I(M)) the augmentation ideal of virtual representa- 

tions of dim 0. Clearly ch extends to R(zI(M)) and defines a 

homomorphism ch : R(~I(M)) ÷ H°dd(M,R/Q) as Q-modules. 4) of the 

above theorem shows ch(Pl.~p 2) = 0 if Pl' Q2 6 I(~I(M))" This 

ch : I(~I(M))/I2(nI(M)) ÷ H°dd(M,R/Q) 

is a well defined Q-module homomorphism. If we suppose L to be a 

finitely generated group whose classifying space, BL, is a finite 

dimensional manifold we get 

ch : I(L)/I2(L) ÷ H°dd(BL,R/Q). 

At this point we have no information as to the kernel and range of this 

map. 

We remark that by constructions completely analogous to those given 

in this section, it is possible to give explicit cocycles representing 

the real continuous cohomology of noncompact Lie groups. This coho- 

mology, which corresponds to invariant polynomials on g/k (k-maximal 

compact) does not in general come as a special case of the ~k. 

9. The Geometric Index Theorem of Atiyah-Patodi-Singer 

Let L k = Lk(P I, .... pk)~ H4k(BGI(n,R),Q) denote the k th univer- 

sal L-class and let PLk = Lk(PI,...,Pk) denote the corresponding 

invariant polynomial. If V = {Vn,M,V} is a real vector bundle with 
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connection we let 

L(V) = 1 + LI(Vn ) +...+ L[k/2 ] (V) (H*(M,Q) 

PL(V) = 1 + PLI(9) +...+ PL[k/2] (~) 

i(V) = 1 + il(V) +...+ {'[k/2] (V) (H*(M,R/Q) 

denote the corresponding rational class, characteristic form, and 

differential character. The L. can of course be written in terms of 
1 A 

the Pi and * product, e.g. 

il = Y Pl 45 

If {M,g} is a Riemannian manifold we let L(M) , PL(M,g), L(M,g) 

be the class, form, and character corresponding to the Riemannian 

tangent bundle. In spite of the fact that L(M) is an integral 

class, it is impossible to refine L(M,g) to get an R/Z character 

which maps naturally under isometries. The R/Q character, L(M,g) 

is of course natural. 

Let {M,g} be compact, oriented, and odd dimensional, and let 

V = {V,M,?} be a complex Hermitian vector bundle. Let ik(M,V) 

denote V-valued k-forms. The connection on V allows one to define 

A k ik+l(M , A k d : (M,V) ÷ ,V) and the metric on M defines , : (M,V) ÷ 

An-k(M,V). Define 

T : Z ~ A2P(M,V) ÷ ~ • A2P(M,V) 

by 

T = *d + (-1) p d* dim M = 4k -1 

T = i(*d + (-l)Pd,) dim M = 4k +i. 

In [3], Atiyah-Patodi-Singer study this symmetric elliptic operator. 

It has discrete spectrum with infinite positive and negative range. 

Letting {li}, {yi } denote its strictly positive and strictly negative 

spectrum they form the function of a complex variable s, 

Nv(s) = ~ ~7 s- ~ (-~i)-s 
i=l i i~l 

and show this to be continuable to a meromorphic function in the 

entire plane. They also show that N(0) is real and finite. Set 

NCV) = NV(O).  
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Now suppose that M = ~M and that V extends to ~ = {V,M,V}. 

Let g be any metric on M which induces g on M, and which is 

product metric in a collar neighborhood of M. 

Theorem 9.1 (Atiyah-Patodi-Singer) 

(-i) k+l~ (V) = I~ Pch(V) A PL(M,g) + N(M,M,V) 

where N(M,M,V) is the index of a certain boundary value problem 

associated to the data and is therefore an integer. 

The left side of this equation is clearly an intrinsic function of 

the odd dimensional Riemannian manifold, M, and the Hermitian vector 

bundle {V,M,V}. Therefore of course, so is the right side. It, how- 

ever, is, defined only when M is a boundary and when V extends over 

the interior. One can avoid this restriction and get an intrinsic 

right hand side which is always defined by working mod A. Some 

topology is lost, but one gains naturality and some computational 

facility. 

Theorem 9.2. For all complex, Hermitian, Riemannian vector bundles 

V over {M,g] 

(-l)k+l~(v) H (ch(V) * L(M,g)) (M) mod Q. 

Proof. It is always the case that one can find an integer £, and a 

compact manifold, M, so that ~M = ZM and so that £V extends to 

over M, where ZV is V on each component of iM. Extending 

the connection to V on V, and choosing a metric g on M, product 

near the boundary, we get 

(-ik+l~(~V) = iM Pch(V) A PL(M,g) + integer. 

Clearly ~(IV) = Z~(V) , and working mod Q, 

(_i) k+in (V) 1 r 
= £ IM Pch(~) A PL(M,g) 

= ! [d (ch(V)) ^ 61(£(M,g))] (M) i 1 

= Z 1 

= ! [$h(IV),£(T(M) [ IM)] (£M) 

The assumption of product metric means that T(M) I £M = T(iM) m L, 
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where i is a trivial Riemannian line bundle. Thus 

(-ik+l~(v) = }[ch(ZV) *~.(£M,g)] (ZM) = [ch(V) *L(M,g)] (M). 

This formula seems of interest for flat bundles. Let p :Zl(M) ÷ U(n), 

and set 

n (p )  = n ( v  ) .  
P 

Using Theorem 8.22 and (1.14) we see 

Corollary 9.3. 

( - l ) k + i n ( p )  

T] (P l  ® P2 ) 

If dim M = 4k +l then 

1 
(2k-2i)' Li(M) U C2(k_l)+l(p) (M) 

i=0 

n2n(p I) + nl~(p 2) 

mod Q 

mod Q. 

If dim M = 4k -i then 

k-i 
(_ik+l~(p) -_-nLk(M-g ) - 

i=0 
(2k-2i-i) ! L i(M) U C2(k-1) 

~(pl ®p2 ) - n2D(Pl) + nln(p 2) - nln21.k(M,g) 

(~)(M) mod Q 

mod Q. 

Let i n be the trivial complex bundle of dimension n = dim p. 

That ~(p) - n([ n) depends only on p was proved in [3] by showing 

that the derivative under change of metric is zero. The above formulae 

clarify this independence and calculate ~(p) _ ~([n) mod Q, explicitly 

in terms of characteristic classes of p and M. (Note that in case 

dim M = 4k +i, n(i n) = 0). 

Example 9.4. Let M be a compact 3-manifold with an orientation 

reversing isometry. Then LI(M,g) = 0 and 

~(p) - -c(p) (M) = X(p) (M) mod Q. 

By (8.20) and Theorem 8.14 we see that the series n(P)  may be evalu- 

ated, up to a rational, as a sum of simplex volumes on S 3. 
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