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CHERN–WEIL FORMS AND ABSTRACT HOMOTOPY THEORY

DANIEL S. FREED AND MICHAEL J. HOPKINS

In memory of Dan Quillen

Abstract. We prove that Chern–Weil forms are the only natural differen-
tial forms associated to a connection on a principal G-bundle. We use the
homotopy theory of simplicial sheaves on smooth manifolds to formulate the

theorem and set up the proof. Other arguments come from classical invariant
theory. We identify the Weil algebra as the de Rham complex of a specific
simplicial sheaf, and similarly give a new interpretation of the Weil model in
equivariant de Rham theory. There is an appendix proving a general theorem
about set-theoretic transformations of polynomial functors.
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1. Introduction

Invariant theory was studied in the nineteenth century in the context of linear
representations of algebraic groups. Given a group G and a linear representa-
tion V , one seeks polynomials on V which are invariant under the action of G. At
around the same time Felix Klein formulated his Erlanger Programm [K] which,
very roughly, defines geometric concepts as those invariant under a given symmetry
group. For example, classical Euclidean geometry studies invariants under the Eu-
clidean group of symmetries of the Euclidean plane E2. The invariants are no longer
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polynomials, but may be a numerical invariant of pairs of points (length), of triples
of points (the isometry class of a triangle), of a polygon (e.g., the area enclosed),
etc. A broader interpretation of Klein’s vision formulates Riemannian geometry
as the study of invariants of Riemannian manifolds under isometries. Categorical
language enables a precise formulation: there is a category whose objects are Rie-
mannian manifolds and whose morphisms are isometries; invariants are functors
mapping out of this category, or out of closely related ones.

The problem we investigate here asks for invariants of principal G-bundles with
connection over smooth manifolds, where G is a fixed Lie group. Specifically, the
invariants we seek are differential forms. Long ago Chern and Weil showed that
conjugation-invariant polynomials on the Lie algebra g define invariant differential
forms. Our main result (Theorem 7.20) is that these are the only natural differential
forms one can construct from a G-connection. A similar invariant theory question
was crucial in the initial heat equation approach to the Atiyah–Singer index theorem
as carried out by Gilkey [G]; see also [ABP].

Our focus is not only this specific theorem,1 but also the context we lay out to for-
mulate and prove it. The “invariance” here is under symmetries of G-connections as
well as smooth maps of manifolds, so we need a framework which tracks both. From
another point of view we seek a universal G-connection such that any connection
on a principal G-bundle P → M is pulled back from the universal one. Univer-
sal connections have been constructed [NR,Sch] on infinite-dimensional manifolds
(see [Ku,R,DHZ] for further studies) but they have the drawback that classifying
maps are not unique. In §§2–5 we take the reader on a journey that begins in an
elementary way with these traditional universal objects and leads to certain “gener-
alized manifolds”: simplicial sheaves on the category of smooth manifolds. We con-
struct a simplicial sheaf2 B∇G of G-connections and a discrete simplicial sheaf Ω•

of differential forms. The precise version of our question becomes a computation:
compute all maps B∇G → Ω•. The actual computation is in §7 and §8, where we
prove (Theorem 7.20) that the classical construction of Chern and Weil captures
all differential forms naturally associated to a G-connection. Once the framework
is set up, the computation involves only ideas from differential geometry and in-
variant theory: no simplicial sheaves. One piece of the invariant theory—a proof
that set-theoretic transformations of polynomial functors are polynomial—may be
of independent interest; it is worked out in the appendix.

Our work is a new take on Chern–Weil theory and equivariant de Rham theory.
In the world of simplicial sheaves we define the total space E∇G of the universal
bundle with connection. We prove (Theorem 7.19) that its de Rham complex is the
Weil algebra, the star character in H. Cartan’s treatment [C1,C2] of Chern–Weil
theory. Traditionally, the Weil algebra is used as a finite-dimensional model of the
infinite dimensional de Rham complex of a Hilbert manifold model of EG, or a
finite dimensional approximation thereof. Here we offer a geometric interpretation
of the Weil algebra as precisely the de Rham complex of E∇G. We also prove

1Some version of this theorem may already be known, but we could not find a reference.
One novelty may be Lemma 8.6; we do not need to assume that the forms we consider are local
functions of the connection—we prove it.

2Pronounced “B nabla G”. The idea of considering E∇G → B∇G as a universal principal G-
bundle with connection surely dates back at least to the early 1970s and to ideas implicit in [Br,D].
We could not find an explicit reference from that era, however. The construction does appear in
the much more recent [FSS].
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a generalization. For a G-manifold X we define a version of the Borel quotient
using E∇G and prove (Theorem 7.28) that the de Rham complex of this simplicial
Borel quotient is precisely the Weil model in equivariant de Rham theory.

A crucial ingredient in our discussion is abstract homotopy theory, which we
describe in §6. Were we to only discuss differential forms, even in their incarnation
as the sheaf of sets Ω•, there would be no need for homotopy theory. But principal
bundles have automorphisms, usually called gauge transformations, and a fixed G-
connection may be stabilized by a nontrivial subgroup of gauge transformations. So
these objects may appear in several equivalent forms. We can describe a G-bundle
directly as a certain type of fiber bundle P → X, or alternatively we can specify
it by an open cover of the manifold X and transition functions. There are similar
alternative descriptions of a G-connection. Abstract homotopy theory provides a
mechanism for systematically identifying these alternatives.

In recent years abstract homotopy theory has had a profound impact on various
parts of algebraic geometry, as well as on low-dimensional topology. Here we use ab-
stract homotopy theory in differential geometry. There are closely related contexts
in which abstract homotopy theory also plays a crucial role. For example, general-
ized differential cohomology groups [HS] are most naturally defined in this world;
see [Bu] for a recent exposition. We remark that they generalize Cheeger–Simons
cohomology groups [ChS], which in turn refine Chern–Weil theory. Abstract ho-
motopy theory also lies at the foundation of derived differential geometry [Sp,Joy].
In a different direction, simplicial sheaves provide a good framework in which to
define a general notion of a “field” in the sense of classical and quantum field
theory [FT, Appendix].

We offer this paper as a tribute to Dan Quillen. He introduced abstract homotopy
theory in [Q1,Q2], and he also wrote about Chern–Weil theory in [Q3,MQ]. Dan
was an exceptionally clear and elegant mathematical thinker. He leaves behind a
legacy of profound and powerful mathematics which will continue to inspire for a
very long time.

2. What is a universal connection?

In this section we motivate the question “What is a universal connection?”, for
which we begin with some topological analogues. Let Σ be a compact surface
with no boundary. Its simplest topological invariant is the Euler number χ(Σ) ∈ Z,
defined for a triangulation of Σ by Euler’s famous formula χ(Σ) = V −E+F , where
V is the number of vertices, E the number of edges, and F the number of faces. For
our purposes we replace this combinatorial definition with one based on a smooth
structure. We focus on the tangent bundle π : TΣ → Σ, the linearization of Σ which
assigns to each point p ∈ Σ the two-dimensional tangent space π−1(p) = TpΣ.
The tangent bundle TΣ is the union of these two-dimensional real vector spaces,
collected into a smooth manifold. The Euler number measures the “twisting” of
the tangent spaces as p varies over Σ. One qualitative indication that there is
twisting for Σ = S2 is the hairy ball theorem, which states that there is no smooth
nonzero vector field on the 2-sphere: every hairy sphere has a bald spot! If there
were no twisting, then we could identify each tangent space with the standard two-
dimensional real vector space R2, and then promote a nonzero vector at a single
point to a nonzero global vector field.
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To obtain a quantitative measurement of the twisting of TΣ → Σ, we ask: What
is the maximally twisted smooth family of two-dimensional real vector spaces? One
source of twisted smooth families are Grassmannians : any real vector space W
determines the Grassmannian Gr2(W ) of 2-planes in W , named after the nine-
teenth century German mathematician and high school teacher Hermann Grass-
mann. The disjoint union of the 2-planes is the total space of a vector bundle
π : E(W ) → Gr2(W ). It turns out that every two-dimensional real vector bun-
dle is pulled back from this one as long as we take W to be infinite dimensional.
Therefore, our quest for a universal real vector bundle of rank two takes us outside
the world of finite-dimensional manifolds. Furthermore, even if we allow infinite-
dimensional manifolds, the classifying manifold is not unique. For example, we can
take W = R∞ with a direct limit topology and similarly topologize Gr2(R

∞). Or
we can take W to be an infinite-dimensional real Hilbert space and correspond-
ingly construct a Hilbert manifold Gr2(W ). There is no canonical choice for the
classifying space. Rather, there is a theorem in topology that any two choices are
homotopy equivalent. We return to this issue in §4. For now we observe that the co-
homology of a universal parametrizing space Gr2(W ) is independent of the choice,
and for any choice we locate a universal Euler class χ ∈ H2

(
Gr2(W )

)
.3 Then the

universality expresses the tangent bundle to Σ as a pullback

TΣ
f̃

E(W )

Σ
f

Gr2(W )

(2.1)

and the Euler number of Σ is the value of f∗χ on the fundamental class of Σ—the
“integral” of f∗χ over Σ. (The pullback property means that f̃ is an isomorphism
from TpΣ to the vector space labeled by f(p), for each p ∈ Σ.) Not only is Gr2(W )
not unique, but the classifying map f is also not unique, though any two are
homotopic.

The Euler class of a 2-plane bundle is the first example of a characteristic
class [MS]. More generally, for any4 Lie group G we consider a principal G-bundle
π : P → M over a smooth manifold M . By definition G acts freely on the man-
ifold P with quotient map π, and the action admits local slices. The principal
bundle associated to TΣ → Σ has G = GL2R, and the total space is the set of iso-
morphisms R2 → TpΣ for all p ∈ Σ. There are again infinite-dimensional universal
bundles EG → BG, unique up to homotopy, and elements of H•(BG) are universal
topological invariants of principal G-bundles. Characteristic classes are the solution
to a two-step problem: find a universal G-bundle and compute its cohomology.

The problem we consider in this paper is to construct “differential geometric char-
acteristic classes”. To motivate it, let us return to our smooth surface Σ and now
suppose it is endowed with a Riemannian metric g. The differential geometers of the
eighteenth and nineteenth centuries studied the concrete case of a surface Σ ⊂ E

3

embedded in Euclidean 3-space with the induced metric. Befitting the local nature
of the metric, we now ask not for global measurements of topological twisting, but

3More precisely, the universal Euler class lies in cohomology twisted by a canonical local system
constructed from the orientations of the two-planes in W .

4Throughout we assume G has finitely many components.
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rather for local measurements of geometric twisting. Gauss’s Theorema Egregium
provides a single function Kg : Σ → R, the Gauss curvature, which is an invariant
of the metric, and it measures the deviation from flatness. We remark that there is
also a canonical measure dAg constructed from the metric—from lengths and an-
gles, we compute areas—and the Gauss–Bonnet theorem asserts that the integral
1
2π

∫
Σ
Kg dAg equals the Euler number χ(Σ).

The curvature is a combination of second derivatives of the metric. The Ital-
ian school in the late nineteenth century constructed a new geometric object con-
structed from first derivatives, the Levi-Civita connection. In the twentieth cen-
tury connections were recognized to have independent interest, and at mid-century
Charles Ehresmann [E] formulated the notion of a connection Θ on a principal G-
bundle P → M . Let g denote the Lie algebra of G. A connection on P is a 1-form
Θ ∈ Ω1(P ; g) which satisfies two conditions: (i) the restriction of Θ to each fiber
is the Maurer–Cartan form θ ∈ Ω1(G; g); and (ii) if Rg : P → P denotes the action
of g ∈ G, then R∗

gΘ = Adg−1 Θ. Our problem is to construct local invariants of
connections. A natural home for these invariants is the generalization of functions:
differential forms. Recall that for any manifold M differential forms Ω•(M) have
a differential d which defines the de Rham complex

(2.2) Ω0(M)
d−−→ Ω1(M)

d−−→ Ω2(M)
d−−→ · · · .

We are led, then, to the following two-step problem:

Problem 2.3. Construct a universal G-connection on a principal G-bundle
E∇G → B∇G.

Problem 2.4. Compute the de Rham complex of B∇G.

The idea of the universal connection is that any connection Θ on a bundle P → M is
pulled back from a map M → B∇G, analogously to (2.1). Once we seek a universal
G-connection, it is natural to seek a universal de Rham complex as well.

Problem 2.5. Construct a universal space of differential forms Ω• and a universal
de Rham complex.

If we in addition impose uniqueness of the classifying map of a differential form,
then we seek some object Ω• such that for any smooth manifold M the space of
maps M → Ω• is

(2.6) Map(M,Ω•) = Ω•(M).

Just as classifying spaces of 2-plane bundles and of principal G-bundles are not
finite-dimensional manifolds, but rather are infinite-dimensional manifolds, so too
we construct Ω• and B∇G as “generalized manifolds”. We introduce that general-
ization and solve Problem 2.5 in the next section. By contrast B∇G is not as rigid
as Ω•, hence we defer its construction, which requires homotopy theory, to §5. The
solution to Problem 2.4 is stated as Theorem 7.20 and proved in §8.

3. Presheaves and sheaves on manifolds

Let Man denote the category whose objects are smooth finite-dimensional man-
ifolds and whose morphisms are smooth maps between manifolds. The right-
hand side of (2.6) is a set attached to each smooth manifold M . Furthermore,
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if f : M ′ → M is a smooth map, then there is a pullback map of differential forms

(3.1) Ω•(M ′)
f∗

←−−− Ω•(M),

and the pullback of the composition of two maps is the composition of the pullbacks.
Let Set denote the category of sets. We summarize the structural properties of
differential forms by the statement that

(3.2)
Ω• : Manop −→ Set

M �−→ Ω•(M)

is a functor. Here op denotes the opposite category in which all arrows are reversed:
differential forms pull back.

Definition 3.3. A presheaf on manifolds is a functor Manop → Set.

In this context we view M as a “test manifold” on which we evaluate the presheaf.
The presheaf itself is to be considered as a new geometric object which generalizes
a manifold. To justify that point of view, we must first see that manifolds may be
regarded as presheaves. Let X be a smooth finite-dimensional manifold, and define
the associated presheaf FX

(3.4)
FX : Manop −→ Set

M �−→ Man(M,X).

To a test manifold M this presheaf assigns the set of all smooth maps M → X,
the set of maps from M to X in the category Man. Throughout we use standard
constructions and notations in categories; for example ‘C(X,Y )’ is used for the set
of morphisms X → Y in the category C.

Remark 3.5. The notion of a presheaf is more familiar over a fixed manifold X.
A presheaf over X assigns a set to each open set in X and there are coherent
restriction maps, so it may be viewed as a functor

(3.6) open(X)op −→ Set

on the category whose objects are open subsets of X and whose morphisms are
inclusions of open sets. A good general reference on presheaves and sheaves is [MM].

If presheaves on manifolds are meant to generalize manifolds, then we must
be able to do geometry with presheaves, and to begin we define maps between
presheaves, so a category Pre of presheaves.

Definition 3.7. Let F ′,F be presheaves on manifolds. Then a map ϕ : F ′ → F
is a natural transformation of functors. Thus for each test manifold M there is a

map F ′(M)
ϕ(M)−−−→ F(M) of sets such that for every smooth map M ′ f−→ M of test

manifolds, the diagram

F ′(M ′)

ϕ(M ′)

F ′(M)
F ′(f)

ϕ(M)

F(M ′) F(M)
F(f)

(3.8)

commutes.
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This definition has the nice feature that if the domain presheaf F ′ is that of a
smooth manifold X, as in (3.4), then we use M = X as a test manifold and so
determine ϕ : FX → F by its value on idX ∈ FX(X), which is an element ϕ(idX)
of the set F(X). More formally, we have the following.

Lemma 3.9 (Yoneda). For any presheaf F , evaluation on X determines an iso-
morphism Pre(FX ,F) ∼= F(X).

Here ‘Pre(FX ,F)’ denotes the set of maps in the category of presheaves introduced
in Definition 3.7. Because of Lemma 3.9 for any presheaf F we sometimes write an
element of F(X) as a map X → F .

Remark 3.10. It is important to observe that smoothness is encoded in the presheaf
FX , even though the values of FX are sets with no additional structure. For
example, a special case of Lemma 3.9 is that for any smooth manifolds X,Y

(3.11) Pre(FX ,FY ) ∼= FY (X) = Man(X,Y ).

In other words, maps FX → FY of presheaves are precisely smooth maps X → Y
of manifolds.

Remark 3.12. What appears in (3.11) are discrete sets, but the construction ac-
tually remembers much more. For if S is any smooth manifold, then the set of
smooth maps from S into the function space of maps X → Y is Man(S ×X,Y );
see Example 3.29 below.

Remark 3.13. The map X �→ FX defines a functor from Man into the category
of presheaves on manifolds. Then (3.11) asserts that this functor induces an iso-
morphism on Hom-sets, i.e., is “fully faithful”. So Man is a full subcategory of
presheaves that expresses precisely the sense in which presheaves are generalized
manifolds.

Another consequence of Lemma 3.9 is that for any smooth manifold X, we have

(3.14) Pre(FX ,Ω•) ∼= Ω•(X).

Of course, the definition (3.2) is rigged to make this true. What is more, in the
world of presheaves on manifolds, we can define differential forms on the presheaf Ωq

for each q ∈ Z
≥0. For example, there is a canonical q-form

(3.15) ωq = idΩq : Ωq −→ Ωq,

which to every test manifold M assigns the identity map on Ωq(M). The form ωq

enjoys a tautological uniqueness property: if ω ∈ Ωq(X), then there is a unique
map ϕ : FX → Ωq such that ϕ∗(ωq) = ω. The map ϕ is defined by ϕ(f) = f∗ω for
f : M → X. It is now straightforward to write the universal de Rham complex

(3.16) Ω0 d−−→ Ω1 d−−→ Ω2 d−−→ Ω3 d−−→ · · · ,

which on a test manifoldM is the de Rham complex (2.2) onM . The complex (3.16)
is the solution to Problem 2.5. Again, we emphasize that we have constructed a
universal object into which there are unique classifying maps.

The reader may feel that we have defined away the problem with no gain. To dis-
pel such illusions we retort that any presheaf on manifolds has a de Rham complex,
as illustrated here.
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Theorem 3.17. The de Rham complex of Ω1 is isomorphic to

(3.18) R
0−−→ R

1−−→ R
0−−→ R

1−−→ · · · .

In particular, the de Rham cohomology of Ω1 is

(3.19) H•
dR(Ω

1) ∼=
{
R, • = 0;

0, • �= 0.

The vector space Ωq(Ω1) has dimension one and is generated by (dω1)∧(q/2) if q is
even and ω1 ∧ (dω1)∧(q−1)/2 if q is odd, where ω1 is defined in (3.15). This is a
special case5 of Theorem 7.19, whose proof appears in §8. It does not appear that
this special case has a substantially simpler proof than the general case.

Remark 3.20. Theorem 3.17 unpacks into a concrete statement in “invariant the-
ory”. Namely, τ ∈ Ωq(Ω1) = Pre(Ω1,Ωq) is a natural construction of a q-form from
a 1-form. Thus if M is a smooth manifold and ω ∈ Ω1(M), we have τ (ω) ∈ Ωq(M),
and for any smooth map f : M ′ → M we have τ (f∗ω) = f∗τ (ω). The language of
presheaves encodes this naturality statement, and it opens the way to more intricate
definitions and theorems.

Remark 3.21. Theorem 3.17 shows that the generalized manifold Ω1 has a rather
simple de Rham complex, e.g., it is finite dimensional in each degree. By contrast,
the space of 1-forms on a positive-dimensional ordinary manifold X is infinite di-
mensional.

The examples of presheaves we have encountered are determined by local data:
functions and forms are determined by their values on arbitrarily small open sets.
We abstract that property, which is not satisfied by a general presheaf.

Definition 3.22. Let F : Manop → Set be a presheaf. Then F is a sheaf if for
every manifold M and every open cover {Uα} of M

(3.23) F(M) −→
∏
α0

F(Uα0
) −→
−→

∏
α0,α1

F(Uα0
∩ Uα1

)

is an equalizer diagram.

This is the usual gluing property of a sheaf: given xα0
∈ F(Uα0

) such that the
restrictions of xα0

and xα1
to Uα0

∩ Uα1
agree, there is a unique x ∈ F(M) which

restricts on Uα0
to xα0

. Functions satisfy this gluing property, and more generally
Ω• is a sheaf. We often say F(U) is the set of sections of the sheaf F on the open
set U .

Each presheaf F has a universal map F → aF to a sheaf aF , called the sheafi-
fication of F . Universality means that if F ′ is a sheaf and F → F ′ is a map (of
presheaves), then there is a unique sheaf map aF → F ′ making the diagram

F aF

F ′

(3.24)

5in which the Lie group is G = T, the circle group
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commute. In the language of categories this is expressed by saying that the forgetful
functor Sh −→ Pre from the category of sheaves to the category of presheaves has
a left adjoint a. The functor a is the associated sheafification functor.

Just as presheaves on a fixed topological space have stalks, so too do presheaves
on manifolds. As all manifolds are locally diffeomorphic to a ball in affine space,
we may as well record only one stalk in each dimension.

Definition 3.25. Let F : Manop → Set be a presheaf. For m ∈ Z
≥0 the m-

dimensional stalk of F is the colimit

(3.26) colim
r→0

F
(
Bm(r)

)
,

where Bm(r) ⊂ Am is the ball of radius r about the origin in m-dimensional affine
space.

If r′ < r, there is an inclusion Bm(r′) ↪→ Bm(r), and so a restriction map F
(
Bm(r)

)
→ F

(
Bm(r′)

)
. The colimit is explicitly computed by taking the disjoint union of

all F
(
Bm(r)

)
and identifying x ∈ F

(
Bm(r)

)
and x′ ∈ F

(
Bm(r′)

)
if x maps to x′

under restriction. The stalks are sets with no additional structure. For example,
the m-dimensional stalk of the sheaf Ω• is the set of germs of smooth differential
forms at the origin in Am.

Remark 3.27. The information contained in a sheaf is essentially the collection of
stalks, one for each nonnegative integer m, and the maps between them induced
from germs of smooth maps between affine spaces.

Remark 3.28. The map F → aF induces an isomorphism on stalks.

Function spaces provide another class of examples of sheaves on manifolds.

Example 3.29 (Function spaces). Let X,Y be smooth manifolds. The space of
smooth maps X → Y may be given the structure of an infinite-dimensional Fréchet
manifold, but we can alternatively work with it as a sheaf F . Namely, for a test
manifold M let F(M) be the set of smooth maps M × X → Y . There are many
variations. For example, if we replace Y by the sheaf Ω1, then F(M) = Ω1(M×X).
Notice that by promoting 1-forms on X to a sheaf, we attach to a test manifold M
1-forms on the product M ×X, not partial 1-forms defined only on tangent vectors
pointing along X.

A first attack on Problem 2.3 might begin by considering the presheaf F which
to a test manifold M assigns

(3.30) F(M) = {isomorphism classes of G-connections on M}

for a fixed Lie group G. Let g be the Lie algebra of G. An element of F(M)
is an equivalence class of principal G-bundles P → M with connection Θ ∈
Ω1(P ; g), where two connections Θ,Θ′ are equivalent if there is a bundle isomor-
phism ϕ : P ′ → P covering the identity map on M such that ϕ∗(Θ) = Θ′. It is
standard to verify that F is a presheaf on manifolds. By contrast, F is not a sheaf.
For consider M = S1 with the open cover U1, U2 ⊂ S1 by the complements of two
distinct points. Then U1 ∩ U2 is diffeomorphic to two disjoint intervals and (3.23)
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reduces to the diagram

F(S1) F(U1) G/G {∗}

F(U2) F(U1 ∩ U2) {∗} {∗, ∗}.

(3.31)

A G-connection on S1 is determined up to isomorphism by the conjugacy class of its
holonomy, from which F(S1) = G/G is the set of conjugacy classes. (Here G acts
on itself by conjugation.) Any connection on an interval is isomorphic to the trivial
connection. Since (3.31) fails to be a pullback diagram, F is not a sheaf.

Isomorphism classes of connections do not glue since connections have automor-
phisms. In the preceding example trivial connections on the intervals U1, U2 can
glue to a nontrivial connection on S1, and this explains the failure of F to be a
sheaf. In the next section we explore techniques for tracking the automorphisms
and so ultimately for gluing connections.

4. Homotopy theory

In this section we come to grips with the following question.

Problem 4.1. What mathematical structure S describes the collection of G-
connections on a fixed manifold M?

Let us first take the simplest case G = Z/2Z, the cyclic group of order two. A
principal Z/2Z-bundle over M is simply a double cover P → M , and it has a unique
connection. So a Z/2Z-connection is a double cover. Problem 4.1 specializes to:
What mathematical structure S encodes all double covers of M? Notice that the
fiber of a double cover consists of two points, which we can think of as the two
points of norm one in a real one-dimensional vector space equipped with an inner
product. Since the space of inner products is contractible—any two are related by
a positive scalar—double covers are “topologically equivalent” to real line bundles.
Thus we are returning to the classification problem at the beginning of §2, only
now for real line bundles in place of real 2-plane bundles. Consider, then, the
Grassmannian Gr1(W ) of lines in any real vector space W , also called the projective
space P(W ). For W infinite dimensional it is a good model for the collection of all
lines, and we might be tempted to take the space of smooth maps M → Gr1(W ) as
the answer to Problem 4.1. But as in §2 there are different ways to make Gr1(W )
an infinite-dimensional manifold, and for none of them is there a 1:1 correspondence
between maps M → Gr1(W ) and real line bundles over M . So we seek a different
approach in which classifying maps are unique.

The nonuniqueness of classifying maps is due to the fact that a double cover P →
M has internal symmetries, namely maps ϕ : P → P which cover the identity
map on M . If M is connected there is a unique nonidentity symmetry, the deck
transformation which flips the sheets of the double cover. We need a mathematical
structure which tracks the symmetries and, more generally, tracks isomorphisms
ϕ : P ′ → P between different double covers. One possibility is to organize double
covers and their isomorphisms into a groupoid.

Definition 4.2. A groupoid G is a category in which every arrow is invertible. Two
groupoids G,G′ are equivalent if they are equivalent categories, i.e., if there exist
functors f : G → G′, g : G′ → G and natural equivalences g ◦ f 
 idG , f ◦ g 
 idG′ .
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We write G = {G0,G1}, where G0 is the collection of objects and G1 the collection
of morphisms. A functor f : G → G′ is an equivalence if and only if it is essentially
surjective and fully faithful. The first condition means that for each x′ ∈ G′

0 there

exists x ∈ G0 and (fx → x′) ∈ G′
1. The second means that for all x, y ∈ G0 the

map f : G(x, y) → G′(fx, fy) is a bijection, where G(x, y) is the set of arrows in G
from x to y.

The following criterion will be useful later. A groupoid G is discrete if for
all x, y ∈ G0 the set G(x, y) is either empty or contains a unique element.

Lemma 4.3. Let G,G′ be discrete groupoids. Then if f : G → G′ is surjective on
objects, it is an equivalence of groupoids.

A set may be regarded as a groupoid with only identity arrows, which in particular
is a discrete groupoid. Conversely, every discrete groupoid is equivalent to a set.

Returning to double covers, let

G0 = G0(M) = collection of double covers π : P → M ;

G1 = G1(M) = collection of commutative diagrams

P ′ ϕ

∼=

π′

P

π

M

.
(4.4)

Isomorphisms of double covers, which comprise G1, are part of the structure.
As an example consider M = S1. The groupoid (4.4) is very large; each double

cover of the circle is a distinct element of G0(S
1). But up to isomorphism there

are only two distinct double covers of the circle. One is the trivial double cover
π0 : S

1 × Z/2Z → S1. Choose a particular nontrivial double cover π1: identify
S1 ⊂ C as the set of complex numbers of unit norm, and let π1 be the squaring
map. Let G′ be the groupoid with G′

0 = {π0, π1} and G′
1 = {idπ0

, idπ1
, ϕ0, ϕ1}.

(Here ϕi is the deck transformation of πi.) There is an inclusion map g : G′ → G,
and we claim it is an equivalence of groupoids. To construct a functor f : G → G′,
for each double cover π : P → S1 choose an isomorphism π → πi for i = 0 or i = 1
according to whether π is trivializable or not. The functor f maps π to πi, and
under the chosen isomorphisms any arrow π → π′ in G maps to either idπi

or ϕi.
The composition f ◦ g is the identity functor on G′, and the chosen isomorphisms
are the data of a natural equivalence from g ◦ f to idG .

Returning to Problem 4.1, it is not enough to simply give a mathematical struc-
ture S. We must also discuss a notion of equivalence 
 between two instances of S,
a relation we term weak equivalence. This is a key point: the solution to Problem 4.1
is a pair (S,
). Now S = Groupoid is a venerable mathematical structure, and
with the notion of equivalence in Definition 4.2 it is a valid solution to Problem 4.1.
For what we do in this paper it is sufficient, and we will use it to good advantage,
but nonetheless we describe a more general solution which applies more broadly.
As one motivation, most of us are much fonder of the geometric notion S = Space
with weak equivalences defined to be (weak) homotopy equivalences. There is a
direct relationship of groupoids and spaces. There is a functor

(4.5) Groupoid −→ Space

which assigns a classifying space to each groupoid; see Definition 4.21 below.
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Theorem 4.6 ([S], Proposition 2.1). Equivalent groupoids map to homotopy equiv-
alent spaces.

If we apply (4.5) to the groupoid G(pt) of double covers of a point, then we obtain
a space homotopy equivalent to the projective space RP

∞ = P(R∞) = Gr1(R
∞) of

the infinite-dimensional real vector space W = R
∞ with the direct limit topology.

Remark 4.7. For M = pt there is a very efficient groupoid G′′ weakly equivalent
to G(pt) with G′′

0 a set with a single element and G′′
1 the cyclic group of order two.

Our solution to Problem 4.1 is a mathematical structure SetΔ called simplicial
set, which sits between groupoid and space: there are functors

SetΔ

Groupoid Space.

(4.8)

We begin with a formal definition, which also explains the notation ‘SetΔ’. Let
Δ be the category whose objects are nonempty totally ordered finite sets and whose
morphisms are order-preserving maps. It is equivalent to a category with one object
for each nonnegative integer.

Definition 4.9. A simplicial set is a functor F : Δop → Set. A map F ′
• → F•

of simplicial sets is a natural transformation of functors. Simplicial sets form a
category SetΔ.

6

If F• is a simplicial set we define the sequence of sets F0, F1, F2, . . . by Fn =
F
(
{0, 1, 2, . . . , n}

)
, whence the bullet subscript in the notation ‘F•’. Intuitively,

Fn is the collection of n-simplices of the simplicial set F•. The order-preserving
maps between the canonical totally ordered sets {0, 1, 2, . . . , n} give the diagram

F0 F1 F2 · · · .(4.10)

The left solid arrows are the n + 1 face maps of an n-simplex. The right dashed
arrows are the n degeneracy maps of an n-simplex. The composition laws in Δ
induce relations among the face and degeneracy maps. We proceed directly to
some illustrative examples, and we recommend [MP, Fr] for expository accounts
and [Cu,Ma,GJ].

Example 4.11 (Groupoids as simplicial sets). Let G = {G0,G1} be a groupoid. The
associated simplicial set F (G)• has F (G)0 = G0 and F (G)1 = G1. In other words,
the 0-simplices of F (G)• are the objects of the groupoid and the 1-simplices are the
arrows. For n > 1 define F (G)n to be the collection of compositions of n arrows

in G1. The two face maps F (G)0 F (G)1 are the source and target maps of

the groupoid, and the degeneracy map F (G)0 F (G)1 assigns the identity

arrow idπ to each object π ∈ G0. There is an elegant formal definition of F (G)•.
An object S ∈ Δ is a category whose objects are the elements of S and there is a
unique morphism s → s′ if s ≤ s′ in S. Then the value of F (G) : Δop → Set on S
is the collection of functors S → G. Since the n-simplices for n > 1 are determined

6The notation derives from that in topology, where BA is the set of maps A → B; lowering
the domain in ‘SetΔ’ to a subscript “dualizes” Δ to the opposite category.
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by the 0- and 1-simplices, the simplicial set determined by a groupoid only carries
information about topology in dimensions zero and one.

Example 4.12 (Discrete simplicial sets). If S is any set, we promote it to a
groupoid G with G0 = G1 = S; there are only identity arrows. By Example 4.11 this
determines a simplicial set S• with Sn = S for all n; all simplices of positive degree
are degenerate. We usually omit the lower bullet in the notation for a constant
simplicial set. If T is a topological space, we can form the discrete simplicial set
of the underlying point set of T . A discrete simplicial set only encodes topology in
dimension zero. Discrete simplicial sets are also called constant simplicial sets.

We can remember more of the topology of a space T by the singular simplicial
set.

Example 4.13 (Spaces as simplicial sets). A space T determines a simplicial
set Sing• T defined by Singn T = Space(Δn, T ), the set of continuous maps of
the standard n-simplex Δn into T . The face and degeneracy maps are induced by
the corresponding maps of standard simplices. The simplicial set Sing• T encodes
topology in all dimensions.

Example 4.14 (Group actions). Let S be a set and G a group which acts on S.
There is a groupoid G• which describes this group action. Namely, the set of objects
is G0 = S and the set of arrows is G1 = G × S: for every s ∈ S and g ∈ G there
is an arrow with source s ∈ G0 and target g · s ∈ G0. The group action defines the
composition of arrows. The corresponding simplicial set is

S G× S G×G× S · · · .(4.15)

Example 4.16. Let X be a smooth manifold and U = {Uα}α∈A an open cover.
There is an associated simplicial set F (U)• which starts off as∐

α0∈A

Uα0

∐
α0,α1∈A

Uα0
∩ Uα1

∐
α0,α1,α2∈A

Uα0
∩ Uα1

∩ Uα2
· · · .(4.17)

There a natural map f : F (U)• → X• to the discrete simplicial set X• defined at
each level by inclusion. The simplicial set F (U)• is derived as in Example 4.11 from
a groupoid G, where Gi = F (U)i, i = 0, 1. The inclusion map f is an equivalence
of groupoids, as follows immediately from Lemma 4.3.

Definition 4.18. Let F• be a simplicial set. Then the set π0(F•) is defined as the
coequalizer of

F0 F1.(4.19)

For example, if F• is the simplicial set associated to the groupoid in Example 4.14,
then π0(F•) is the set of orbits of the G-action on S.

The functor SetΔ → Space in (4.8) is called geometric realization. We briefly
recall the definition [Mi]. Define the standard n-simplex

(4.20) Δn = {(t0, t1, . . . , tn) ∈ A
n+1 : ti ≥ 0, t0 + · · ·+ tn = 1}.

If I ∈ Δ is any nonempty ordered finite set, then it has a unique isomorphism
to 0, 1, . . . , n for some n, and we define Σ(I) = Δn. There is an easy extension to
a functor Σ: Δ → Space.
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Definition 4.21. Let F : Δop → Set be a simplicial set. The geometric realiza-
tion |F•| is the quotient space of the disjoint union

(4.22)
∐
I

Σ(I)× F (I)

by the identifications (θ∗t, x) ∼ (t, θ∗x) for all morphisms θ in Δ.

More concretely, one can replace (4.22) by a disjoint union of Δn×Fn and the maps
in (4.10) give the gluings. In this description Fn parametrizes the set of n-simplices
in |F•|; the face and degeneracy maps tell how to glue them together.

Example 4.23. The geometric realization of the discrete simplicial set built from
a set S (Example 4.12) is canonically isomorphic to S. The geometric realization
of the simplicial set F (U)• associated to a cover of a manifold X is homotopy
equivalent to X with the discrete topology; this follows from the remarks at the
end of Example 4.16 and Theorem 4.6. More interesting are the geometric re-
alizations in Example 4.13 and Example 4.14: the geometric realization of the
simplicial set Sing• T associated to a space T is homotopy equivalent to T (with its
given topology), and the geometric realization of the groupoid built from a discrete
group G acting on a set S is homotopy equivalent to the union over the orbits of
the classifying spaces of the stabilizer subgroups.

Definition 4.24.

(i) A continuous map f : X → Y of topological spaces is a weak homotopy
equivalence if the induced map f∗ : π0X → π0Y is an isomorphism of
sets and f∗ : πn(X, x) → πn(Y, f(x)) is an isomorphism for all n > 0 and
all x ∈ X.

(ii) A map F• → F ′
• of simplicial sets is a weak equivalence if the induced map

|F•| → |F ′
•| of geometric realizations is a weak homotopy equivalence.

This completes the definition of weak equivalence 
 for each of the three categories
in (4.8), and they are compatible in that the image of a weak equivalence is a weak
equivalence.

The simplicial set which describes G-connections on a fixed manifold M is asso-
ciated to the groupoid G(M) defined analogously to (4.4):

G0 = G0(M) = collection of G-connections (π,Θ) where π : P → M,

Θ ∈ Ω1(P ; g) a connection;

G1 = G1(M) = collection of commutative diagrams

P ′ ϕ

∼=

π′

P

π

Mwith ϕ∗Θ = Θ′.

(4.25)

As in Example 4.11 there is an associated simplicial set F•(M). The set of equiva-
lence classes π0F•(M) of 0-simplices is the set of equivalence classes ofG-connections
on M . But, as desired, F•(M) also tracks symmetries of G-connections.

In summary, our response to Problem 4.1 is (SetΔ,
) with the definition of
weak equivalence 
 given in Definition 4.24(ii).
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5. Simplicial presheaves and weak equivalence

We can now address Problem 2.3 by mixing homotopy-theoretical ideas (§4) with
sheaves on manifolds (§3). We begin with the main definitions and then give many
examples to illustrate.

Definition 5.1.

(i) A simplicial presheaf on manifolds (or simplicial presheaf for short) is a
functor

(5.2) F• : Man → SetΔ.

(ii) A simplicial presheaf F• is a simplicial sheaf if for each totally ordered
finite set I ∈ Δ the presheaf of sets F•(I) is a sheaf.

(iii) For m ∈ Z
≥0 the m-dimensional stalk of a simplicial presheaf F• is the

simplicial set

(5.3) colim
r→0

F•
(
Bm(r)

)
,

whereBm(r) ⊂ A
m is the ball of radius r about the origin inm-dimensional

affine space.
(iv) A map F• → F ′

• of simplicial presheaves is a weak equivalence if the
induced map on m-dimensional stalks is a weak equivalence of simplicial
sets for each m.

We may restrict to the canonical totally ordered sets In = {0, 1, . . . , n}, as in (4.10),
and so view a simplicial presheaf F• as a sequence Fn of ordinary presheaves. It
is a simplicial sheaf if each Fn satisfies the sheaf condition in Definition 3.22. The
m-dimensional stalk of F• is the simplicial set whose set of n-simplices is the m-
dimensional stalk of Fn. Constructions for simplicial sets carry over to simplicial
sheaves. For example, a sheaf G of groupoids gives rise to a simplicial sheaf by
applying the construction in Example 4.11 to G(M) for each test manifold M .

Example 5.4 (Discrete simplicial sheaf). Let F : Man → Set be a sheaf of sets
on manifolds. Then as in Example 4.12 + Example 4.11 we can promote F to a

simplicial sheaf F̃• whose value on a test manifold M is the discrete simplicial set
with constant value F(M). We simply denote this simplicial sheaf as F .

Example 5.5 (Representable simplicial sheaves). Recall from (3.4) that a smooth
manifold X gives rise to a sheaf FX . The analogue for simplicial sheaves begins
with a simplicial manifold X•, which is a simplicial set

X0 X1 X2 · · ·(5.6)

in which each Xn is a smooth manifold and all structure maps are smooth. Let
FX• be the simplicial sheaf whose value on a test manifold is the simplicial set

Man(M,X0) Man(M,X1) Man(M,X2) · · · .(5.7)

The simplicial sheaf encodes the topology of the smooth manifolds Xn; the mapping
sets in (5.7) are sets of smooth maps. For example, the 0-dimensional stalk of FX•

is the simplicial set (5.6) and the m-dimensional stalk is the simplicial set of germs
of smooth functions from an m-dimensional ball into the simplicial manifold (5.6).
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As a special case we consider a smooth manifold X as the constant simplicial
manifold

X X X · · · ,(5.8)

where all face and degeneracy maps are identities. The induced simplicial sheaf FX

is the representable sheaf (3.4) promoted to a discrete simplicial sheaf. We empha-
size that each FX(M) is a discrete simplicial set, so is discrete as a function on
totally ordered sets. But as a function of M the simplicial sheaf FX detects the
smooth structure of X.

Let X be a smooth manifold and U = {Uα}α∈A an open cover. The simplicial
manifold (4.17) gives rise to a representable simplicial sheaf (FU )• as in Exam-
ple 5.5. There is a natural map

(5.9) ψ : (FU )• −→ FX

to the discrete simplicial sheaf FX defined by inclusions Uα0
∩ · · · ∩ Uαn

⊂ X.

Proposition 5.10. ψ : (FU )• → FX is a weak equivalence of simplicial sheaves.

Proof. Both the domain and codomain of ψ are sheaves of groupoids. The inclusion
map (5.9) on stalks satisfies the hypotheses of Lemma 4.3, so is an equivalence of
groupoids. (See also Example 4.16.) Then Theorem 4.6 and Definition 4.24 imply
that the associated simplicial sets are weakly equivalent, and so Definition 5.1(iv)
implies that ψ is a weak equivalence of simplicial sheaves. �

We come now to our main example, which is the simplicial sheaf that classifies
principal G-bundles with connection.

Example 5.11 (B∇G). Fix a Lie group G. The simplicial presheaf B∇G of
G-connections assigns to each test manifold M the simplicial set associated the
groupoid (4.25) of G-connections on M . Since connections and isomorphisms of
connections can be glued along open sets, the simplicial presheaf B∇G satisfies the
sheaf condition. If f : M ′ → M is a smooth map of manifolds, then B∇G(f) is the
pullback map on G-connections and their isomorphisms.

Remark 5.12. There is a technical problem with this example and its close cousins

below. Observe that if M ′′ f ′′

−−→ M ′ f ′

−→ M is a composition of smooth maps, and
h : M → R a smooth function, then the pullback is strictly associative:
(f ′ ◦ f ′′)∗h = (f ′′)∗(f ′)∗h. However, the pullback of sets is not strictly associative.
So if E → M is a fiber bundle, then while (f ′ ◦ f ′′)∗E is canonically isomorphic
to (f ′′)∗(f ′)∗E, these two fiber bundles over M ′′ are not equal. This is dealt with
using Grothendieck’s theory of fibered categories or alternatively higher categories.

A useful tool for verifying weak equivalences is the following.

Proposition 5.13. Let ψ : F• → F ′
• be a map of simplicial presheaves such that

ψ(B) : F•(B) → F ′
•(B) is a weak equivalence for every ball B in an affine space.

Then ψ : F• → F ′
• is a weak equivalence.

We must show that ψ induces a weak equivalence on stalks. As a stalk is the
colimit of the values of the simplicial presheaf on balls and ψ is a weak equivalence
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on balls, it suffices to show that this particular colimit7 of weak equivalences is a
weak equivalence.

Now we come to the total space E∇G of the universal G-bundle with connection,
which is the home of the universal G-connection.

Example 5.14 (E∇G). The simplicial sheaf E∇G attaches to any test manifold M
the groupoid of G-connections with trivialization, or rather the associated simplicial
set. So E∇G(M)0 consists of triples (π,Θ, s), where π : P → M is a G-bundle, Θ is
a connection, and s : M → P is a global section of π. The 1-simplices of E∇G(M)
are isomorphisms ϕ : P ′ → P of G-bundles which preserve the connection and triv-
ialization. Higher simplices are compositions of isomorphisms, as in Example 4.11.
Observe that a principal G-bundle with global trivialization is rigid—it has no non-
trivial automorphisms. This means that E∇G is weakly equivalent to a discrete
simplicial sheaf. Specifically, there are inverse weak equivalences

E∇G Ω1 ⊗ g ,(5.15)

where Ω1 ⊗ g is the discrete simplicial sheaf whose value on a test manifold M
is Ω1(M ; g). On M the top arrow assigns to (π,Θ, s) ∈ E∇G(M)0 the 1-form
s∗Θ ∈ Ω1(M ; g), and the bottom arrow assigns to α ∈ Ω1(M ; g) the trivial bundle
π : M ×G → M with identity section s and connection form Θ = α+ θ, where θ is
the Maurer–Cartan form on G. For each test manifold M these maps determine an
equivalence of groupoids (Definition 4.2) E∇G(M) 
 Ω1 ⊗ g(M): the composition
beginning on the right is the identity, and in the other direction a section s of a
principal bundle P → M determines an isomorphism with the trivial bundle. It
follows from Proposition 5.13 that (5.15) are weak equivalences of simplicial sheaves.

The notion of a smooth Lie group action on a manifold generalizes to sheaves.

Definition 5.16. Let G be a Lie group and F a sheaf. A G-action on F is a
smooth map

(5.17) a : FG ×F → F
which satisfies the action property: on any test manifold M , the sheaf map a defines
an action of the group FG(M) = Man(M,G) on the set F(M).

As in Example 4.14 there is an associated action groupoid and so simplicial sheaf

F G×F
p1

p0

G×G×F · · · ,(5.18)

where for convenience we write ‘G’ in place of ‘FG’. The map p0 is projection and
p1 is the action map (5.17).

Example 5.19 (Btriv
∇ G). There is a simplicial presheaf of trivializable G-bundles

with connection, but since “trivializable” is not a local condition it is not a simplicial
sheaf. It is the sub-simplicial presheaf of B∇G whose value on a test manifold M
consists of pairs (π,Θ) such that π : P → M admits sections (but no section is
specified). We replace it by a more explicit simplicial presheaf which is a simplicial
sheaf. Observe that if π : P → M is a principal G-bundle with global trivialization
s : M → P , then any other global trivialization is given by s·g : M → P for a unique
g : M → G. Now the set of smooth maps M → G is the value of the sheaf FG of

7The colimit of weak equivalences is a weak equivalence for arbitrary filtered colimits.
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groups on the test manifold M ; see (3.4). Under the equivalence (5.15) the action
of g : M → G on α ∈ Ω1(M ; g) is given by the formula

(5.20) α · g = g∗θ +Adg−1 α = g−1dg + g−1αg.

Here θ is the Maurer–Cartan form on G, and the last expression is valid only for
matrix groups. So let Btriv

∇ G be the simplicial sheaf

Ω1 ⊗ g G× (Ω1 ⊗ g) G×G× (Ω1 ⊗ g) · · · ,(5.21)

where for convenience we write ‘G’ in place of ‘FG’. The first two solid arrows
in (5.21) are

α
g∗θ +Adg−1 α g, α.(5.22)

Note that Btriv
∇ G is a sheaf of groupoids, the action groupoid of G acting on Ω1⊗g.

The next result will enable us to make explicit computations with B∇G in §8.
Define a map

(5.23) ψ : Btriv
∇ G −→ B∇G

as the following map of sheaves of groupoids. On a test manifold M it maps an
element α ∈ Ω1(M ; g) to the trivial bundle π : M ×G → M with connection form
Θ = α + θ. A map g : M → G induces an isomorphism of the trivial bundle with
connection α+θ to the trivial bundle with connection α ·g+θ, where α ·g is defined
in (5.20).

Proposition 5.24. ψ : Btriv
∇ G → B∇G is a weak equivalence of groupoids, hence

of simplicial sheaves.

Proof. We apply Proposition 5.13. On a ball B any principal bundle is trivializable,
so ψ(M) is essentially surjective. Given α, α′ ∈ Ω1(M ; g) the set of g : M → G such
that α′ = α · g is in bijection with automorphisms of the trivial bundle which map
α+ θ to α · g + θ, whence ψ(M) is fully faithful. �

We now state our solution to Problem 2.3. Up to the weak equivalences (5.15)
and (5.23) the group G (as a simplicial presheaf) acts freely on E∇G with quo-
tient B∇G, so E∇G → B∇G is a principal G-bundle. Further, there is a canonical
g-valued 1-form on E∇G, that is, a canonical map

(5.25) Θuniv : E∇G → Ω1 ⊗ g,

which is simply the top arrow in (5.15). We call Θuniv the universal G-connection.
That appellation is justified by the following result.

Proposition 5.26. Let π : P → X be a principal G-bundle with connection Θ ∈
Ω1(P ; g). Then there is a unique classifying map

P
f

π

E∇G

X
f̄

B∇G

(5.27)

such that f∗Θuniv = Θ.
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In (5.27) we promote P and X to discrete simplicial presheaves. As expected, the
construction is completely tautological.

Proof. Let π̃ : P̃ → P denote the pullback of π : P → X by π, and Θ̃ = π∗Θ the
pullback connection form on P̃ . There is a canonical section s̃ : P → P̃ of π̃. The
triple (π̃ , Θ̃ , s̃) is a 0-simplex in E∇G(P ). On a test manifold M define

(5.28)
Man(M,P )

f(M)−−−→ E∇G(M)

(φ : M → P ) �−→ φ∗(π̃ , Θ̃ , s̃).

Unwinding the definitions, we verify f∗Θuniv = Θ. The uniqueness is clear. �

6. Abstract homotopy theory

We are now in a situation best captured by “abstract homotopy theory”, or “ho-
motopical algebra” ([Q1]). We have a category C (in our case simplicial presheaves)
and a collection W of maps in C we are calling weak equivalences. These weak
equivalences are not isomorphisms, but we wish to think of them as being so. We
therefore focus on the invariants of weak equivalence, or more precisely functors

(6.1) F : C −→ D
with the property that if X → Y is a weak equivalence in C then FX → FY
is an isomorphism in D. There is a universal such functor L : C → ho C called
the localization of C with respect to W. It is characterized uniquely up to unique
isomorphism by the following universal property: for every category D and every
functor F : C → D taking the maps in W to isomorphisms, there is a unique functor
ho C → D making the diagram

C

F

L
ho C

D

(6.2)

commute.

Remark 6.3. Another common notation for ho C is W−1C. Our choice of ‘ho C’,
and the nomenclature ‘homotopy category’ we adopt for it, emerges in Example 6.5
below.

The localization ho C is constructed by freely adding to C, for each f ∈ W , a
new morphism f−1, and imposing the relations f−1 ◦ f = id and f ◦ f−1 = id. The
issue then becomes to somehow describe the new collection of maps

(6.4) ho C(X,Y )

for each X,Y ∈ C. In general, there is not a guarantee that this is even a set.
Let us look at some examples.

Example 6.5. Suppose first that C is the category of CW complexes, and thatW is
the collection of maps which are weak homotopy equivalences, i.e., maps f : X → Y
with the property that for each point x ∈ X the map of homotopy groups

(6.6) πn(X, x) −→ πn(Y, f(x))

is a bijection for all n ≥ 0 (Definition 4.24). Let πC be the homotopy category of
C: the set of maps πC(X,Y ) is the quotient of C(X,Y ) by the equivalence relation
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which identifies homotopic maps. By the Whitehead Theorem, weak equivalences
between CW complexes are homotopy equivalences, so the maps in W are sent to
isomorphisms in πC. The universal property of ho C then provides a unique functor

(6.7) ho C −→ πC

factoring the quotient C → πC. On the other hand, the inclusions

(6.8)
X × {0} −→ X × [0, 1],

X × {1} −→ X × [0, 1]

are in W , so homotopic maps in C go to the same map in ho C. This shows that
the functor C → ho C factors uniquely through πC. It follows that (6.7) is in fact an
isomorphism of categories. Thus the maps in ho C in this case may be calculated
as homotopy classes of maps.

The terminology of homotopical algebra [Q1] is borrowed from this example. In
the language of abstract homotopy theory, the class of maps W is called the class
of “weak equivalences” and the category ho C is called the “homotopy category”
of C. We will now use this terminology. Often there is a notion of “homotopy”
floating around in C, and we will use the symbol ‘π(X,Y )’ to denote the quotient
of C(X,Y ) by the equivalence relation generated by homotopy. Generally one hopes
to describe ho C(X,Y ) in terms of π(X,Y ).

Example 6.9. Let us look at another example. Let R be a ring and ChainR the
category of nonnegatively graded chain complexes

(6.10) −→ Cn
d−−→ Cn−1 −→ · · · −→ C0.

We take the class of weak equivalences W to be the class of maps inducing an
isomorphism of homology groups. The notion of homotopy we have floating around
is that of chain homotopy, and we define π(X,Y ) to be the set of chain homotopy
classes of maps from X to Y . Let I denote the chain complex of free abelian groups
whose only nonzero terms are in degrees 0 and 1, and in those degrees is given by

(6.11)
Z{h} −→ Z{e0, e1}

h �−→ e1 − e0.

Then a chain homotopy is a map X ⊗ I → Y . Now the two maps

(6.12) X ⊗ Z{ei} −→ X ⊗ I

are weak equivalences, so chain homotopic maps are identified in hoChainR. This
provides a natural map π(X,Y ) → hoChainR(X,Y ). By basic homological al-
gebra, if X is a chain complex of projective R-modules and Y → Z is a weak
equivalence then π(X,Y ) → π(X,Z) is an isomorphism. Thus in this case the
functor

(6.13) π(X, − ) : ChainR −→ Ab

factors through hoChainR. By the Yoneda lemma, the identity map ofX, regarded
as an element of π(X,X), gives a natural (in Y ) map hoChainR(X,Y ) → π(X,Y ).
It is straightforward to check that the composites are both the identity. So when
X is a complex of projectives, then hoChainR(X,Y ) is given by π(X,Y ). For a
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general X one can always find a weak equivalence X̃ → X from a complex of pro-
jectives to X (a projective resolution). One then has the sequence of isomorphisms

(6.14) hoChainR(X,Y ) ≈ hoChainR(X̃, Y ) ≈ π(X̃, Y ).

Turning to the case of interest to us, let sPre be the category of simplicial
presheaves (or, equivalently, presheaves of simplicial sets) on the category Man
of smooth manifolds. Recall Definition 5.1(iv): a map F• → F ′

• of simplicial
presheaves is a weak equivalence if the induced map of stalks is a weak equivalence
of simplicial sets.

We begin our analysis of ho sPre(F•,F ′
•) with the special case in which F ′

• = F ′

is a sheaf, regarded as a constant simplicial presheaf. Write π0F• for the sheaf
associated to the presheaf

(6.15) M �−→ π0

(
F•(M)

)
,

so that π0F• is the sheaf associated to the presheaf obtained as the coequalizer of

F1

d0

d1

F0.(6.16)

(See Definition 4.18.) Two facts about π0 follow readily from the definition. One is

that a weak equivalence F̃• → F• induces an isomorphism π0F̃• → π0F•, so that
π0 defines a functor on ho sPre. The other is that the set of maps of simplicial
presheaves

(6.17) F• −→ F ′

is naturally isomorphic to the set of sheaf maps

(6.18) π0F• −→ F ′.

From this it follows that

(6.19) F• �−→ sPre(F•,F ′)

factors through ho sPre, and as in our analysis of chain complexes, that the map

(6.20) sPre(F•,F ′)
∼=−−−→ ho sPre(F•,F ′)

is a bijection.
Now suppose that F ′

• = P is a presheaf, regarded as a constant simplicial
presheaf, and let aP be the associated sheaf. Then the canonical map P → aP is
a weak equivalence (it is an isomorphism on stalks, as stated in Remark 3.28). It
follows that one may compute ho C(F•,P) via the isomorphisms

(6.21) ho sPre(F•,P) ≈ ho sPre(F•, aP) ≈ sPre(F•, aP ).

Summarizing, we have

Proposition 6.22. Let P be a presheaf, regarded as a constant simplicial presheaf,
and aP be the associated sheaf. Then for any F• ∈ sPre, the maps

(6.23) ho sPre(F•,P) ≈ ho sPre(F•, aP) ≈ sPre(F•, aP)

are isomorphisms. In particular, if P = F ′ is a sheaf, regarded as a constant
simplicial presheaf, then the map

(6.24) sPre(F•,F ′) −→ ho sPre(F•,F ′)

is an isomorphism.



452 D. S. FREED AND M. J. HOPKINS

Note that the domain sPre(F•,F ′) of (6.24) is the equalizer of

Pre(F0,F ′) Pre(F1,F ′).(6.25)

Remark 6.26. If P is a constant simplicial presheaf, then π0P is just the associ-
ated sheaf aP. When P and P ′ are presheaves, regarded as constant simplicial
presheaves, Proposition 6.22 therefore provides an isomorphism

(6.27) sPre(aP, aP ′) ≈ ho sPre(P,P ′).

Put differently, the homotopy theory of simplicial presheaves knows about sheaves,
so even if we were only interested in sheaves and presheaves, working in the ho-
motopy theory of simplicial presheaves incorporates the fundamental relationship
between them. This highlights one role played by abstract homotopy theory. It
can be used to locate objects constrained by algebraic conditions, like the sheaf
condition, within a broader context more suitable for doing homotopy theory.

Proposition 6.22 computes the maps in the homotopy category of presheaves
when the codomain is a constant simplicial presheaf. This is what is used in the
remainder of this paper. A general formula is the content of the Verdier Hyper-
covering Theorem. We do not attempt a complete exposition, and the reader may
skip the remainder of this section without penalty.

We begin with a motivating example.

Example 6.28. Let X be a smooth manifold and FX the associated discrete
simplicial sheaf. A map FX → Btriv

∇ G is a connection on the trivial G-bundle
over X. Let U be an open cover of X and (FU )• the associated representable
simplicial sheaf. Then a map (FU )• → Btriv

∇ G is a G-bundle with connection on X
together with a trivialization on each open set of the cover. Homotopic maps give
isomorphic G-bundles with connection. Since any principal G-bundle admits local
trivializations, the colimit

(6.29) colim
U

π
(
(FU )•, B

triv
∇ G

)
≈ ho sPre

(
FX , B∇G

)
over all open covers U is in bijection with the set of isomorphism classes of G-
connections on X. Then applying Proposition 5.24, we deduce an isomorphism

(6.30) colim
U

π
(
(FU )•, B

triv
∇ G

)
≈ ho sPre(FX , Btriv

∇ G).

This is a special case of the Verdier theorem in which covers, rather than hyper-
covers, suffice to compute maps in the homotopy category.

We now state the general result. LetHypercovF• be the category of hypercovers
of a simplicial presheaf F• and (simplicial) homotopy classes of maps. Given a
simplicial presheaf F ′

•, form

(6.31) π′(F•,F ′
•) = colim

U•∈HypercovF•

π(U•,F ′
•).

Since each hypercovering U• → F• is a weak equivalence, there is a natural map

(6.32) π′(F•,F ′
•) −→ ho sPre(F•,F ′

•).

Theorem 6.33 (Verdier hypercovering theorem). If F ′
• is stalkwise a Kan complex,

then the map

(6.34) π′(F•,F ′
•) −→ ho sPre(F•,F ′

•)

is a bijection.
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The Verdier hypercovering theorem is an elaboration of Verdier’s Théorème 7.4.1
in [SGA]. It was originally formulated in the above manner in the thesis of Ken
Brown [Br] (see specifically Example 2, Theorem 1, and Theorem 2). It was further
extended and refined by Jardine (see [J] and the references therein).

Remark 6.35. The Verdier hypercovering theorem contains, as a special case, a
formula for describing aP in terms of P.

Abstract homotopy theory was introduced by Quillen in [Q1] and [Q2] under the
name of “Model Categories”. His original applications were to finding an algebraic
model for rational homotopy theory and for defining the “cotangent complex” of a
map of commutative rings, which plays the role of the cotangent bundle when the
map is not smooth. In the original applications the emphasis was on the systematic
comparison of resolutions, and alongside the weak equivalences Quillen specified
two further collections of maps, the cofibrations and fibrations, and some properties
relating the three classes. In terms of these he defined a notion of homotopy, and
produced the general formula

(6.36) ho C(X,Y ) ≈ π(X ′, Y ′).

Here X ′ is an object equipped with a weak equivalence X ′ → X and having the
property that the unique map it receives from the initial object ∅ → X is a cofi-
bration, Y ′ is an object equipped with a weak equivalence Y → Y ′ and having the
property that its unique map Y ′ → ∗ to the terminal object is a fibration, and
π(X ′, Y ′) is the quotient of C(X ′, Y ′) by the relation of homotopy. One thinks of
X ′ as analogous to a projective resolution of X and Y ′ as analogous to an injective
resolution of Y . The use of homotopical algebra to implement algebraic structures
originates in the work of Bousfield [Bo1,Bo2] and plays an important role in the
study of the moduli spaces of interest in homotopy theory. The special role played
by the weak equivalences was apparent early on, but it was Kan et al. [DHKS] who
undertook to do homotopical algebra solely with the weak equivalences. A good
introduction to Model Categories can be found in [DS].

7. The de Rham complex of B∇G

At last the abstractions and tautologies give way to theorems.

Definition 7.1. Let F• be a simplicial presheaf. The de Rham complex of F• is

ho sPre
(
F• , Ω0 d−→ Ω1 d−→ · · ·

)
∼= ho sPre(F•,Ω

0)
d−→ ho sPre(F•,Ω

1)
d−→ · · · .

(7.2)

By Proposition 6.22 each term in the complex (7.2) can be computed as an equal-
izer (6.25):

ho sPre(F•,Ω
n) = ker

{
Ωn(F0)

ρ0

ρ1

Ωn(F1)

}
,(7.3)

where ρ0, ρ1 are induced from the structure maps F0 F1
p1

p0

.

Remark 7.4. It follows from Definition 7.1 that weakly equivalent simplicial
presheaves have isomorphic de Rham complexes. Therefore, the de Rham com-
plex is a homotopy invariant. Below we compute the de Rham complex of B∇G
using a convenient weakly equivalent simplicial presheaf, based on Proposition 5.24.
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Proposition 7.5. Suppose a Lie group G acts on a sheaf F . Then the de Rham
complex of the associated simplicial sheaf

F G×F
p1

p0

G×G×F · · ·(7.6)

is the equalizer

ker

{
Ω•(F)

ρ0

ρ1

Ω•(G×F)

}
.(7.7)

This is immediate from (7.3).
The equalizer of ρ0 and ρ1 has an interpretation as the basic subcomplex

Ω•(F)bas ⊂ Ω•(F), which we now define. We begin by reviewing some standard
constructions in de Rham theory. Suppose G is a Lie group which acts smoothly
on a manifold X. Then the infinitesimal action associates to each ξ ∈ g = Lie(G)

a vector field ξ̂ on X, and so a contraction operator

(7.8) ιξ̂ : Ω
•(X) → Ω•−1(X)

of degree −1 and a Lie derivative

(7.9) Lξ̂ : Ω
•(X) → Ω•(X)

of degree 0. They are related by Cartan’s formula Lξ̂ = dιξ̂ + ιξ̂d. Replace X by a

sheaf F . Fix ω ∈ Ω•(F). Then for any test manifold M and φ ∈ F(M), we obtain
ω(M,φ) ∈ Ω•(M). The action a determines a map

(7.10) G×M
id×φ−−−−→ G×F a−−−−→ F ω−−−−→ Ω•,

which is the differential form η = a∗ω(G×M, id×φ) ∈ Ω•(G×M). (As usual we
write ‘G’ for ‘FG’.) For ξ ∈ g define ιξω ⊂ Ω•−1(F) by

(7.11) ιξω(M,φ) = ιξ̄η
∣∣
{e}×M

,

where ξ̄ is the vector field on G × M defined by ξ (it points along the G-factor)
and e ∈ G is the identity element. The Lie derivative Lξω is defined by a formula
similar to (7.11):

(7.12) Lξω(M,φ) = Lξ̄η
∣∣
{e}×M

.

The Lie derivative and contraction satisfy Cartan’s formula.

Definition 7.13. Suppose a Lie group G acts on a sheaf F . Then the differential

form ω ∈ Ω•(F) is basic if (i) a∗ω
∣∣
{g}×F= ω for all g ∈ G, and (ii) ιξω = 0 for

all ξ ∈ g.

Note that (i) is the condition that ω be G-invariant. The differential of a basic form
is basic, so basic forms comprise a subcomplex Ω•(F)bas ⊂ Ω•(F). Condition (ii)
can be rephrased in terms of a global condition on G×F .

Proposition 7.14. The equalizer (7.7) is the basic subcomplex Ω•(F)bas.

Proof. Recall that p0 is projection and p1 is the action map a; then ρ0, ρ1 are the
respective pullbacks. We claim that for any (test) manifold M a form ω ∈ Ω•(M)
is basic if and only if p∗0ω = p∗1ω ∈ Ω•(G×M), where p0 : G×M → M is projection
and p1 : G×M → M is the action. We make two remarks to aid the reader in the

verification. First, an element ξ ∈ g induces a vector field ξ̂ on M and a vector
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field ξ̄ on G×M , and these vector fields are “related” by the action map p1: in other

words, (p1)∗(ξ̄) = ξ̂. It follows that for any ω ∈ Ω•(M), we have ιξ̄p
∗
1ω = p∗1ιξ̂ω.

Second, a form η ∈ Ω•(G×M) is pulled back from M if and only if η is G-invariant
and ιξ̄η = 0 for all ξ ∈ g. �

We introduce the following standard differential graded algebra.

Definition 7.15. Let V be a real vector space. Then the Koszul complex Kos• V
built on V is the differential graded algebra

(7.16) Kos• V =
∧•

V ⊗ Sym• V

with differential

(7.17) dK(v) = ṽ, dK(ṽ) = 0, v ∈ V =
∧1

V, ṽ ∈ V = Sym1 V.

Here ‘ṽ’ denotes v ∈ V regarded as an element of Sym1 V . Note that Kos• V is
generated by V =

∧1V as a differential graded algebra. We grade the generators by

deg
∧1

V = 1; it follows that deg Sym1 V = 2. It is a standard result that Kos• V
has trivial cohomology:

(7.18) H•(KosV, dK) = R.

This follows for finite-dimensional V (which is all we need) from the isomorphism
Kos•(V1 ⊕ V2) ∼= Kos• V1 ⊗Kos• V2 and the case when V is one dimensional.

Our first result is the following.

Theorem 7.19. The de Rham complex of E∇G is
(
Kos• g∗, dK

)
.

It follows from (7.18) that the de Rham cohomology of E∇G is that of a contractible
manifold. Kos• g∗ is called the Weil algebra of the Lie algebra g. Henri Cartan [C1,
C2] used the Weil algebra as a model for the cohomology of any realization of EG
as a space. The novelty here is that the Weil algebra is precisely the de Rham
complex of the generalized manifold E∇G.

Next we state the solution to Problem 2.4.

Theorem 7.20. The de Rham complex of B∇G is
(
(Sym•

g∗)G, d = 0
)
.

Here Sym•(g∗)G is the space of Ad-invariant polynomials on g, graded by twice the
degree, and the de Rham differential vanishes on B∇G. The classical Chern–Weil
homomorphism [CS] is an injection

(7.21)
(
(Sym•

g∗)G, d = 0
)
−→

(
Ω•(B∇G), d

)
.

Namely, given an invariant polynomial of degree k on g we apply it to the curvature
of a G-connection to obtain a closed 2k-form, and this construction is local and nat-
ural. Theorem 7.20 asserts that Chern–Weil forms are the only natural differential
forms attached to a G-connection.

The proofs of Theorem 7.19 and Theorem 7.20 are given in §8.
Let X be a smooth manifold with a left action of the Lie group G. The Borel

quotient, or homotopy quotient, of X is usually defined as XG = EG×G X, where
EG is a contractible space on which G acts freely, and XG is the quotient of EG×X
by the diagonal G-action. We mimic this construction in the world of simplicial
sheaves.

Definition 7.22. The simplicial Borel quotient of X by G is the simplicial sheaf
representing the action of G on E∇G×X.
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Using the equivalence (5.15) of E∇G with Ω1 ⊗ g, the simplicial Borel quotient is
equivalent to the simplicial sheaf (XG)∇ indicated in the diagram (cf. (5.21))

(Ω1 ⊗ g)×X G× (Ω1 ⊗ g)×X G×G× (Ω1 ⊗ g)×X · · · .(7.23)

The first two solid arrows in (7.23) are

(α, x)
(g∗θ +Adg−1 α, g−1 · x) (g, α, x).(7.24)

Note that (XG)∇ is a sheaf of groupoids.
To state the next theorem we need a preliminary lemma about the Weil alge-

bra. The coadjoint action Ad∗ of G on g∗ induces an action of G on the Weil
algebra Kos• g∗.

Lemma 7.25. For each ξ ∈ g, the action (5.21) of G on Ω1⊗ g induces a contrac-
tion ιξ on Ω•(Ω1 ⊗ g) ∼= Kos• g∗ which satisfies

(7.26)
ιξλ = 〈ξ, λ〉, λ ∈ g

∗ =
∧1

g
∗,

ιξλ̃ = −Ad∗ξ λ, λ̃ ∈ g
∗ = Sym1

g
∗,

on generators.

We defer the proof to §8.

Remark 7.27. The contraction (7.26) is usually a definition ([C1], [C2], [MQ, §5],
[GS, §3.2]). In our approach with sheaves it is a computation from the general
definition (7.11).

Theorem 7.28.

(i) For any smooth manifold X the de Rham complex of X × (Ω1 ⊗ g) is
Ω(X; Kos g∗)• with differential the sum of the de Rham differential dX
on X and the Koszul differential dK in (7.17).

(ii) The de Rham complex of the simplicial Borel quotient (XG)∇ in (7.23) is
the basic subcomplex of Ω(X; Kos g∗)• with differential dX + dK .

Part (i) would follow immediately from Theorem 7.19 if we prove that the de Rham
complex of a Cartesian product of sheaves is the (completed) tensor product of the
de Rham complexes of the factors. We give a direct proof in §8. Part (ii) is an im-
mediate corollary of part (i) and Proposition 7.14. The complex in Theorem 7.28(ii)
is the Weil model for equivariant cohomology; see [C1], [C2], [AB, §4], [MQ, §5],
[GS, §4]. We realize it precisely as the de Rham complex of a generalized manifold,
the simplicial sheaf (XG)∇.

8. Proofs

We prove the following slight generalization of Theorem 7.19. (Recall the weak
equivalence (5.15).)

Theorem 8.1. Let V be a finite-dimensional real vector space. Then the de Rham
complex of Ω1 ⊗ V is (Kos• V ∗, dK).

More precisely, we define a homomorphism of differential graded algebras

(8.2) η : Kos• V ∗ −→ Ω•(Ω1 ⊗ V )
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as follows. To � ∈ V ∗ =
∧1V ∗ we assign the 1-form η(�) : Ω1⊗V → Ω1 characterized

by

η(�) :
∑
i

αi ⊗ vi �−→
∑
i

〈vi, �〉αi, αi ∈ Ω1, vi ∈ V.(8.3)

This determines the entire homomorphism η. For example, it follows that

η(�1 ∧ �2) = η(�1) ∧ η(�2) :
∑
i

αi ⊗ vi �−→
∑
i,j

〈vi, �1〉〈vj , �2〉αi ∧ αj ,(8.4)

η(�̃) = dη(�) :
∑
i

αi ⊗ vi �−→
∑
i

〈vi, �〉 dαi.(8.5)

Recall from (7.17) the notation �̃ ∈ V ∗ = Sym1 V ∗. Notice that the map Ω1⊗V →
Ω• attached to an element of Kos• V ∗ is polynomial but not usually linear. Also,
these formulas are most easily understood by pulling back to a test manifold M via
a map M → Ω1 ⊗ V , in which case αi ∈ Ω1(M). Theorem 8.1 asserts that η is an
isomorphism.

We present the proof of Theorem 8.1 as a series of lemmas. Recall that if E → M
is a vector bundle, then for each integer q ≥ 0 there is an associated bundle of
q-jets JqE → M defined as follows. Let Ip ⊂ C∞(M) denote the ideal of functions
that vanish at p. Then the fiber of JqE at p is Ω0(M ;E)/Iq+1

p Ω0(M ;E), the
quotient of the space of sections of E by the space of sections that vanish at p to
order ≥ q + 1. An element ω ∈ Ωq(Ω1 ⊗ V ) is, for each test manifold M , a map of
sets ωM : Ω1(M ;V ) → Ωq(M), functorial in M .

Lemma 8.6. Fix ω ∈ Ωq(Ω1 ⊗ V ). For α ∈ Θ1(M ;V ) the value of ωM (α) at a
point p ∈ M depends only on the q-jet of α at p.

Proof. Assume first q = 0 and α ∈ Ω1(M ;V ). Let ip : {p} ↪→ M denote the in-

clusion. Then the presheaf property (naturality) implies ωM (α)
∣∣
p
= i∗pωM (α) =

ω{p}(i
∗
pα) = ωpt(0) = ωM (0)

∣∣
p
. Thus ωM (α) is a constant function on M indepen-

dent of α (so does not even depend on the 0-jet of α).
Now let q > 0. Naturality implies that if iU : U ↪→ M is the inclusion of a neigh-

borhood of p and α1, α2 ∈ Ω1(M ;V ) satisfy i∗Uα1 = i∗Uα2, then i∗UωM (α1) =
ωU (i

∗
Uα1) = ωU (i

∗
Uα2) = i∗UωM (α2). In other words, i∗UωM (α) depends only

on i∗Uα. Next, we claim that ωM (0) = 0. For we have just proved that if p ∈ M ,

the value of ωM (0)
∣∣
p
can be computed by restricting to a neighborhood of p, which

we may as well assume is a neighborhood of the origin in affine m-space Am. Then
since the 1-form α = 0 is invariant under the linear group GLmR acting on Am

fixing the origin, so too is the q-form ωM (0)
∣∣
p=0∈Am∈

∧q
(Rm)∗. Since q > 0 the

only GLmR-invariant q-form is zero.
Suppose that α1, α2 ∈ Ω1(M ;V ) have identical q-jets at p ∈ M , so for some

functions f0, f1, . . . , fq which vanish at p and some β ∈ Ω1(M ;V ), we have

(8.7) α2 = α1 + f0f1 · · · fqβ.

Let α̃i, β̃ be the pullbacks of αi, β to M×Aq+1, and let t0, t1, . . . , tq be the standard

coordinates on Aq+1. Then αi, f0f1 · · · fqβ are the pullbacks of α̃i, t0t1 · · · tqβ̃ via
the map idM × (f0, f1, . . . , fq) : M → M × Aq+1. Observe that this map sends p



458 D. S. FREED AND M. J. HOPKINS

to (p, 0). By naturality it suffices to show that

(8.8) ωM×Aq+1(α̃2)
∣∣
(p,0)

and ωM×Aq+1(α̃1 + t0t1 · · · tqβ̃)
∣∣
(p,0)

agree as q-forms on TpM × Rq+1. Decomposing with respect to the standard
basis of Rq+1 and using multilinearity, we see8 that it suffices to evaluate the
q-forms (8.8) on q-vectors which have vanishing component along the ith axis
in R

q+1 for some i. By naturality those evaluations can be made by restricting
the forms ω(α̃2) and ω(α̃1+ t0t1 · · · tqβ̃) to the submanifold Ni ⊂ M×Aq+1 defined

by ti = 0. But these q-forms agree on Ni, since the 1-forms α̃2 and α̃1+ t0t1 · · · tqβ̃
restrict to equal 1-forms on Ni. �

Lemma 8.6 implies that ω ∈ Ωq(Ω1 ⊗ V ) is determined by its value at the origin

of vector spaces W ∈ Man, and furthermore for α ∈ Ω1(W ;V ) the value of ωW (α)
at the origin of W is computed by a map (of sets)

(8.9) ω̃W : Jq(W ;W ∗ ⊗ V ) −→
∧qW ∗,

where Jq(W ;W ∗ ⊗ V ) is the finite-dimensional vector space of q-jets of elements
of Ω1(W ;V ) at the origin. Furthermore, (8.9) is functorial in W , in particular for
linear maps. Let Vect be the category of finite-dimensional real vector spaces and
linear maps. Then

(8.10)
W �−→ Jq(W ;W ∗ ⊗ V )

W �−→
∧qW ∗

are polynomial functors Vectop → Vect, and the first is reduced. (See Appendix A
for definitions.) The map (8.9) is a set-theoretic transformation between these two
functors. The following statement is then a direct consequence9 of Theorem A.26.

Lemma 8.11. The map ω̃W is a polynomial of degree ≤ q.

Next, use the isomorphism

(8.12) Jq(W ;W ∗ ⊗ V ) ∼=
q⊕

j=0

(
Symj W ∗ ⊗W ∗ ⊗ V

)
to write the polynomial ω̃W (8.9) as a linear map

(8.13) TW :

q⊕
i=0

Symi

⎛⎝ q⊕
j=0

(
Symj W ∗ ⊗W ∗ ⊗ V

)⎞⎠ −→
∧q

W ∗.

Lemma 8.14 (Weyl). A nonzero GL(W )-invariant linear map
⊗N

W ∗ →
∧q

W ∗

has N = q and is a multiple of the antisymmetrization map.

Proof. That N = q follows from invariance under the scaling subgroup R× ⊂
GL(W ). A theorem of Weyl asserts that ⊗qW ∗ is a direct sum of irreducible
representations of GL(W ) of multiplicity one. Antisymmetrization is an equivariant
map ⊗qW ∗ →

∧qW ∗, so any other map must be a multiple of it. �

Lemma 8.15. TW factors through
⊕q

i=0 Sym
i
(
W ∗ ⊗ V ⊕

∧2
W ∗ ⊗ V

)
.

8Proposition A.9 is a general abstraction of this assertion.
9As Theorem A.26 applies to covariant functors, and (8.10) are contravariant, precompose with

the contravariant functor W �→ W ∗ before applying the theorem.
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Proof. Naturality implies that (8.13) is invariant under GL(W ). The domain of TW

is a direct sum of quotients of subspaces U of vector spaces of the form (
⊗k

W ∗)⊗
(
⊗	 V ) for some k, �. By Weyl’s theorem any equivariant map must have k = q and
be a multiple of antisymmetrization

⊗q W ∗ →
∧qW ∗ tensored with a multilinear

form on V . The restriction of (8.13) to terms with j ≥ 2 must vanish since for these

terms the lift of (8.13) to a map U ⊂ (
⊗k

W ∗)⊗ (
⊗	

V ) →
∧q

W ∗ has k ≥ 2 and
would be symmetric in at least two of the factors of W ∗ in the domain, whereas
antisymmetrization is completely antisymmetric. Similarly, for j = 1 it must factor

through the quotient
∧2

W ∗ of W ∗ ⊗W ∗. �

It follows from Lemma 8.15 that for each finite-dimensional real vector space W
there is a linear map
(8.16)

LW : Ω•(Ω1 ⊗ V ) −→ HomGL(W )

(
Sym

(
W ∗ ⊗ V

)
⊗ Sym

(∧2W ∗ ⊗ V
)
;
∧•W ∗

)
,

where Sym denotes the entire symmetric algebra. As W varies, both of

(8.17)
F1 : W �−→ Sym

(
W ∗ ⊗ V

)
⊗ Sym

(∧2W ∗ ⊗ V
)
,

F2 : W �−→
∧•W ∗

are polynomial functors Vectop → Vect, and (8.16) defines a linear map L from
Ω•(Ω1 ⊗ V ) to the vector space of natural transformations F1 → F2. Recall the
linear map η in (8.2).

Lemma 8.18. L ◦ η is injective.

Proof. The Koszul algebra Kos• V ∗ is doubly graded with homogeneous compo-
nents

(8.19) Kosp,q V ∗ =
∧pV ∗ ⊗ Symq V ∗, p, q ∈ Z

≥0.

Identify Kosp,q V ∗ with the space of multilinear maps φ : V ×(p+q) → R which are
skew-symmetric in the first p arguments and symmetric in the last q arguments.
The codomain A of L is doubly graded with homogeneous components

(8.20)

Ap,q(W ) = HomGL(W )

(
Symp

(
W ∗ ⊗ V

)
⊗ Symq

(∧2
W ∗ ⊗ V

)
;
∧p+2q

W ∗
)
,

p, q ∈ Z
≥0.

(Invariance under scaling dictates the degree p+ 2q.) The map L ◦ η preserves the
bigrading. Fix a bidegree p, q. The image of a multilinear map φ ∈ Kosp,q V ∗ under
LW ◦ η is the multilinear map

(8.21)

[w∗
1 ⊗ v1], . . . , [w

∗
p ⊗ vp], [(w

∗
p+1 ∧ w∗

p+2), vp+1], . . . , [(w
∗
p+2q−1 ∧ w∗

p+2q), vp+q]

�−→ φ(v1, . . . , vp, vp+1, . . . , vp+q) w
∗
1 ∧ · · · ∧ w∗

p+2q,

where vi ∈ V , w∗
i ∈ W ∗. To prove that L ◦ η is injective in bidegree p, q choose

dimW = p+2q, fix a basis w∗
1 , . . . , w

∗
p+2q of W ∗, and evaluate (8.21) on all vi ∈ V

to see that if (LW ◦ η)φ = 0, then φ = 0. �
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Proof of Theorem 8.1. Lemma 8.6 and the subsequent arguments prove that L is
injective. To prove Theorem 8.1, which asserts that η is an isomorphism, it suffices
now to show that L ◦ η is surjective. We again fix a bidegree p, q and a vector
space W . Let h ∈ Ap,q(W ) (see (8.20)). Then h lifts to an element h̃ of

(8.22) HomGL(W )

( p⊗(
W ∗ ⊗ V

)
⊗

q⊗( 2⊗
W ∗ ⊗ V

)
;
∧p+2qW ∗

)
∼= HomGL(W )

(p+2q⊗
(W ∗) ⊗

p+q⊗
(V ) ;

∧p+2qW ∗
)

By Lemma 8.14, h̃ must have the form

(8.23)

[w∗
1 ⊗ v1], . . . , [w

∗
p ⊗ vp], [(w

∗
p+1 ∧ w∗

p+2), vp+1], . . . , [(w
∗
p+2q−1 ∧ w∗

p+2q), vp+q]

�−→ φ(v1, . . . , vp+q) w
∗
1 ∧ · · · ∧ w∗

p+2q,

for some φ ∈
⊗p+q(V ∗). The fact that h̃ factors through Ap,q(W ) in (8.20) implies

that φ is skew-symmetric in the first p variables and symmetric in the last q, so h is
in the image of Kosp,q V ∗ → Ap,q(W ). �

The following is a slight generalization of Theorem 7.28(i).

Corollary 8.24. Let V be a finite-dimensional real vector space and Y a smooth
manifold. Then the de Rham complex of Y × (Ω1⊗V ) is Ω(Y ; KosV ∗)• with differ-
ential the sum of the de Rham differential on Y and the Koszul differential (7.17).

The de Rham complex of a Cartesian product of manifolds is a completed tensor
product of their individual de Rham complexes, and this corollary would follow
from that statement for generalized manifolds (where there is no completion since
the de Rham complex of Ω1 ⊗ V is finite dimensional).

Proof. We indicate the modifications to the proof of Theorem 8.1 to accommodate
the factor of Y . Define a homomorphism

(8.25) ηY : Ω(Y ; KosV ∗)• −→ Ω•(Y × Ω1 ⊗ V )

as the composition

(8.26) Ω(Y ; KosV ∗)•
η−→ Ω

(
Y ; Ω(Ω1 ⊗ V )

) ∧−−→ Ω(Y × Ω1 ⊗ V ).

We must prove that ηY is an isomorphism. In Lemma 8.6 for each test manifold M
we have a pair φ, α consisting of a map φ : M → Y and a 1-form α ∈ Ω1(M ;V );
now ωM = ωM (α, φ). The locality argument implies that to compute i∗UωM (α, φ)
for U ⊂ M a small open set containing p ∈ M , we can replace Y by an open set in
a vector space V ′. In the paragraph containing (8.7) define φ̃ : M × Aq+1 → V ′ as

the composition φ◦π1. If φ1, φ2 have the same q-jet at p, then φ̃2 = φ̃1+t0t1 · · · tqψ̃
for some ψ : M → V ′. A similar argument to that surrounding (8.8) shows that

ωM (α, φ)
∣∣
p
only depends on the q-jet of φ at p, and so we take V ′ = TyY , where

y = φ(p). Then in (8.9) we replace Jq(W ;W ∗ ⊗ V ) with the q-jets of elements
of Ω1(W ;V ) ×Map(W ;TyY ) at the origin of W . Lemma 8.11 is unchanged. The
isomorphism (8.12) is replaced by

(8.27) Jq(W ;W ∗ ⊗ V ⊕ TyY ) ∼=
q⊕

j=0

(
Symj W ∗ ⊗ (W ∗ ⊗ V ⊕ TyY )

)
.
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In the statement of Lemma 8.15 there is an extra term W ∗ ⊗ TyY under Symi for
each i, and (8.16) is now

Ly,W : Ω•(Y × Ω1 ⊗ V )

−→ HomGL(W )

(
Sym(W ∗ ⊗ V ⊕

∧2W ∗ ⊗ V ⊕ W ∗ ⊗ TyY ) ;
∧•W ∗

)
.

(8.28)

The composite Ly,W ◦ ηY preserves a triple grading:

Ωr(Y ; Kosp,q V ∗)

−→ HomGL(W )

(
Symp(W ∗ ⊗ V )⊗ Symq(

∧2
W ∗ ⊗ V )

⊗ Symr(W ∗ ⊗ TyY ) ;
∧p+2q+r

W ∗
)
.

(8.29)

The proofs that Ly ◦ηY is injective and surjective are similar to those above, so are
omitted. �

Proof of Lemma 7.25. We use (7.11). So if α : M → Ω1 ⊗ g is a g-valued 1-form on
a test manifold M , and λ ∈ g∗, then by (8.3) the pullback of η(α) to M is the scalar
1-form 〈α, λ〉 ∈ Ω1(M). The action (5.22) of G gives the 1-form 〈θ+Adg−1 α, λ〉 ∈
Ω1(G×M), and the contraction with ξ ∈ G along {e} ×M is 〈ξ, λ〉, as claimed in
the first formula of (7.26). By (8.5) the functional λ ∈ g∗ also determines, via η, a
scalar 2-form 〈dα, λ〉 ∈ Ω2(M), and the action of G produces the 2-form

(8.30)
〈1
2
[θ, θ] + Add(g−1) ∧α+Adg−1 dα , λ

〉
∈ Ω2(G×M).

Only the second term contributes to the restriction to {e} ×M of the contraction
with ξ, which equals 〈−Adξ α, λ〉 = 〈α,−Ad∗ξ λ〉 ∈ Ω1(M), the 1-form correspond-

ing to −Ad∗ξ λ ∈ g∗. This proves the second line of (7.26). �

Proof of Theorem 7.20. By Proposition 5.24 and the fact that Definition 7.1 takes
place in the homotopy category, de Rham complex of B∇G equals that of Btriv

∇ G.
Now Btriv

∇ G is the simplicial sheaf (5.21) which represents the action of G on Ω1⊗g.
By Proposition 7.5 and Proposition 7.14 its de Rham complex is the basic subcom-
plex of Ω•(Ω1 ⊗ g). By Theorem 7.19 the latter is the Weil algebra (Kos• g∗, dK).
Thus we are reduced to computing the basic subcomplex of the Weil algebra, which
is standard.

Following [MQ, §5], choose a basis {ei} of g and corresponding dual basis {ei}
of g∗. Let ιi, θ

i be interior multiplication by ei and exterior multiplication by ei,
respectively, on

∧•
g∗. Then it is easy to see that

∏
i(1 − θiιi) is projection onto

the horizontal elements of
∧•

g∗—those which satisfy Definition 7.13(ii)—and that

the image of this projector is in fact
∧0

g∗ ⊂
∧•

g∗. Now dθi ⊂ Sym1
g∗ ⊂ Kos• g∗,

and we set

(8.31) Ωi = dθi +
1

2
f i
jkθ

j ∧ θk,

where [ej , ek] = f i
jkei and we use the summation convention. A short computation

from (7.26) shows that ι	Ω
i = 0 for all i, �. By a change of basis we may identify

the Weil algebra as the exterior algebra on the span of {θi} tensor the symmetric
algebra on the span of {Ωi}. It follows that the horizontal elements of the Weil

algebra form the subspace
∧0

g∗⊗Sym•
g∗, where the second factor is the symmetric
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algebra on the span of {Ωi}. Therefore, the basic subalgebra of the Weil algebra
are the G-invariants in that symmetric algebra, as claimed. �

Remark 8.32. The computation of the basic subcomplex of the Weil algebra is a
special case of the computation of the basic subcomplex in Theorem 7.28(ii), which
results in the Cartan model for equivariant de Rham cohomology; see [MQ, §5],
[GS, §4].

Appendix A. Transformations of polynomial functors

Polynomial functors are intimately related to Schur’s representation theory of
the symmetric group; for example, see [Mac, §I, Appendix]. In this appendix
we prove that every set-theoretic natural transformation of polynomial functors
is polynomial.

Let Vect be the category of finite-dimensional vector spaces over10 R.

Definition A.1. A functor F : Vect → Vect is polynomial of degree d if for every
V and every f1, . . . , fn ∈ EndV , the map

(A.2) F (λ1f1 + · · ·+ λnfn)

is a polynomial of degree d in λ1, . . . , λn with coefficients in End(F (V )). A functor
F is homogeneous of degree d if the above polynomial is homogeneous of degree d.

To keep the language simple we make the convention that a polynomial of degree
d might also be a polynomial of lower degree.

Suppose that F is polynomial functor of degree d, and write

(A.3) F (λ idV ) =
d∑

i=0

λiei(V ), λ ∈ k, ei(V ) ∈ End
(
F (V )

)
.

Using

(A.4) F (λ1λ2 id) = F ((λ1 id) ◦ (λ2 id)) = F (λ1 id) ◦ F (λ2(id)),

one easily checks that the ei(V ) : F (V ) → F (V ) are orthogonal idempotents. Write
Fi = eiF . Then Fi is homogeneous of degree i, and F =

⊕
Fi.

Here is a useful fact about polynomial functors. For a subset I ⊂ {1, . . . , n}, let
(A.5) V I = {(v1, . . . , vn) ∈ V n : vi = 0, i �= I}

be the ‘I-axis’, and let εI : V n → V n be the projection operator to V I . We write
εi instead of ε{i}, so that

(A.6) εi(v1, . . . , vn) = (0, . . . , vi, . . . , 0),

(A.7) εI =
∑
i∈I

εi,

and

(A.8) idV n = ε1 + · · ·+ εn.

Write |I| for the number of elements of I.

10With the exception of the proof of Lemma A.18, the arguments in this appendix work over
any field of characteristic zero.
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Proposition A.9. Suppose that F : Vect → Vect is a polynomial functor of degree
d, and let n > d. For every nonzero x ∈ F (V n) there is a subset I ⊂ {1, . . . , n}
with |I| ≤ d and F (εI)(x) �= 0. Equivalently, the product of the restriction maps

(A.10)
∏
|I|=d

F (εI) : F (V n) →
∏
|I|=d

F (V I)

is a monomorphism.

Proof. Since F is polynomial, we have

(A.11) F (λ1ε1 + · · ·+ λnεn) =
∑
J

λJeJ

in which J = (j1, . . . , jn), λ
J = λj1

1 · · ·λjn
n , and eJ is an endomorphism of F (V n).

As above, the eJ are orthogonal idempotents. Setting all of the λi = 1 and us-
ing (A.8), one sees that

(A.12)
∑
J

eJ = id .

Let x be a nonzero element of F (V n). Apply (A.12) to x to conclude that eJ (x) �= 0
for some J . Since the degree of F is d, at most d of the ji ∈ J are nonzero. Let
I = {i | ji �= 0}. Set

(A.13) λi =

{
1, i ∈ I;

0, i /∈ I

in (A.11) to deduce

(A.14) eJ
(
F (εI)(x)

)
= eJ

(
eJ (x) + · · ·

)
= eJ (x) �= 0,

whence F (εI)(x) �= 0. �

Definition A.15. Suppose that V and W are real vector spaces. A function
f : V → W is polynomial (of degree d) if for every set v1, . . . , vn of elements of V ,
the map

(A.16) f(λ1v1 + · · ·+ λnvn)

is a polynomial in the λi (of degree d) with coefficients in W ; i.e., there exists

a polynomial g(t1, . . . , tn) ∈ W ⊗
R
R[t1, . . . , tn] with the property that for all

λ1, . . . , λn ∈ R, and all v1, . . . , vn ∈ V

(A.17) f(λ1v1 + · · ·+ λnvn) = g(λ1, . . . , λk).

The following lemma gives a useful criterion for a map to be polynomial.

Lemma A.18. Let k > 0 be an integer. Let f : V → W be a map, and assume
that for every finite set v1, . . . , vn of elements of V the map

(A.19) f(λk
1v1 + · · ·+ λk

nvn)

is a polynomial in the λi (of degree kd) with coefficients in W . Then f is a poly-
nomial map of degree d.
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Proof. By choosing bases of V and W we immediately reduce to the case f : Rm →
R for m = dimV . The hypothesis implies that

(A.20) f(λk
1 , . . . , λ

k
m) =

∑
r1,...,rm

ar1···rm λr1
1 · · ·λrm

m

is a polynomial of degree kd in λ1, . . . , λm ∈ R and

(A.21) f(μk
1 − νk1 , . . . , μ

k
m − νkm) =

∑
p1,...,pm
q1,...,qm

bp1···pmq1···qm μp1

1 · · ·μpm
m νq11 · · · νqmm

is a polynomial of degree kd in μ1, . . . , μm ν1, . . . , νm ∈ R. For |μi| ≥ |νi| set
λi = (μk

i − νki )
1/k. Comparing (A.20) and (A.21), we find for each r1, . . . , rm that

(A.22)

ar1···rm(μk
1−νk1 )

r1/k · · · (μk
m−νkm)rm/k =

∑
pi+qi=ri

bp1···pmq1···qmμp1

1 · · ·μpm
m νq11 · · · νqmm .

If ar1···rm �= 0 we conclude that

(A.23) (μk
1 − νk1 )

r1/k · · · (μk
m − νkm)rm/k

is a homogeneous polynomial in μ1, . . . , μm, ν1, . . . , νm on the region where |μi| ≥
|νi| for all i. Apply Taylor’s theorem at any point of that region to deduce that
each of r1, . . . , rm is divisible by k (else (A.23) is not a polynomial). It follows
from (A.22) that bp1···pmq1···qm vanishes unless each of p1, . . . , pm, q1, . . . , qm is di-
visible by k. If k is odd, the vanishing now implies from (A.20) that f(x1, . . . , xm) is
a polynomial of degree d in x1, . . . , xm, but if k is even, we only deduce this on the
region where all xi ≥ 0. From (A.21) we see that f(y1 − z1, . . . , ym − zm) is (i) a
polynomial of degree d in y1, . . . , ym, z1, . . . , zm and (ii) a polynomial of degree d in
y1 − z1, . . . , ym− zm in the region where all yi ≥ zi. From these two facts it follows
that (ii) holds for all y1, . . . , ym, z1, . . . zm, whence f(x1, . . . , xm) is a polynomial of
degree d in x1, . . . , xm. �

Definition A.24. A polynomial functor

(A.25) F =
⊕
i≥0

Fi

is reduced if F0 = 0.

We now prove the main result of this appendix.

Theorem A.26. Let F and G be polynomial functors over R, and suppose that
F is reduced. Any set-theoretic transformation T : F → G is polynomial. If G is
polynomial of degree d, then T is polynomial of degree d.

A set-theoretic transformation of functors T : F → G is a natural transformation of
the underlying set-valued functors. In other words, the map T (V ) : F (V ) → G(V ),
V ∈ Vect, is a map of sets (which is not assumed to be linear).

Proof. Let V be a vector space, v1, . . . , vn ∈ F (V ). We wish to show that

(A.27) TV (λ1v1 + · · ·+ λnvn) ∈ G(V )

is a polynomial function of λi ∈ k. For each i, write

(A.28) vi =
∑

v
(j)
i ,
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with v
(j)
i ∈ Fj(V ). Then since

(A.29)
∑

λivi =
∑

λiv
(j)
i ,

we might as well assume from the outset that each vi is homogeneous in the sense
that vi ∈ Fki

(V ) for some ki. Since F is reduced, none of the ki is zero. We may
therefore choose an integer k which is divisible by all the ki. We will show that

(A.30) TV (λ
k
1v1 + · · ·+ λk

nvn) ∈ G(V )

is a polynomial function of the λi, of degree kd if G has degree d. By Lemma A.18
this implies that TV is polynomial of degree d.

Consider the following commutative diagram, in which Σ : V n → V is the sum
map:

F (V n)
F (Σ)

TV n

F (V )

TV

G(V n)
G(Σ)

G(V ).

(A.31)

Let ji : V → V n be the inclusion of the ith subspace 0 ⊕ · · · ⊕ V ⊕ · · · ⊕ 0 ⊂ V n.
Under the top arrow F (Σ), the vector

(A.32) λk
1F (j1)(v1) + · · ·+ λk

nF (jn)(vn) ∈ F (V n)

maps to λk
1v1 + · · ·+ λk

nvn ∈ F (V ). By commutativity of the diagram, it therefore
suffices to show that

(A.33) TV n

(
λk
1F (j1)(v1) + · · ·+ λk

nF (jn)(vn)
)
∈ G(V n)

is a polynomial function of the λi with coefficients in G(V n).
Let f : V n → V n be the map

(A.34) f = λ
k/k1

1 ε1 + · · ·+ λk/kn
n εn,

where εi(v1, . . . , vn) = (0, . . . , vi, . . . , 0). Since G is polynomial, it follows that that

G(f) is a polynomial in λ
k/ki

i (and hence in the λi) with coefficients in End
(
G(V n)

)
.

Now follow the element

(A.35) x = F (j1)(v1) + · · ·+ F (jn)(vn) ∈ F (V n)

around the commutative diagram

F (V n)
F (f)

TV n

F (V n)

TV n

G(V n)
G(f)

G(V n),

(A.36)

starting in the upper left corner. It is sent by the top horizontal arrow to

(A.37) λk
1F (j1)(v1) + · · ·+ λk

nF (jn)(vn) ∈ F (V n),

which in turn is sent by the right vertical arrow to (A.33). Under the left vertical
arrow x is sent to TV n(x) which, since G(f) is a polynomial endomorphism (in
the λi), is sent by the bottom horizontal arrow to a polynomial in the λi with
coefficients in G(V n). If G is polynomial of degree d, then G(f) is a polynomial
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in λ
k/k1

1 , . . . , λ
k/kn
n of degree d, so a polynomial in λ1, . . . , λn of degree kd. This

completes the proof. �
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