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Abstract

In this talk, we introduce the Chern-Simons forms and explore their relation to the Cheeger-Simons
differential characters. We will present a construction of the Chern-Simons invariants of topological 3-
manifolds. As an application, we will compute these invariants for Lens spaces and see how they can help
us understand the homotopy types of the configuration spaces of Lens spaces.

1 Motivation/Review

Let P be a principal G-bundle over a manifold M and A a G-connection on P with curvature F. Recall the
Chern-Weil homomorphism
CW : Sym(g*)A — Hlp(M;R),

which sends an homogenous invariant polynomial p to a real cohomology class [p(Fy)].

For instance, the image ¢, of the k-th chern class ¢; in H*(M;R is given by tr( AF Fy). Now suppose
that A is a flat connection on a vector bundle over M, then ¢, = 0 and there is a lifting of ¢; in the exact
sequence

.= H*Y M R/Z) — H*(M;Z) — H*(M;R) — ...

A canonical way to produce the lifting was first given by the Chern-Simons form in [3]. The Cheeger-
Simons differential characters came out as a refinement of the Chern-Simons form.

2 Chern-Simons form

Let G be a compact Lie group and 7 : P — M a princial G-bundle. Fix a degree k invariant polynomial
p € Sym(g*)Ad. We will write p(A) = p(Fj) for a connection A.

Recall 2.1. A principal G-connection A on P is a g-valued one form that is compatible with the G-action
on P. Explicitly, A is G-equivariant, i.e., (Rg)*A = Ad,1A, and it is "the identity" on tangent vectors along
the fiber, i.e., A(Xg) = & for & € g and X; its fundamental vector field.

Analogous to connections on vector bundles, a G-connection corresponds to a splitting P = VP & HP
such that the horizontal bundle HP is G-equivariant in a suitable sense.

The affine space of connections on P can be identified with .7p = Q! (M;gp),i.e. 1-forms on M with val-
ues in the adoint bundle. Given two connections Ag, A| € o7p, the straight-line path A; : I — .o/p determines
a connection A on the G-bundle P x [0, 1] over M x [0, 1].

Definition 2.2. The Chern-Simons form associated to Ag,A; € «/p and p is given by
CS,(A1,Ag) = /[ plA) e Q%1 ().
0,1

Here we see again that dCS,(A1,A0) = p(A1) — p(Ao) by Stokes’ theorem, i.e. the de Rham class
CW(p) =[p(A})] is independent of the choice of connection. (c.f. Greg’s talk.)

One remark: in general, if we choose a different path, the Chern-Simons form will differ by an exact
term. This is beyond the scope of our talk. Maybe go talk to a gauge theorist.

Suppose instead we take the G-bundle 7*P — P, which has a tautological section and hence a tautolog-
ical (flat) connection ®. Then we can define a Chern-Simons form on P (not on M!) for a single connection
A, ie.,

CSp(A) =CSp(n*A,0) € Q*1(P).



This a closed form with differential
dCS,(A) =p(n*A) =7"p(A).

Chern and Simons ([3]) showed that when [p(A)] is an integral class, then there is a u € C**~!(M,R/7Z)
such that 7*u is the reduction of CS,(A) mod Z.

2.1 Relation to Cheegar-Simons differential characters

Now we will briefly explain the relation between Chern-Simons forms and Cheegar-Simons differential
cohomology, following [2, Chapter 2].

Recall the definition of the Cheegar-Simons differential cohomology
AYMZ) = {3 : 2", — R/Z|3a € Q4 (M)z, x(dc) = /(x mod Z}
c

and the differential cohomology diagram. (c.f. Peter’s introductory talk.)
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The curvature map curv : H*(M;Z) — Q¥ (M) sends j to c. The characteristic class map ch : H*(M;Z) —
H*(M;Z) is obtained by lifting ¥ to ¥ : Z{", — R and sending x to the integral class defined by

¢ —7(3c) +/(x, ceCI(M;T).
c
The map 1 is the descent of the map Q! (M) — A*(M,Z) defined by

1(©)(2) = exp(27i / )

forz e Z;™,.
Here we describe a way to lift the Chern-Weil homomorphism CW = CWy to H*~1(M;Z). Set

K*(G;Z) = {(p,u) € Sym*(g")! x H*(BG;Z)| CW (p) = u},

R M;Z) = {(w,v) € Q*(M)z x H*¥(M,Z)|[0]4r = vr}.

Here ur denotes the image of u in real cohomology. Then there is a unique natural map CW g that makes
the diagram commutes.

A% (M;7)
Wy -

e J{(curv,ch)
K*(G:z) G R*(M;Z)



The universal bundle g : EG — BG comes with a universal connection ®. Let f: M — BG be the
classifying map with lift F : (P,A) = (f*(EG), f*(©)) — (EG,®). Recall that Sym(g*)*! — H},(BG;R)
is an isomorphism. Fix a pair (1,u) € K**(G;Z). Then

dCSy(©) = mp(©) = curv(niCWe (p,u))).
Since EG is contractible, we conclude that
1(CSy(©)) = TECWeo(p,u).

Pulling back to the bundle P and the connection 6, we obtain the desired relation between Chern-Simons
forms and Cheegar-Simons differential characters:

L(CSp(4)) = F1(CS,(©)) = F* msCWolp.u) = ' f'CWo(p,u) = ' CWa(p. ).

Now suppose that 7 : P — M admits a section 6 : M — P. Then we further deduce that
CWa(p,u) = 0" (1" CWa(p,u)) = (" CSa(P)).

Then (the generalization of) the Chern-Simons functional is the evaluation at the fundamental class

CWa(p.) (M) = exp(2ni | 0"CSx(p)),
or its more familiar form
log(CWa(p,u) (M) = | 0"CSa(p) modZ.

This is conceptually nice, but how do we obtain computable topological invariants from this formula?

3 Chern-Simons invariants for 3-manifolds

As an example, we examine the case where P is a principal SU (2)-bundle over a path-connected 3-manifold
M and p(A) = Slﬁtr(FA A Fy) is the second chern class in H*(M;R). This is the classical Chern-Simons
theory. We mostly follow the exposition in [5].

The advantage we have in this setting is that every such P is trivial, since BSU(2) is 3-connected. Fixing
a trivialization, we have @/p = Q(M) ® g and there is a trivial (flat) connection Ap = 0. Recall that SU(2)

acts on 27p by

1 1

§-A=gAg  —dgg .
This action preserves flatness since F$4 = gF4g~!. Now the gauge group of P (bundle automorphisms that
cover the identity on M) is ¢ = Maps(M,SU (2)) and it acts on P = M x SU(2) by left multiplication, so ¢
preserves flat connections.

On the other hand, each flat connection A gives rise to a holonomy representation (M) — G: parallel
transport along a loop ¥ at mg gives an autmorphism of the fiber G at mgy, which depends only on the
homotopy class [y] € @ (M,mg). (Roughly speaking, flat connections == closed 1-forms.) With a bit of
work, one can recover the well-known fact that

{Flat connections on P} /¥ — R(M) = Hom(m (M), SU(2))/conjugation.

Since P is trivial, this injection becomes a bijection. In fact, this can be upgraded to a homeomorphism,
with the right hand side the character variety of M.



Now let’s look at the 3-form

CS, (A) = CS, (4, Ag) / L (Fa A )
= y = —1r .
p p 0 Jo 872 A A
Integrating over M gives us the Chern-Simons functional on </p, i.e.,
. 1 1 2
as(A) = / —t(Fy AFy) = 7/ tr(dANA+ ZANANA),
Mx[0,1] 8T M 3

812

This map is in fact smooth and functorial in P — M. In particular, it is independent of the trivialization up
to Z, i.e., it descends to a functional cs : R(M) = <#/p/9 — R/Z. The reason is as follows: for any gauge
transformation ¢ € ¢, let A be the linear path in </ connecting A and o - A, which descends to a loop in
oIp /9. Then

1
es(0-A) —es(A) = /M PRGN

is an integer because we are integrating the second chern class against the top dimensional integral homol-
ogy class [M x S']. Thus we obtain a collection of homotopy invariants of M. In practice, they are relatively
computable, as we will see for Lens spaces.

3.1 Chern-Simons invariants of Lens spaces
Theorem 3.1. [5, 5.1] The set of Chern-Simons invariants of the Lens space L(p,q) are
{ n*r
p
Remark 3.2. Two Lens spaces L(p,q) and L(p’,q’) have the same set of Chern-Simons invariants if and

only if p = p’ and ¢'¢~! = a®> mod p for some a € Z, i.e., there is an orientation preserving homotopy
equivalence between the two. Hence Chern-Simons invariants detect the homotopy type of Lens spaces.

n:O,l,...,ng}.

Sketch of proof: The Lens space L(p,q) can be obtained by gluing the boundary of two solid tori X, K
P q
ros
of dX. Let u, A be the corresponding generators of dK, so L = px+qy, A = rx+sy.

Now we utilize some general results about 3-manifolds with a single torus boundary in [5]. Suppose we
have a path p; in Hom(m; (X),SU(2)) with

together via an element € SL,(Z). Letx = S' x {1} represent a generator of 7; (X) and y a meridian

eZm‘a(r)
pi(p) = {

{ 2B (1)

e‘z”"“(’)} P (A) = e—2m’[3(r)]

where a,  : I — R. The corresponding path of flat connections takes the form
_ |ie() iB(z)
A= [ ia(t)] dx+ [

near the torus boundary. If py, p; send u to 1, then

—ip <r>} dy

1
es(p1) —es(po) = —2/ Ba'dt mod Z.
0

On the other hand, a holonomy representation on X extends to one on the Dehn filling M (in our case, the
Lens space itself) if and only if it sends u to 1.

Back to the sketch. We take % to be a path sending x to e**® with 8 € [0, %] (Note that every rep-
resentation of 7 (X) is conjugate to one of these along the path.) Then 7, extends to a representation p;
of m(L(p,q)) = Z, if and only if pt; € Z, so there are [ £ |+ 1 conjugacy classes. On the other hand,
o(t) = ptand B(t) = rt, so

3|
cs(py) = —2/0 Bo/dt = —rpt?.

4



3.2 Application to configuration spaces of Lens spaces

Let’s see how the Chern-Simons invariants above are used to produce homotopy invariants of two-point
configuration spaces of Lens spaces in [4]. Recall that Longoni and Salvatore found a pair of homotopy
equivalent Lens spaces L(7,1),L(7,2) two-point configuration spaces are not homotopy equivalent. Now
the question is: does the homotopy type of two-point configuration space distinguish Lens spaces up to
homeomorphism?

Fix a Lens space L = L(p,q) and a CW strucure with one cell ¢; in the i-th dimension. Let Xy =
Confy(L) 2 L x L\A. The inclusion induces an isomorphism of fundamental groups, hence it makes sense
to extend the Chern-Simons invariants to X instead.

The generators of H3(X) = Z®Z® Z, are e X e3] = [eg X L], [e3 x eg] = [L x ep] and [e] x e2+e3 X e].
Note that Q, (X) — €,(X) is a bijection for n = 3. In particular, there is a smooth manifold S that represents
[e1 X ez + ey x e1] up to sign. (The explicit construction is carried out in great detail in [4, Section 3].)
Furthermore, we can choose the free generators so that the inclusion H3(Xo) = Z ® Z, — H3(X) sends the
free generator to (1, 1,0) and the torsion to [S] = (0,0,1).

Given a holonomy representation & : 7 (X) = Z, $Z, — SU(2) and smooth 3-cycle f: M — X, we get
a holonomy representation f*a of M. Hence we can define an extension of the Chern-Simons invariants

csx : R(X) — Hom(H3(X),R/Z)

by

csx (@)(8) = esm(f @) = ;?/Mtr(dA/\A—&-gA/\A/\A).

This map is functorial in X and independent of the choice of homology representatives. It produces a
homotopy invariant for each pair of conjugacy class of representation and third homology class.

Let’s compute these invariants for X. Fix an SU (2) representation ¢, which is conjugate to one sending
the generators of 7y(X) to ¢*™*/? and e*™!/P. We will write a = a(k,1). Then a(k,) pulls back to
representations sending the generator of (L) to e>™k/P and ¢2™k/P on the two free homology class. By

Theorem 3.1, their Chern-Simons invariants are _Er and 712—’. The manifold S is Seifert fibered over SQ,

and the Chern-Simons invariants for Seifert fibered spaces are well studied in [1]. Here we simply cite the

2,72
result that the Chern-Simons invariant is %. These pullback to invariants ) and i% on Xp.

Now suppose that f : Xo — X is a homotopy equivalence, where Xy = Conf,(L(p,q)) and X =
Conf,(L(p,q')). Then the induced isomorphism on the fundamental groups Z, & Z, corresponds to a
matrix

fi= [Z 2] € GLy(Zy).

The induced isomorphism on H3 = Z & Z, has the form h3 = {Z g] ,where e =+1and f € Z;. Using

naturality of CSx we can deduce the following numerical constraints:

Proposition 3.3. [+, 5.2] If f is a homotopy equivalence, then £q' = ga*(mod p) and
a 0 0 a e 0
fi= [0 :I:a} ’ L:a 0} B3 = {0 :taz} '
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