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1. Review: Differential Refinements

Let Man denote the category of manifolds and smooth maps.

Definition 1.1. A differential cohomology theory is a sheaf of spectra on the category Man.

Remark. We can also consider sheaves on Man valued in other categories. Of particular interest will
be the category sSet of simplicial sets, the category Ch of chain complexes, and the category Grpd
of groupoids.

Recall that, as in any category of sheaves, we have an adjunction

Γ∗ : Shv(Man;Sp) � Sp : Γ∗

given by taking the constant sheaf and global sections. For sheaves on manifolds, we have an extra
functor, the left adjoint to Γ∗,

Γ! : Shv(Man;Sp) � Sp : Γ∗

We refer to the composite Γ∗Γ! as the homotopification functor. In Peter’s talk this was denoted
hi! = Γ∗Γ!.

Definition 1.2. Let E be a spectrum. A differential refinement of E is a differential cohomology
theory Ê ∈ Shv(Man;Sp) together with an isomorphism Γ!Ê ' E.

We saw last time that one should think of a differential cohomology theory as the data of a
homotopy invariant piece, a “pure” piece, and some gluing data.

Definition 1.3. A sheaf F ∈ Shv(Man;Sp) is pure if the global sections of F is 0,

Γ∗F ' 0

A differential cohomology theory Ê is a differential refinement of E ∈ Sp if the homotopy invariant
piece of Ê is the constant sheaf on E.
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Lemma 1.4 (from last time). A differential refinement of E ∈ Sp is equivalent to the data of a

pure sheaf P̂ ∈ Shv(Man;Sp) and a map f : E → Γ!P̂ . The differential cohomology theory is then
the homotopy pullback

Ê //

��

Γ∗E

Γ∗f
��

P̂ // Γ∗Γ!P̂

(1)

1.0.1. Note that given a spectrum E, there are possibly many differential refinements of E. We
will construct differential cohomology theories by the following process:

• Choose a pure sheaf P̂
• Compute Γ!P̂ using the formula

Γ!P̂ = colim
∆op

P̂ (∆n)

• Find spectra E that map to Γ!P̂
• Take Ê as in the pullback diagram 1

Remark. Let Ê be the differential refinement of E using the pure sheaf P̂ and the map f : E → Γ!P̂ .
The differential cohomology diagram for Ê looks like

Γ∗Γ∗Ê //

!!

Γ∗E

%%
Σ−1Γ∗Γ!Z(Ê)

&&

88

Ê

>>

  

Γ∗Γ!Z(Ê)

A(Ê)

==

// Z(Ê)

::

(2)

Last time, we saw that Z(Ê) ' P̂ recovers the pure sheaf. Thus the differential cohomology
diagram 2 can be constructed from the data of the pullback square 1, since the diagonals must be
fiber sequences.

2. Examples

2.1. Stupidest Example. We need a sheaf whose global sections is 0. The easiest example of such
a sheaf is the constant sheaf, P̂ = Γ∗0. In this case, we have an equivalence

Γ!Γ
∗0 ' 0

Indeed, Γ!Γ
∗ is the left adjoint of Γ∗Γ

∗ which is the identity on Sp. Any spectrum E maps uniquely
to the identity 0. Thus for any spectrum E we have a differential refinement Ê by the (homotopy)
pullback

Ê //

��

Γ∗E

��
Γ∗0 Γ∗0

2



Since the bottom horizontal arrow is an equivalence, the top horizontal arrow is as well. Thus
Ê = Γ∗E. The rest of the differential cohomology diagram looks as follows,

Γ∗E //

$$

Γ∗E

""
Σ−1Γ∗0

%%

88

Γ∗E

;;

""

Γ∗0

A(Γ∗E)

::

// Γ∗0

<<

Since the upwards diagonal is a fiber sequence, we must have A(Γ∗E) ' Σ−1Γ∗0.
In particular, this example shows that E-cohomology is a special case of differential cohomology.

2.2. Stupidest Example, but with a filtration. We give an alternative description of Γ∗0 which
comes with a natural filtration.

First note that there is a functor H : Ch→ Sp from chain complexes of abelian groups to spectra,
called the Eilenberg-MacLane functor. For example, if A is an abelian group and A[0] is the chain
complex with A in degree 0, then H(A[o]) = HA, the Eilenberg-MacLane spectrum. Note also that
H takes quasi-isomorphic chain complexes to the same spectrum.

Let Ω•dR ∈ Shv(Man;Ch) the sheaf of deRham forms with cohomological grading; so ΩkdR is in
degree −k. Consider the resulting functor of spectra, HΩ•dR. By the Poincaré Lemma, Ω•dR is
quasi-isomorphic to the constant sheaf at R[0]. Thus HΩ•dR ' Γ∗HR. In particular, HΩ•dR is not
pure. However, since Ω•dR is homotopy invariant (alternatively, since Γ∗HR is homotopy invariant),
the purification Z(HΩ•dR), is equivalent to Γ∗0 (this was shown last time),

Γ∗0 ' Z(HΩ•dR)

Now Ω•dR comes has a filtration by degree. For k ∈ N, let Ω≥kdR denote the stunted piece of the chain
complex Ω•dR where we have replaced everything in degree < k by 0. We get induced filtrations of
HΩ•dR and of Z(HΩ•dR) ' Γ∗0.

For k ≥ 1, there is an equivalence Ω≥kdR(∗) ' 0 of chain complexes. Thus the global sections of

HΩ≥kdR is 0,

Γ∗HΩ≥kdR = HΩ≥kdR(∗) = H(0) = 0

By definition, this means that HΩ≥kdR is a pure sheaf if (and only if ) k ≥ 1. The purification functor
Z is the identity on pure sheaves, so we obtain a filtration of the pure sheaf Γ∗0 by pure sheaves

Γ∗0→ HΩ≥1
dR → · · · → HΩ≥kdR → · · ·

Now for each k ≥ 1, we can choose the pure sheaf HΩ≥kdR and follow our procedure, 1.0.1.
We need to compute the homotopification of our chosen pure sheaf.

Lemma 2.1. For any k ∈ N, there is an equivalence Γ!HΩ≥kdR ' HR.

Proof. For k = 0, we have seen that HΩ≥0
dR ' Γ∗HR, which is already homotopy invariant. Thus

Γ!Γ
∗HR ' HR.

For k ≥ 1, see [1, Lem. 7.15]. �
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Thus for any spectrum E together with a map E → HR, we can define a family of differential
refinement of E by the pullbacks

Ê(k) //

��

Γ∗E

��
HΩ≥kdR

// HR

for k ≥ 1. This family of differential refinements was introduced by Hopkins-Singer, [2].

The differential cohomology diagram 2 for Ê(k) looks like

Γ∗Γ∗Ê //

%%

Γ∗E

##
Σ−1Γ∗HR

''

77

Ê(k)

;;

##

Γ∗HR

HΩ≤k−1
dR [−1]

99

// HΩ≥kdR

;;

2.2.1. Cheeger-Simons Differential Characters. Take E = HZ and the map HZ → HR induced
from the inclusion Z ⊂ R.

Definition 2.2. The kth ordinary differential cohomology group of a manifold M , denoted Ĥk(M)
is the kth homotopy group

Ȟk(M) = π−kĤZ(k)(M)

where ĤZ(k) is defined by the homotoyp pullback square

ĤZ(k) //

��

Γ∗HZ

��
Z(HΩ≥kdR) // Γ∗HR

Note that Z(HΩ≥kdR ' HΩ≥kdR if k ≥ 1 and is HR if k = 0.

The group Ĥk(M) is also known as the Cheeger-Simons differential characters, or the smooth
Deligne cohomology.

We give a more explicit description of Ȟk, which agrees with Deligne’s original construction.

Lemma 2.3. Let k ≥ 1. The sheaf of spectra ĤZ(k) is given by applying the Eilenberg-MacLane
functor H to the sheaf of chain complexes(

Γ∗Z→ Ω0
dR → Ω1

dR → · · · → Ωk−1
dR → 0→ · · ·

)
where ΩidR is in degree −i− 1. Moreover, the group Ȟk(M) ,for a manifold M , can be computed as
the kth sheaf cohomology group of this sheaf of chain complexes.

Proof. By construction, ĤZ(k) comes from H of the sheaf of chain complexes F given by the
(homotopy) pullback

F //

��

Γ∗Z[0]

��
Ω≥kdR

// Ω•dR
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Since the bottom horizontal arrow is an inclusion, its cofiber is given by the cokernel. We have a
cofiber sequence

Ω≥kdR → Ω•dR → Ω≤k−1
dR

where Ω≤k−1
dR has ΩidR in degree −i, and 0 above k − 1. The cofiber of the top horizontal map

is equivalent to the cofiber of the bottom horizontal map. Since we are in a stable setting, these
cofiber sequences are also fiber sequences. Thus, we have a fiber sequence

F → Γ∗Z[0]→ Ω≤k−1
dR

where Z[0]→ Ω≤k−1
dR includes Z into Ω0

dR. The fiber of this inclusion is a shift of the mapping cone,
which is (

Γ∗Z→ Ω0
dR → Ω1

dR → · · · → Ωk−1
dR → 0→ · · ·

)
Finally, note that π−kHF = HkF . �

Example 2.4. Take k = 0. Then ĤZ(k) ' Γ∗HZ and

Γ∗HZ(M) = [M,HZ]

has 0th homotopy group H0(M ; Z).

We stole the following two computations from Nilay Kumar’s notes, [3].

Example 2.5. Take k = 1. We compute Ȟ1(M). By Lemma 2.3, we can compute Ȟ1(M) as the
1st sheaf cohomology group of the sheaf of chain complexes (Γ∗Z → Ω0

dR). After choosing a good
cover of M , we can compute this sheaf cohomology as Cech cohomology. The Cech cohomology will
be the cohomology of the total complex of the following bicomplex,

Č0(Γ∗Z) //

��

Č0(Ω0
dR)

��
Č1(Γ∗Z) //

��

Č1(Ω0
dR)

��
Č2(Γ∗Z) //

��

Č1(Ω0
dR)

��
...

...

with Či(Γ∗Z) in bidegree (0,−i) and Či(Ω0
dR) in bidegree (−1,−i). The differential on this bicom-

plex is D = dhor + (−1)pdver where p is the horizontal degree. The piece of the total complex that
we are interested looks like

Č0(Γ∗Z)
D0−−→ Č0(Ω0

dR)⊕ Č1(Γ∗Z)
D1−−→ Č1(Ω0

dR)⊕ Č2(Γ∗Z)

If our good cover of M is {Uα} with intersections Uαβ , then an element of Č0(Ω0
dR)⊕ Č1(Γ∗Z) looks

like a collection of smooth maps fα : Uα → R and integers nαβ ∈ Z. The map D1 sends

D1(fα, nαβ) = (fα − fβ + nαβ , nβγ − nαγ + nαβ)

In particular, an element of kerD1 consists of maps fα that agree on intersections up to an integer.
These glue together to give a (smooth) map f : M → S1 = U(1).

The map D0 sends a collection (nα) to

D0(nα) = (cnα
, nα − nβ)
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where cnα
is the constant function Uα → R at the integer nα. As a map M → S1, these glue

together to the constant map at the base point.
Thus we have an equivalence

Ȟ1(M) ' Mapssm(M,U(1))

In ordinary cohomology, we have

H1(M ; Z) = [M,K(Z, 1)] = [M,U(1)]

In this sense, differential cohomology replaced homotopy maps with smooth maps.

Example 2.6. Take k = 2. Then we have an equivalence

Ȟ2(M) ' {line bundles on M with connection}/ ∼

In ordinary cohomology, we have

H2(M ; Z) = [M,K(Z, 2)] = [M,BU(1)] = {line bundles on M}/ ∼
In this sense, the new geometric information encoded in differential cohomology is the connection.

2.2.2. Differential K-Theory. Consider de Rham forms with C[u, u−1] with u in degree 2. We obtain

a family of pure sheaves HΩ≥kdR(−; C[u, u−1]). As in Lemma 2.1, we have a equivalences

Γ!HΩ≥kdR(−; C[u, u−1]) ' HC[u, u−1]

Take E = ku the spectrum defining complex K-theory. The Chern character defines a map ch : ku→
HC[u, u−1]. The resulting family of differential cohomology theories is what Hopkins-Singer refer to
as differential K-theory. There are other interesting differential refinements of ku that do not arise

from the pure sheaves HΩ≥kdR(−; C[u, u−1]).

2.3. Classifying G-Bundles. We will be interested in differential cohomology classes. As in ordi-
nary homology theory, characteristic classes come from studying classifying spaces of bundles. Let
G be a Lie group. View BG as a simplicial set,

BG = colim
∆op

(singBG•)

We will be interested in a differential refinement of BG. This will be a sheaf on Man of simplicial
sets.

Start with the sheaf of groupoids BunG or Bun∇G on Man which assigns to a manifold M the
groupoid of principal G-bundles on M (and connections) and bundle maps. The nerve defines a
functor

N: Grpd→ Man

We obtain sheaves of simplicial sets, B•G = N(BunG) and B∇G = N(Bun∇G).

Lemma 2.7. The sheaves B•G and B∇G refine BG.

This is [1, Lem. 5.2].
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