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Abstract

In this talk, we introduce the Chern-Simons forms and explore their relation to the Cheeger-Simons
differential characters. We will present a construction of the Chern-Simons invariants of topological 3-
manifolds. As an application, we will compute these invariants for Lens spaces and see how they can help
us understand the homotopy types of the configuration spaces of Lens spaces.

1 Motivation/Review
Let P be a principal G-bundle over a manifold M and A a G-connection on P with curvature FA. Recall the
Chern-Weil homomorphism

CW : Sym(g∗)Ad→ H∗dR(M;R),

which sends an homogenous invariant polynomial ρ to a real cohomology class [ρ(FA)].
For instance, the image ĉk of the k-th chern class ck in H2k(M;R is given by tr(

∧k FA). Now suppose
that A is a flat connection on a vector bundle over M, then ĉk = 0 and there is a lifting of ck in the exact
sequence

. . .→ H2k−1(M;R/Z)→ H2k(M;Z)→ H2k(M;R)→ . . .

A canonical way to produce the lifting was first given by the Chern-Simons form in [3]. The Cheeger-
Simons differential characters came out as a refinement of the Chern-Simons form.

2 Chern-Simons form
Let G be a compact Lie group and π : P→ M a princial G-bundle. Fix a degree k invariant polynomial
ρ ∈ Sym(g∗)Ad. We will write ρ(A) = ρ(FA) for a connection A.

Recall 2.1. A principal G-connection A on P is a g-valued one form that is compatible with the G-action
on P. Explicitly, A is G-equivariant, i.e., (Rg)

∗A = Adg−1A, and it is "the identity" on tangent vectors along
the fiber, i.e., A(Xξ ) = ξ for ξ ∈ g and Xξ its fundamental vector field.

Analogous to connections on vector bundles, a G-connection corresponds to a splitting P = V P⊕HP
such that the horizontal bundle HP is G-equivariant in a suitable sense.

The affine space of connections on P can be identified with AP =Ω1(M;gP), i.e. 1-forms on M with val-
ues in the adoint bundle. Given two connections A0, A1 ∈AP, the straight-line path At : I→AP determines
a connection Ā on the G-bundle P× [0,1] over M× [0,1].

Definition 2.2. The Chern-Simons form associated to A0,A1 ∈AP and ρ is given by

CSρ(A1,A0) =
∫
[0,1]

ρ(Ā) ∈Ω
2k−1(M).

Here we see again that dCSρ(A1,A0) = ρ(A1)− ρ(A0) by Stokes’ theorem, i.e. the de Rham class
CW (ρ) = [ρ(A1)] is independent of the choice of connection. (c.f. Greg’s talk.)

One remark: in general, if we choose a different path, the Chern-Simons form will differ by an exact
term. This is beyond the scope of our talk. Maybe go talk to a gauge theorist.

Suppose instead we take the G-bundle π∗P→ P, which has a tautological section and hence a tautolog-
ical (flat) connection Θ. Then we can define a Chern-Simons form on P (not on M!) for a single connection
A, i.e.,

CSρ(A) =CSρ(π
∗A,Θ) ∈Ω

2k−1(P).
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This a closed form with differential

dCSρ(A) = ρ(π∗A) = π
∗
ρ(A).

Chern and Simons ([3]) showed that when [ρ(A)] is an integral class, then there is a u ∈C2k−1(M,R/Z)
such that π∗u is the reduction of CSρ(A) mod Z.

2.1 Relation to Cheegar-Simons differential characters
Now we will briefly explain the relation between Chern-Simons forms and Cheegar-Simons differential
cohomology, following [2, Chapter 2].

Recall the definition of the Cheegar-Simons differential cohomology

Ĥk(M;Z) =
{

χ : Zsm
k−1→ R/Z

∣∣∃α ∈Ω
k(M)Z, χ(∂c) =

∫
c
α mod Z

}
and the differential cohomology diagram. (c.f. Peter’s introductory talk.)

0 0

H∗−1(M;R/Z) H∗(M;Z)

H∗−1
dR (M) Ĥ∗(M;Z) H∗dR(M)

Ω∗−1(M)

Ω
∗−1
cl (M)Z

Ω∗cl(M)Z

0 0

−β

ch

curv

d

ι

The curvature map curv : Ĥk(M;Z)→Ωk(M) sends χ to α . The characteristic class map ch : Ĥk(M;Z)→
Hk(M;Z) is obtained by lifting χ to χ̃ : Zsm

k−1→ R and sending χ to the integral class defined by

c 7→ −χ̃(∂c)+
∫

c
α, c ∈Csm

k (M;Z).

The map ι is the descent of the map Ωk−1(M)→ Ĥk(M,Z) defined by

ι(ω)(z) = exp(2πi
∫

z
ω)

for z ∈ Zsm
k−1.

Here we describe a way to lift the Chern-Weil homomorphism CW =CWθ to Ĥ2k−1(M;Z). Set

K2k(G;Z) = {(ρ,u) ∈ Symk(g∗)Ad×H2k(BG;Z)
∣∣CW (ρ) = uR},

R2k(M;Z) = {(ω,v) ∈Ω
2k(M)Z×H2k(M,Z)

∣∣[ω]dR = vR}.

Here uR denotes the image of u in real cohomology. Then there is a unique natural map ĈW θ that makes
the diagram commutes.

Ĥ2k(M;Z)

K2k(G;Z) R2k(M;Z)

(curv,ch)

(CWθ , f ∗)

ĈW θ
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The universal bundle πG : EG→ BG comes with a universal connection Θ. Let f : M → BG be the
classifying map with lift F : (P,A) = ( f ∗(EG), f ∗(Θ))→ (EG,Θ). Recall that Sym(g∗)Ad→ H∗dR(BG;R)
is an isomorphism. Fix a pair (λ ,u) ∈ K2k(G;Z). Then

dCSρ(Θ) = π
∗
Gρ(Θ) = curv(π∗GĈW Θ(ρ,u))).

Since EG is contractible, we conclude that

ι(CSρ(Θ)) = π
∗
GĈW Θ(ρ,u).

Pulling back to the bundle P and the connection θ , we obtain the desired relation between Chern-Simons
forms and Cheegar-Simons differential characters:

ι(CSρ(A)) = F∗ι(CSρ(Θ)) = F∗π∗GĈW Θ(ρ,u) = π
∗ f ∗ĈW Θ(ρ,u) = π

∗ĈW A(ρ,u).

Now suppose that π : P→M admits a section σ : M→ P. Then we further deduce that

ĈW A(ρ,u) = σ
∗(π∗ĈW A(ρ,u)) = ι(σ∗CSA(ρ)).

Then (the generalization of) the Chern-Simons functional is the evaluation at the fundamental class

ĈW A(ρ,u)([M]) = exp(2πi
∫

M
σ
∗CSA(ρ)),

or its more familiar form

log(ĈW A(ρ,u)([M])) =
∫

M
σ
∗CSA(ρ) mod Z.

This is conceptually nice, but how do we obtain computable topological invariants from this formula?

3 Chern-Simons invariants for 3-manifolds
As an example, we examine the case where P is a principal SU(2)-bundle over a path-connected 3-manifold
M and ρ(A) = 1

8π2 tr(FA ∧FA) is the second chern class in H4(M;R). This is the classical Chern-Simons
theory. We mostly follow the exposition in [5].

The advantage we have in this setting is that every such P is trivial, since BSU(2) is 3-connected. Fixing
a trivialization, we have AP ∼= Ω(M)⊗ g and there is a trivial (flat) connection A0 = 0. Recall that SU(2)
acts on AP by

g ·A = gAg−1−dg g−1.

This action preserves flatness since Fg·A = gFAg−1. Now the gauge group of P (bundle automorphisms that
cover the identity on M) is G ∼= Maps(M,SU(2)) and it acts on P∼= M×SU(2) by left multiplication, so G
preserves flat connections.

On the other hand, each flat connection A gives rise to a holonomy representation π1(M)→ G: parallel
transport along a loop γ at m0 gives an autmorphism of the fiber G at m0, which depends only on the
homotopy class [γ] ∈ π1(M,m0). (Roughly speaking, flat connections ≈ closed 1-forms.) With a bit of
work, one can recover the well-known fact that

{Flat connections on P}/G ↪−→ R(M) = Hom(π1(M),SU(2))/conjugation.

Since P is trivial, this injection becomes a bijection. In fact, this can be upgraded to a homeomorphism,
with the right hand side the character variety of M.
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Now let’s look at the 3-form

CSρ(A) =CSρ(A,A0) =
∫
[0,1]

1
8π2 tr(FA∧FA).

Integrating over M gives us the Chern-Simons functional on AP, i.e.,

c̃s(A) =
∫

M×[0,1]

1
8π2 tr(FA∧FA) =

1
8π2

∫
M

tr(dA∧A+
2
3

A∧A∧A).

This map is in fact smooth and functorial in P→M. In particular, it is independent of the trivialization up
to Z, i.e., it descends to a functional cs : R(M) ∼= AP/G → R/Z. The reason is as follows: for any gauge
transformation σ ∈ G , let Ā be the linear path in A connecting A and σ ·A, which descends to a loop in
AP/G . Then

cs(σ ·A)− cs(A) =
∫

M×S1

1
8π2 tr(FĀ∧FĀ)

is an integer because we are integrating the second chern class against the top dimensional integral homol-
ogy class [M×S1]. Thus we obtain a collection of homotopy invariants of M. In practice, they are relatively
computable, as we will see for Lens spaces.

3.1 Chern-Simons invariants of Lens spaces
Theorem 3.1. [5, 5.1] The set of Chern-Simons invariants of the Lens space L(p,q) are{

− n2r
p

∣∣∣∣n = 0,1, . . . ,b p
2
c
}
.

Remark 3.2. Two Lens spaces L(p,q) and L(p′,q′) have the same set of Chern-Simons invariants if and
only if p = p′ and q′q−1 ≡ a2 mod p for some a ∈ Z, i.e., there is an orientation preserving homotopy
equivalence between the two. Hence Chern-Simons invariants detect the homotopy type of Lens spaces.

Sketch of proof: The Lens space L(p,q) can be obtained by gluing the boundary of two solid tori X , K

together via an element
[

p q
r s

]
∈ SL2(Z). Let x = S1×{1} represent a generator of π1(X) and y a meridian

of ∂X . Let µ,λ be the corresponding generators of ∂K, so µ = px+qy, λ = rx+ sy.
Now we utilize some general results about 3-manifolds with a single torus boundary in [5]. Suppose we

have a path ρt in Hom(π1(X),SU(2)) with

ρt(µ) =

[
e2πiα(t)

e−2πiα(t)

]
,ρt(λ ) =

[
e2πiβ (t)

e−2πiβ (t)

]
where α,β : I→ R. The corresponding path of flat connections takes the form

At =

[
iα(t)

−iα(t)

]
dx+

[
iβ (t)

−iβ (t)

]
dy

near the torus boundary. If ρ0,ρ1 send µ to 1, then

cs(ρ1)− cs(ρ0) =−2
∫ 1

0
βα
′dt mod Z.

On the other hand, a holonomy representation on X extends to one on the Dehn filling M (in our case, the
Lens space itself) if and only if it sends µ to 1.

Back to the sketch. We take γt to be a path sending x to e2πiθ with θ ∈ [0, 1
2 ]. (Note that every rep-

resentation of π1(X) is conjugate to one of these along the path.) Then γt1 extends to a representation ρt
of π1(L(p,q)) = Zp if and only if pt1 ∈ Z, so there are b p

2 c+ 1 conjugacy classes. On the other hand,
α(t) = pt and β (t) = rt, so

cs(ρt1) =−2
∫ t1

0
βα
′dt =−rpt2

1 .
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3.2 Application to configuration spaces of Lens spaces
Let’s see how the Chern-Simons invariants above are used to produce homotopy invariants of two-point
configuration spaces of Lens spaces in [4]. Recall that Longoni and Salvatore found a pair of homotopy
equivalent Lens spaces L(7,1),L(7,2) two-point configuration spaces are not homotopy equivalent. Now
the question is: does the homotopy type of two-point configuration space distinguish Lens spaces up to
homeomorphism?

Fix a Lens space L = L(p,q) and a CW strucure with one cell ei in the i-th dimension. Let X0 =
Conf2(L)∼= L×L\∆. The inclusion induces an isomorphism of fundamental groups, hence it makes sense
to extend the Chern-Simons invariants to X instead.

The generators of H3(X) =Z⊕Z⊕Zp are [e0×e3] = [e0×L], [e3×e0] = [L×e0] and [e1×e2+e2×e1].
Note that Ωn(X)→Ωn(X) is a bijection for n = 3. In particular, there is a smooth manifold S that represents
[e1× e2 + e2× e1] up to sign. (The explicit construction is carried out in great detail in [4, Section 3].)
Furthermore, we can choose the free generators so that the inclusion H3(X0) = Z⊕Zp ↪→ H3(X) sends the
free generator to (1,1,0) and the torsion to [S] = (0,0,1).

Given a holonomy representation α : π1(X) =Zp⊕Zp→ SU(2) and smooth 3-cycle f : M→ X , we get
a holonomy representation f ∗α of M. Hence we can define an extension of the Chern-Simons invariants

csX : R(X)→ Hom(H3(X),R/Z)

by

csX (α)(ξ ) = csM( f ∗α) =
1

8π2

∫
M

tr(dA∧A+
2
3

A∧A∧A).

This map is functorial in X and independent of the choice of homology representatives. It produces a
homotopy invariant for each pair of conjugacy class of representation and third homology class.

Let’s compute these invariants for X . Fix an SU(2) representation α , which is conjugate to one sending
the generators of π1(X) to e2πik/p and e2πil/p. We will write α = α(k, l). Then α(k, l) pulls back to
representations sending the generator of π1(L) to e2πik/p and e2πik/p on the two free homology class. By
Theorem 3.1, their Chern-Simons invariants are − k2r

p and − l2r
p . The manifold S is Seifert fibered over S2,

and the Chern-Simons invariants for Seifert fibered spaces are well studied in [1]. Here we simply cite the
result that the Chern-Simons invariant is 2kl

p . These pullback to invariants − r(k2+l2)
p and ± 2kl

p on X0.
Now suppose that f : X0 → X ′0 is a homotopy equivalence, where X0 = Conf2(L(p,q)) and X ′0 =

Conf2(L(p,q′)). Then the induced isomorphism on the fundamental groups Zp ⊕Zp corresponds to a
matrix

f1 =

[
a c
b d

]
∈ GL2(Zp).

The induced isomorphism on H3 = Z⊕Zp has the form h3 =

[
ε 0
α β

]
, where ε =±1 and β ∈ Z×p . Using

naturality of CSX we can deduce the following numerical constraints:

Proposition 3.3. [4, 5.2] If f is a homotopy equivalence, then εq′ = qa2(mod p) and

f1 =

[
a 0
0 ±a

]
,

[
0 a
±a 0

]
; h3 =

[
ε 0
0 ±a2

]
.
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